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Abstract: We propose a semiparametric functional single-index model for studying

the relationship between a univariate response and multiple functional covariates.

The parametric part of the model integrates a functional linear regression model

and a sufficient dimension-reduction structure. The nonparametric part of the

model allows the response-index dependence or the link function to be unspecified.

The B-spline method is used to approximate the coefficient function, which leads

to a dimension-folding-type model. A new kernel regression method is developed to

handle the dimension-folding model, allowing us to estimate the index vector and

the B-spline coefficients efficiently. We also establish the asymptotic properties and

semiparametric optimality for the estimators.
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1. Introduction

The National Morbidity, Mortality, and Air Pollution Study (NMMAP) is

an important study aiming to address the uncertainty in the association between

pollution and health (Samet et al. (2000)). In this study, daily measurements of

the air pollutants carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide

(SO2), and ozone (O3) are collected in different cities over the course of a year.

The annual death rate caused by cardiovascular disease (CVD) is also collected

for these cities. Each pollutant has been studied individually in the past with

no significant effect detected on the CVD death rate (Cox and Popken (2015);

Turner et al. (2016)).

This motivates us to develop a single air pollution index that combines pol-

lutants in a way that best describes the severity of the overall air pollution level

in terms of the CVD death rate. At the same time, we examine the possible

time-varying effect of the single air pollution index on the CVD death rate. To

achieve these goals, we propose a functional single-index model and proceed to

devise a novel class of estimators.
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More specifically, the NMMAP data contain measurements of daily air pol-

lutant concentrations X(t) ≡ {X1(t), . . . , XJ(t)}T, a J-dimensional functional

covariate of t ∈ [0, 1], and the annual CVD death rate in the subsequent year as

the response Y . To measure the overall severity of the air pollution, we define

the single air pollution index as follows:

W (t) = βTX(t) =

J∑
i=1

βiXi(t),

where β = (β1, . . . , βJ)T is a vector of weights for various air pollutants, capturing

the relative importance of the pollutants in determining the pollution severity.

We assume that Y is linked to W (t) through

f{Y |X(t)} = f

{
Y,

∫ 1

0
W (t)α(t)dt

}
, (1.1)

where f is a conditional probability density function (pdf) or probability mass

function (pmf); and is left unspecified. Here, the functional parameter α(t)

captures the time-varying effect of the air pollution index on the annual CVD

death rate. Note that: unlike the usual single-index model, as discussed in Chen,

Hall and Müller (2011) and Ma (2016), we make an assumption on the conditional

distribution, rather than on the conditional mean.

Estimations and inferences using the functional single-index model (1.1) are

not simple. The complexity is due to the unspecified bivariate link function f ,

unknown coefficient function α(t), and unknown index vector β. If α(t) were

known, (1.1) would reduce to a central space estimation problem; here various

methods exist to estimate β (Li (1991); Cook and Weisberg (1991); Li and Wang

(2007); Ma and Zhu (2013)). If β were known, (1.1) would reduce to a functional

dimension reduction problem (Ferré and Yao (2003, 2005, 2007)). Qu, Wang and

Wang (2016) handle the unknown α(t) using the reproducing kernel method,

where α(t) is approximated by a function in the reproducing kernel space. Based

on a similar idea, we approximate α(t) by a spline function, which facilitates the

estimation and inference procedures on α(t).

The functional single-index model (1.1) is closely related to sufficient dimens-

ion-reduction modeling, where a response depends on the covariate vector through

its linear transformation (Cook (1998)). To this end, we can view
∫ 1

0 X(t)α(t)dt

as the covariate vector in the classical sufficient dimension-reduction model.

Moreover, the proposed method forms an alternative solution for the dimension-

folding problem (Li, Kim and Altman (2010)), and does not require conditions

on the covariates; as other methods in the literature do.
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In summary, the proposed model and estimators have the following features.

First, the model contains a single air pollution index that summarizes the pollu-

tion severity level. Second, the time-varying coefficient helps to provide timely

adjusted health advice to the general public. Third, the flexible relation be-

tween the CVD death rate and the overall pollution effect avoids possible model

misspecification. Fourth, the model extends the sufficient dimension-reduction

model to handle multi-functional covariates.

2. Methodology

2.1. Model and identifiability

The identifiability of model (1.1) is shown in Proposition 1, which is justified

in the Supplementary Material.

Proposition 1. Assume α(t) is continuous and set α(0) = 1 and βJ = 1. Then

model (1.1) is identifiable.

Under the assumptions in Proposition 1, we approximate α(t) using a B-

spline function
∑dγ

k=1 γkBrk(t), where Brk(t) is the kth B-spline basis function,

with order r (r ≥ 0). Then, the functional single-index model (1.1) reduces to

the model

f(Y,βTZγ) = f

Y,
J∑
j=1

dγ∑
k=1

βjγk

∫ 1

0
Xj(t)Brk(t)dt

 , (2.1)

where Z is a J × dγ matrix with (j, k)th entry Zjk ≡
∫ 1

0 Xj(t)Brk(t)dt, and f

is an unknown density function. Next, we estimate β and γ = (γ1, . . . , γdγ )T

simultaneously. Because the B-spline property ensures Br1(0) = 1 and Brk(0) =

0, for k > 1; and our parameterization fixes α(0) = 1, we automatically obtain

γ1 = 1.

Model (2.1) is in the form of the dimension-folding models described in Li,

Kim and Altman (2010); in which the predictors (i.e., Z) are matrix-valued.

The covariate matrix is sandwiched between the left and right coefficient vectors,

that is β and γ in our setting, to generate a univariate quantity. The dimension-

folding structure reduces the number of parameters of interest. In our setting,

we need to estimate dγ + J − 2 free coefficients, owing to the multiplication from

both the left and the right sides of Z. The dimension-folding model has two main

advantages over the standard single-index model (Li (1991); Cook and Weisberg

(1991); Li and Wang (2007)), where the matrix covariates Z are vectorized and
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βjγk, for j = 1, . . . , J , k = 1, . . . , dγ , are Jdγ new coefficients (Ma (2016)): (1) it

automatically takes into account the relations between the coefficients; and (2)

it reduces the dimension of the unknown coefficients from Jdγ to dγ + J − 2,

hence avoiding possible extra high-dimensional problems when the number of

covariates is merely moderately large.

As an improvement to the dimension-folding method, our proposed estima-

tion procedure relaxes the additional constraints on the covariate matrix Z: our

procedure does not require that E{X | (γ ⊗ β)Tvec(X)} be a linear function of

(γ⊗β)Tvec(X), or that var{X | (γ⊗β)Tvec(X)} not depend on (γ⊗β)Tvec(X),

as enforced in Li, Kim and Altman (2010). Here, ⊗ stands for the Kronecker

product, and vec(X) is the vector formed by concatenating the columns of X.

These constraints may be violated, and are not assumed to hold for model (2.1),

in general.

2.2. Doubly robust local efficient score

To estimate the parameters, we first derive the analytic form of the efficient

score. Let

Seffβ(Y,Z,β,γ, g) =
[
g(Y,βTZγ)− E

{
g(Y,βTZγ) | βTZγ

}]
(2.2)

×(IJ−1,0){Z− E(Z | βTZγ)}γ,
Seffγ(Y,Z,β,γ, g) =

[
g(Y,βTZγ)− E

{
g(Y,βTZγ) | βTZγ

}]
×(0, Idγ−1){Z− E(Z | βTZγ)}Tβ,

where the function g(Y,βTZγ) = f
′

2(Y,βTZγ)/f(Y,βTZγ) and f
′

2(Y,βTZγ) is

the partial derivative of f with respect to its second argument. Then, the ef-

ficient score is Seff(Yi,Zi,β,γ, g) ≡ {Seffβ(Y,Z,β,γ, g)T,Seffγ(Y,Z,β,γ, g)T}T.

Our hope is to use the efficient score to construct an estimating equation that

we can use to solve for β,γ from
n∑
i=1

Seff(Yi,Zi,β,γ, g) = 0. (2.3)

When g(·) and E(·|βTZγ) are correctly specified, Seff is indeed a function that

falls in the space orthogonal to the nuisance tangent space induced by the un-

known conditional density f(·) defined in Proposition 3. Hence, as shown in

Bickel et al. (1993); Tsiatis (2004), Seff is the efficient score (see Proposition

S4.1 in the Supplementary Material) that yields the optimal estimators with

the smallest asymptotic variances. In addition, Seff is a doubly robust function,

such that the estimation consistency holds whenever E
{
g(Y,βTZγ) | βTZγ

}
or
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E
(
Z | βTZγ

)
is correctly specified (Ma and Zhu (2012, 2013)).

In reality, the functional form for the conditional density f(·) is usually un-

known, making it difficult to obtain E(·|βTZγ) and f ′2(Y,βTZγ)/f(Y,βTZγ)

in (2.2). Hence, the efficient score cannot be used directly. To retain the best

estimation efficiency without imposing additional assumptions, we adopt a non-

parametric estimation to estimate the unknown components in the efficient score

function. Specifically, we use the standard kernel smoothing method in a non-

parametric regression to estimate E(· | βTZγ), that is,

Ê{m(Yi,Zi) | βTZγ} =

∑n
i=1m(Yi,Zi)Kh(βTZiγ − βTZγ)∑n

i=1Kh(βTZiγ − βTZγ)
, (2.4)

for an arbitrary function m(Yi,Zi). Here, K(·) is a kernel function and Kh(·) =

h−1K(·/h). To estimate f(Y,βTZiγ), we use a local linear estimator. Specifi-

cally, we obtain the estimators f̂(Y,βTZiγ) = c0 and ∂f̂(Y,βTZiγ)/∂(βTZiγ) =

c1 by minimizing

J∑
j=1

{Kb(Yj − Y )− c0 − c1(βTZjγ − βTZiγ)}2Kh(βTZjγ − βTZiγ) (2.5)

with respect to c0, c1. (2.4) and (2.5) allow us to obtain the unknown quantities

in Seff consistently, given any parameter β,γ.

This is clearly a profiling procedure, where unknown nuisance components

are estimated as functions of the parameters of interest, and then the estimating

equations are solved to obtain the final estimator. This procedure yields the

optimal estimator for β,γ, but requires a relatively heavy computation, especially

when solving (2.5) for each value of βTZjγ. Thus, when the estimation variability

is not of great concern, to ease the computation burden, we may aim for a

possibly nonoptimal estimator. Specifically, we posit working models for f and

f2, say f∗ and f∗2 . Let g∗ = f∗′2 /f
∗; then, Seff(Yi,Zi,β,γ, g

∗) is a locally efficient

score function. Using this function to construct estimating equations guarantees

estimation consistency, and can result in an efficient estimator when g∗ is the

truth.

Note that there is a difficulty in obtaining Zi. Unlike in the usual dimension-

reduction problems, Zi is not directly observed and, thus, needs to be constructed

from the observed Xj(t). This involves a numerical approximation of the integrals∫ 1
0 Brk(t)Xj(t)dt. The composite Simpson’s rule (Atkinson (1989)) can be used

to approximate the numerical integration, which has the form
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∫ 1

0
Brk(t)Xj(t)dt =

1

3Q

[
Brk(t0)Xj(t0) + 2

Q/2−1∑
q=1

{Brk(t2q)Xj(t2q)}

+4

Q/2∑
q=1

{Brk(t2q−1)Xj(t2q−1)}+Brk(tQ)Xj(tQ)

]
,

where tq = q/Q, for q = 0, 1, . . . , Q, and Q is an even number.

The estimation procedures can be summarized as follows:

Step 1: Choose f and f ′2 by minimizing (2.5) or positing f and f ′2. Denote

the choices by f∗(Y,βTZγ,β,γ) and f ′∗2 (Y,βTZγ,β,γ), respectively, and let

g∗(Y,βTZγ,β,γ) = f ′∗2 (Y,βTZγ,β,γ)/f∗(Y,βTZγ,β,γ).

Step 2: Replace g in (2.3) with g∗, according to the Step 1 choice.

Step 3: Let Ŝeffγ be the version of S
effγ when replacing E(·|βTZγ) by Ê(·|βTZγ)

defined in (2.4). Treating γ as a function of β, denoted by γ(β), we solve
n∑
i=1

Ŝeffγ [Yi,Zi,β,γ(β), g∗{Yi,βTZiγ,β,γ(β)}] = 0

for γ(β), and denote the estimator as γ̂(β).

Step 4: Let Ŝeffβ be the version of Seffβ when replacing E(·|βTZγ) by Ê(·|βTZγ).

Solve
n∑
i=1

Ŝeffβ[Yi,Zi,β, γ̂(β), g∗{Yi,βTZiγ,β, γ̂(β)}] = 0

for β, and denote the estimator as β̂.

In the algorithm, we use the last two arguments in g∗(Yi,β
TZiγ,β,γ) to

emphasize its possible dependence on β,γ. Obviously, when we posit a model

for f , the functional form does not have to depend on β,γ. However, when

we estimate the model f , the functional form certainly depends on β,γ, as in

all profiling estimators. The resulting estimators are consistent, as discussed in

Proposition 2, because the expectations of the score functions have a zero mean

when the parameters are specified correctly. When estimating Ê(·|βTZγ), we

use the variance of βTZγ times n−1/5 as the bandwidth. Our results are robust

in the range between half of this bandwidth to double the bandwidth.

2.3. Asymptotic results

The profiling procedures in Step 3 and 4 yield estimators that are asymp-

totically equivalent to those from solving the estimating equation based on the

estimating function (ŜT
effγ , Ŝ

T
effβ)T. Hence, the estimation consistency readily
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holds, by the following proposition.

Proposition 2. Let β̂, γ̂ satisfy
n∑
i=1

{Ŝeffβ(Yi,Zi, β̂, γ̂, g
∗)T, Ŝeffγ(Yi,Zi, β̂, γ̂, g

∗)T}T = 0,

where

Ŝeffβ(Yi,Zi, β̂, γ̂, g
∗)

=

{
g∗(Yi, β̂

TZiγ̂)−
∑J

j=1Kh(β̂TZjγ̂ − β̂TZiγ̂)g∗(Yj , β̂
TZjγ̂)∑J

j=1Kh(β̂TZjγ̂ − β̂TZiγ̂)

}
Θβ

×

{
Zi −

∑J
j=1Kh(β̂TZjγ̂ − β̂TZiγ̂)Zj∑J
j=1Kh(β̂TZjγ̂ − β̂TZiγ̂)

}
γ̂,

Ŝeffγ(Yi,Zi, β̂, γ̂, g
∗)

=

{
g∗(Yi, β̂

TZiγ̂)−
∑J

j=1Kh(β̂TZjγ̂ − β̂TZiγ̂)g∗(Yj , β̂
TZjγ̂)∑J

j=1Kh(β̂TZjγ̂ − β̂TZiγ̂)

}
Θγ{

Zi −
∑J

j=1Kh(β̂TZjγ̂ − β̂TZiγ̂)Zj∑J
j=1Kh(β̂TZjγ̂ − β̂TZiγ̂)

}T

β̂.

Let β0 be the true β. Further, let γ0 be a spline coefficient satisfying

supt∈[0,1] |Br(t)
Tγ0 − α0(t)| = Op(h

q
b), as stated in Condition (A5). Then, β̂ −

β0 = op(1), supt∈[0,1] |Br(·)Tγ̂ −Br(·)Tγ0| = op(1).

In Step 3, at the point of convergence, we show that γ̂(β0) achieves the non-

parametric spline regression convergence rate and derive its asymptotic variation,

as follows.

Theorem 1. Assume Conditions (A1)–(A8) hold, and let Br(·)Tγ̂(β0) satisfy
n∑
i=1

Ŝeffγ(Yi,Zi,β0, γ̂(β0), g∗) = 0.

Then, n1/2{γ̂−(β0)− γ−0 } = L + op(L), where

L = −
({

E

(
Θγ [Zi − E{Zi|β0α0(Xi}]T β0

×
∂
(
g∗{Yi,βT

0 α0(Xi)} − E[g∗{Yi,βT
0 α0(Xi)}|βT

0 α0(Xi)]
]
)

∂βT
0 α0(Xi)

×βT
0 [Zi − E{Zi|βT

0 α0(Xi)}]ΘT
γ

)}−1)(
n−1/2

n∑
i=1

[g∗{Yi,βT
0 α0(Xi)}
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−E{g∗{Yi,βT
0 α0(Xi)}|βT

0 α0(Xi)}]Θγ

[
Zi − E{Zi|βT

0 α0(Xi)}
]T

β0

)
.

Here, γ−0 = (γ02, . . . , γ0dγ )T and γ̂−(β0) = (γ̂2(β0), . . . , γ̂dγ (β0))T. Further, for

an arbitrary dγ−1-dimensional vector with ‖a‖2 < ∞, we have aT{γ̂−(β0) −
γ−0 } = Op{(nhb)−1/2} .

In addition, we show β̂ from Step 4 is not only root-n consistent, but is also

efficient and achieves the information lower bound {E(S⊗2
oeff)}−1. Here, Soeff is

the efficient score for β in the original model (1.1), which contains α(·) instead

of Br(·)Tγ; Hence, it is different from Seffβ. The precise expression is given in

Proposition S4.2 in the Supplementary Material.

To show the asymptotic properties of β̂, we first define

∆g∗c{Yi,βT
0 α0(Xi)}

≡ ∂[g∗{Yi,βT
0 α0(Xi)} − E{g∗{Yi,βT

0 α0(Xi)}|βT
0 α0(Xi)}]

∂{βT
0 α0(Xi)}

,

and w∗0(t) as a function that satisfies

ΘβE[αc0(Xi)∆g
∗
c{Yi,βT

0 α0(Xi)}XT
ic(t)]β0 (2.6)

=

∫ 1

0
E[βT

0 Xic(s)∆g
∗
c{Yi,βT

0 α0(Xi)}XT
ic(t)β0]w∗0(s)ds,

where αc0(X) ≡ α0(X)− E{α0(X) | βT
0 α0(X)}. We have the following results.

Theorem 2. Assume Conditions (A1)–(A8) hold, and let β̂ satisfy
n∑
i=1

Ŝeffβ(Yi,Zi, β̂, γ̂(β̂), g∗) = 0.

Then,
√
n(β̂ − β0) = A−1B + op(1), where

A = −E
[
∆g∗c{Yi,βT

0 α0(Xi)}{Θβαc0(Xi)}⊗2

−∆g∗c
{
Yi,β

T
0 α0(Xi)

}∫ 1

0
βT

0 Xic(t)w
∗
0(t)dtαc0(Xi)

TΘT
β

]
and

B = n−1/2
n∑
i=1

{
g∗
{
Yi,β

T
0 α0(Xi)

}
− E

[
g∗{Yi,βT

0 α0(Xi)}|βT
0 α0(Xi)

]}
×
{

Θβαc0(Xi)−
∫ 1

0
βT

0 Xic(t)w
∗
0(t)dt

}
.

Hence,
√
n(β̂−β0) converges to a normal distribution with mean 0 and variance
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Σ, where Σ ≡ A−1E(B⊗2)A−1T

. Here, a⊗2 = aaT for an arbitrary vector or

matrix a. In addition, when g∗ = g,
√
n(β̂ − β0) converges to a normal distri-

bution with mean 0 and variance {E(S⊗2
oeff)}−1; that is, β̂ is the semiparametric

efficient estimator of β for model (1.1).

Theorem 2 indicates that β̂ is a consistent estimator. Furthermore, it is

semiparametric efficient when g∗ is correctly specified, even though the estimation

of β̂ is devised under the approximate model (2.1). In general, we can replace g∗

with a consistent estimator of g. The following corollary ensures the asymptotic

efficiency of the resulting β̂.

Corollary 1. Assume Conditions (A1)–(A8) hold, and let β̂ satisfy
n∑
i=1

Ŝeffβ(Yi,Zi, β̂, γ̂(β̂), ĝ) = 0,

where ĝ is a uniformly consistent estimator for the true function g, and Ŝeffβ is

defined in Proposition 2. Then, β̂ is semiparametric efficient.

The corollary readily holds from the result in Theorem 2 and the consistency

of ĝ. We omit the details. In practice, we can use the kernel method to estimate

f(Y,βTZγ) and, in turn, to obtain ĝ, which is guaranteed to be uniformly consis-

tent to g (Mack and Silverman (1982)). Combining the results of Theorems 1 and

2, we establish the theoretical properties of the estimation of α̂(t) in Theorem 3.

Specifically, Theorem 3 shows that the spline approximation α̂(t) = Br(t)
Tγ̂(β̂),

with β,γ estimated using the estimating equation set (3.1), indeed achieves the

usual nonparametric spline regression convergence rate.

Theorem 3. Assume Conditions (A1) – (A8) hold; then,

sup
t∈[0,1]

|Br(t)
Tγ̂(β̂)− α0(t)| = Op(n

−1/2h
−1/2
b ).

The proofs for the theoretical results are provided in the Supplementary

Material.

3. Relation to Semiparametric Sufficient Dimension Reduction

Although performed for the functional model and the dimension-folding

model, the proposed estimation procedure is in line with the semiparametric

sufficient dimension-reduction techniques discussed in Ma and Zhu (2012). To

illustrate the similarity, following Bickel et al. (1993) and Tsiatis (2004), we first

develop the nuisance tangent space Λ⊥ in the following proposition, which allows
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us to construct estimators of β,γ from various choices of the function f in the

description of Λ⊥.

Proposition 3. In the Hilbert space H of all mean-zero finite-variance functions

associated with (2.1), that is, H = {a(Z, Y ) :
∫

a(z, y)f(y,βTzγ)fZ(z)dµ(z, y) =

0,
∫

aT(z, y)a(z, y)f(y,βTzγ)fZ(z)dµ(z, y) < ∞,a(z, y) ∈ Rdγ+J−2}, where

µ(z, y) is the probability measure of (Z, Y ), fZ(z) is the pdf of Z, and f(y,βTzγ)

is given in (2.1), the orthogonal complement of the nuisance tangent space is

Λ⊥ = {f(Y,Z)− E(f | Y,βTZγ) : E(f | Z) = E(f | βTZγ), ∀ f}.

The proof of Proposition 3 is given in the Supplementary Material. Let

f(Y,Z) =
[
g(Y,βTZγ)− E

{
g(Y,βTZγ) | βTZγ

}]
a(Z), where g,a can be cho-

sen arbitrarily, as long as the resulting f contains sufficiently many equations.

Obviously, E(f | Z) = 0; hence, E(f | βTZγ) = 0, and f − E(f | Y,βTZγ) ={
g − E

(
g | βTZγ

)} {
a− E(a | βTZγ)

}
. Thus, we can construct an estimating

equation based on the sample version of

E
(
[g(Y,βTZγ)− E{g(Y,βTZγ) | βTZγ}][a(Z)− E{a(Z) | βTZγ}]

)
= 0, (3.1)

which provides a class of estimators for β,γ.

We now perform a set of analyses, somewhat in the spirit of Ma and Zhu

(2012), to illustrate that a different choice of g and a in (3.1) leads to the classical

dimension-reduction estimators.

3.1. The relation with a sliced inverse regression

As a first choice of g and a, let V = vec(Z), and select g(Y,βTZγ) = E(V |
Y ),a(Z) = VT. This provides an estimator similar to a sliced inverse regression

(SIR, Li (1991)) in the classical dimension-reduction framework. Specifically,

under this choice of g,a, (3.1) has the form

E
([
E(V | Y )− E{E(V | Y) | βTZγ}

] {
VT − E(VT | βTZγ)

})
= 0. (3.2)

The above estimating equation set contains J2dγ
2 equations, where we have only

J + dγ − 2 free parameters. We can use the GMM to reduce the number of

equations, in practice. We can also construct g or a, or both, using a subset of

V.

3.2. The relation with a sliced average variance estimator

As a second choice of g,a, we select g1(Y,βTZγ) = IJdγ − cov(V | Y ),

g2(Y,βTZγ) = g1E(V | Y ), a1(Z) = −V{V − E(V | βTZγ)}T, and a2(Z) =
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VT. We then construct a classical sliced average variance estimator (SAVE, Cook

and Weisberg (1991)), based on

E
[
{g1 − E(g1 | βTZγ)}{a1 − E(a1 | βTZγ)}

]
(3.3)

+E
[
{g2 − E(g2 | βTZγ)}{a2 − E(a2 | βTZγ)}

]
= 0.

3.3. The relation with a directional regression

The third choice of g,a that we would like to present is g1(Y,βTZγ) = IJdγ−
E(VVT | Y ), g2(Y,βTZγ) = E{E(V | Y )E(VT | Y )}E(V | Y ), g3(Y,βTZγ) =

E{E(VT | Y )E(V | Y )}E(V | Y ), a1(Z) = −V{V − E(V | βTZγ)}T, and

a2(Z) = a3(Z) = VT. This leads to a classical directional regression (DR, Li and

Wang (2007)) estimator from

3∑
i=1

E
[
{gi − E(gi | βTZγ)}{ai − E(ai | βTZγ)}

]
= 0. (3.4)

The three estimators given in (3.2), (3.3) and (3.4) are similar to the SIR,

SAVE, and DR, respectively. This is because if we had worked in the classical

sufficient dimension-reduction context, and if further equipped with the addi-

tional linearity condition and constant variance condition, the choices of g and a

that led to the three estimating equations above would have further led to SIR,

SAVE, and DR (Ma and Zhu (2012)). Furthermore, the choices of g,a in (3.2),

(3.3), and (3.4) depend only on the moments of Z, instead of on the conditional

density, as used in Seff defined in (2.2). Hence, these estimators can serve as

alternatives to the proposed efficient estimators when the conditional density is

difficult to obtain.

4. Simulation Studies

We carry out three simulation studies under the following settings in order

to assess the finite-sample performance of our estimation method. In each simu-

lation, we generate 1,000 data sets with a sample size n = 500.

Simulation 1

(1) J = 9, β = (1, 1.2, 1.5, 0.5,−0.5,−1.5,−1.2,−1, 1)T, and α0(t) = sin(πt) + 1,

for t ∈ [0, 1];

(2) Xji(t), j = 1 . . . , 4 follows U(−5, 5), where U [a, b] denotes a random variable

from the uniform distribution in the range [a, b];

(3) Yi follows a normal distribution with mean
∫ 1

0 Wi(t)α0(t)dt and variance 1,

where Wi(t) = βTXi(t).
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Table 1. The average (AVE), sample standard deviation (STD), average estimated

standard deviation (ŜTD), square root of the mean squared error (MSE), and coverage
of the estimated 95% confidence interval (CI) from the oracle (Ora), efficient (Eff), and
Locally efficient (Loc) estimates of β and γ in Simulation 1.

β1 β2 β3 β4 β5 β6 β7 β8
1 1.2 1.5 0.5 -0.5 -1.5 -1.2 -1

Ora AVE 1.0089 1.2070 1.5134 0.5067 -0.5033 -1.5081 -1.2141 -1.0062
STD 0.1294 0.1364 0.1588 0.1020 0.1007 0.1553 0.1412 0.1304

ŜTD 0.1244 0.1365 0.1577 0.0994 0.0996 0.1570 0.1373 0.1242
MSE 0.0168 0.0186 0.0254 0.0104 0.0101 0.0242 0.0201 0.0170
CI 0.9470 0.9520 0.9540 0.9420 0.9470 0.9530 0.9420 0.9330

Eff AVE 1.0264 1.2279 1.5398 0.5160 -0.5122 -1.5344 -1.2347 -1.0240
STD 0.1368 0.1460 0.1719 0.1065 0.1056 0.1669 0.1522 0.1389

ŜTD 0.1349 0.1495 0.1744 0.1051 0.1052 0.1734 0.1503 0.1349
MSE 0.0194 0.0221 0.0311 0.0116 0.0113 0.0290 0.0243 0.0198
CI 0.9640 0.9650 0.9660 0.9500 0.9510 0.9630 0.9580 0.9520

Loc AVE 1.0335 1.2427 1.5533 0.5194 -0.5139 -1.5479 -1.2444 -1.0341
STD 0.1535 0.1674 0.1962 0.1229 0.1192 0.1903 0.1728 0.1559

ŜTD 0.1544 0.1700 0.1997 0.1208 0.1207 0.1969 0.1702 0.1538
MSE 0.0247 0.0298 0.0413 0.0155 0.0144 0.0385 0.0318 0.0254
CI 0.9550 0.9540 0.9580 0.9520 0.9570 0.9640 0.9550 0.9600

Simulation 2 investigates the ability of our methods to handle a nonlinear mean

and variance.

(1) Yi follows a normal distribution with mean sin{2
∫ 1

0 Wi(t)α0(t)dt} + log[1 +

{
∫ 1

0 Wi(t)α0(t)dt}2]− 3 and variance 0.5[1 + {βT
∫ 1

0 Xi(t)α0(t)dt}2]1/5.

Simulation 3 resembles the air pollution data structure in Section 5.

(1) J = 4, β = (−0.2,−1,−1.5, 1)T, and α0(t) = 1−26.76t+145.3t2−227.27t3 +

107.99t4;

(2) Xi1(t) = 0.66 − 4.84t + 5.12t2 + U [−4, 6], Xi2(t) = 0.43 − 2.95t + 3.11t2 +

U [−5, 5], Xi3(t) = −1.61+10.40t−10.85t2 +U [−4, 4], and Xi4(t) = 0.58−3.59t+

3.52t2 + U [−4, 8];

(3) Yi is taken from a normal distribution with mean 0.075+0.53(
∫ 1

0 Wi(t)α0(t)dt+

1.23) and variance 0.05.

We applied the proposed method to estimate both β and α(t), where α(t)

is approximated using cubic B-spline basis functions, with three equally spaced

internal knots. For comparison, we implemented three estimators: the oracle,

efficient, and locally efficient estimators. In the oracle estimator, we specified

f(Y,βTZγ) using the normal pdf form, and used the true g(Y,βTZγ) in the
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Table 2. The average (AVE), sample standard deviation (STD), average estimated

standard deviation (ŜTD), square root of the mean squared error (MSE), and coverage
of the estimated 95% confidence interval (CI) from the oracle (Ora), efficient (Eff), and
Locally efficient (Loc) estimates of β and γ in Simulation 2.

β1 β2 β3 β4 β5 β6 β7 β8
1 1.2 1.5 0.5 -0.5 -1.5 -1.2 -1

Ora AVE 1.0037 1.2019 1.5031 0.5015 -0.5030 -1.5015 -1.2001 -1.0014
STD 0.0611 0.0677 0.0752 0.0503 0.0493 0.0750 0.0682 0.0568

ŜTD 0.0603 0.0662 0.0764 0.0484 0.0485 0.0763 0.0662 0.0604
MSE 0.0037 0.0046 0.0057 0.0025 0.0024 0.0056 0.0046 0.0032
CI 0.9500 0.9430 0.9430 0.9370 0.9480 0.9550 0.9310 0.9580

Eff AVE 1.0027 1.2018 1.5042 0.5024 -0.5037 -1.5005 -1.2004 -1.0011
STD 0.0752 0.0835 0.0930 0.0571 0.0564 0.0966 0.0801 0.0718

ŜTD 0.0734 0.0805 0.0931 0.0579 0.0578 0.0937 0.0805 0.0730
MSE 0.0057 0.0070 0.0087 0.0033 0.0032 0.0093 0.0064 0.0051
CI 0.9460 0.9460 0.9470 0.9470 0.9500 0.9410 0.9470 0.9500

Loc AVE 0.9944 1.1907 1.4877 0.4963 -0.4973 -1.4868 -1.1889 -0.9913
STD 0.1494 0.1720 0.2098 0.0830 0.0842 0.2126 0.1736 0.1426

ŜTD 0.1571 0.1855 0.2282 0.0893 0.0895 0.2296 0.1854 0.1568
MSE 0.0223 0.0296 0.0441 0.0069 0.0071 0.0453 0.0302 0.0204
CI 0.9440 0.9400 0.9440 0.9530 0.9470 0.9460 0.9430 0.9460

estimation. In the efficient estimator, E(·|βTZγ), f(Y,βTZγ), and f ′2(Y,βTZγ)

are estimated using a nonparametric method. In the local estimator, we speci-

fied an incorrect model of f(Y,βTZγ), hence using a misspecified g∗(Y,βTZγ)

function, and estimated E(·|βTZγ) nonparametrically. Note that the form of

f(Y,βTZγ) is unknown, in general. Hence, the oracle estimator is unrealistic

and is only included here as a benchmark for comparison.

The numerical performance of the estimation of β in Simulations 1, 2, and

3 is summarized in Tables 1, 2, and 3, respectively. Based on the asymptotic

results in Theorem 2, the average of the estimated standard error is obtained,

and the coverage of the 95% confidence interval is also provided. As expected,

both the efficient and the locally efficient estimators have very small bias, the

estimated variances are close to their empirical values, and the 95% coverage

is also reasonably close to the nominal level. The variances of the efficient es-

timators are smaller than those of the locally efficient estimators. In fact, the

performance of the efficient estimators is very close to that of the oracle estima-

tors. We illustrate the performance of the estimation of α0(t) in Figure 1, where

we show the mean estimated curves and the pointwise 90% confidence bands.
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Table 3. The average (AVE), sample standard deviation (STD), average estimated

standard deviation (ŜTD), square root of the mean squared error (MSE), and coverage
of the estimated 95% confidence interval (CI) from the oracle (Ora), efficient (Eff), and
Locally efficient (Loc) estimates of β and γ in Simulation 3.

β1 β2 β3
TRUE -0.2 -1.0 -1.5

Oracle AVE -0.2009 -1.0015 -1.5005
STD 0.0497 0.0650 0.0842

ŜTD 0.0493 0.0634 0.0860
MSE 0.0025 0.0042 0.0071
CI 0.9520 0.9480 0.9520

Efficient AVE -0.2017 -1.0057 -1.5058
STD 0.0502 0.0662 0.0851

ŜTD 0.0497 0.0642 0.0871
MSE 0.0025 0.0044 0.0071
CI 0.9480 0.9440 0.9540

Locally AVE -0.2020 -0.9893 -1.4849
Efficient STD 0.0769 0.1002 0.1246

ŜTD 0.0790 0.1069 0.1508
MSE 0.0059 0.0101 0.0157
CI 0.9630 0.9420 0.9530

The performance shown in Figure 1 is rather typical for spline approximations.

In a functional data analysis, a simple stacking approach is often used to

study the effect of the functional covariates (Ramsay and Silverman (2005)) in a

less structured model

E{Y |X(t)} =

∫ 1

0
X(t)Tη(t)dt, (4.1)

where η(t) = {η1(t), . . . , ηp(t)}T. The stacking approach is a special case of

the proposed functional single-index model. We thus implemented the stacking

approach and compared the two estimators in Figure 2. It is easy to see that

our estimator performs better than the stacking approach, with narrower confi-

dence bands. This pattern also applies to simulations 2 and 3. We provide the

corresponding plots in Figures S1 and S2 of the Supplementary Material.

5. Application

We apply the proposed method to study the effect of various air pollutants

on the rate of death caused by CVD, where we adopt the model in (1.1) without

specifying any special link function.
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−

Figure 1. The mean and pointwise 90% confidence bands of the estimated α̂(t) for the
functional single-index model (1.1) in Simulations 1 (left), 2 (middle), and 3 (right). The
true α0(t) is plotted in the solid curve.

In the NMMAP data (Peng and Welty (2004)), all four pollutants (CO, NO2,

SO2, and O3) were recorded on a daily basis in 108 U.S. cities. The measurements

unit is parts per billion (ppb) by volume, and covers the period 1987 to 2000.

We use 400 observations, with a relatively small portion of missing values, for

the analysis. Each observation has 365 daily median measurements of the four

air pollutants, where we imputed a few missing days in some observations using

linear interpolation. We also standardize each pollutant across the whole year so

that the 365 observations yield a sample mean of zero and a sample variance of
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Figure 2. The estimated βkα(t), for k = 1, . . . , 9, and their pointwise 90% confidence
bands for the proposed functional single-index model (1.1), compared with the estimated
η̂k(t) for the simple stacking functional linear model (4.1) in Simulation 1.

one. The time interval is normalized to [0, 1]. Figure S3 of the Supplementary

Material displays the mean trajectories for the four pollutants.

We fit model (1.1) to estimate the air pollution index directly related to the

subsequent year’s CVD death rate. Throughout the implementation, we set the

kernel bandwidth h to n−1/5range(βTziγ) and b = n−1/7range(yi), where the

unknown parameters β and γ are updated during each iteration. The functional

parameter α(t) is estimated using a linear combination of cubic B-splines, with

three equally spaced internal knots in [0, 1], where the optimal number of inter-
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Figure 3. The estimated α̂(t) for the functional single-index model (1.1) from the air
pollution data. This captures the time-varying effect of the air pollution index on the
annual CVD death rate. The pointwise 90% confidence band of the estimated α̂(t) is
also provided.

nal knots is determined through a ten-fold cross-validation. We calculated the

confidence band for α(t) using the asymptotic results in Theorem 1.

Figure 3 shows the time-varying effect α̂(t) of the estimated air pollution

index to the CVD death rate. The time-varying effect is significantly positive

in the spring, summer, and fall seasons, but is statistically insignificant in the

winter. The air pollution index has the largest positive effect on the CVD death

rate in the summer.

Figure 4 displays the air pollution index for three major cities: Boston, New

York, and Chicago, together with their CVD annual death rates. With the largest

air pollution index in the summertime, New York has the largest CVD death rate.

On the other hand, Boston has the lowest air pollution index in summer and,

hence, the CVD death rate is smallest in Boston, despite it having the highest

air pollution index in winter.

Table 4 displays the estimated coefficients for the four air pollutants β. The

standard errors and the p-values are obtained based on the asymptotic normality

of β̂ shown in Theorem 2. All estimated coefficients β̂ are statistically significant,

which indicates that CO, NO2, O3, and SO2 are all significant risk factors in the

air pollution index related to the CVD death rate. This reaffirms that all pollu-
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Figure 4. The pollution indices for Boston, New York, and Chicago. The CVD death
rates are shown in the legend.

Table 4. The estimated coefficients for the air pollutants CO, NO2, and SO2, and
the standard errors for the functional single-index model (1.1) in the air pollution data
using the efficient method. The coefficient for O3 is fixed at one for identifiability, as
introduced in Section 2.1.

β̂1 (CO) β̂2 (NO2) β̂3 (SO2) β4 (O3)
Coefficients -0.286 -0.971 -1.833 1.000
Standard Errors 0.080 0.006 0.002 -
p-values 3e-4 < 5e-5 < 5e-5 -

tants have a significant effect on the CVD death rate. The estimated coefficients

for CO, NO2, and SO2 are negative, which is caused by the correlation of these

three air pollutants with O3. The correlation coefficients between these four air

pollutants are provided in Section S5 of the Supplementary Material. We also

study the time-varying effect of each individual pollutant on the CVD death rate

by fitting a simple functional linear regression E(Y ) =
∫ 1

0 η(t)X(t)dt to the air

pollution data. Here, the response variable Y is the annual CVD death rate,

and the functional covariate X(t) is the daily concentration of the air pollutants

CO, NO2, SO2, and O3. Figure S4 in the Supplementary Material displays the
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Figure 5. Comparison of the estimated β̂kα̂(t) in the proposed functional single-index
model (1.1), with 90% confidence bands, and the estimated η̂k(t) with 90% confidence
bands in the simple stacking functional linear model (4.1), for k = 1, . . . , 4. The top, left

panel shows β̂1α̂(t) and η̂1(t), the top, right panel shows β̂2α̂(t) and η̂2(t), the bottom,

left panel shows β̂3α̂(t) and η̂3(t), and the bottom, right panel shows β̂4α̂(t) and η̂4(t).

estimated functional coefficient η̂(t) with the 95% pointwise confidence interval.

It shows there is no significant effect of each individual pollutant on the CVD

death rate. This is another motivation for us to estimate a comprehensive air

pollution index to measure the contributions of air pollutants simultaneously.

For comparison, we implemented the stacking approach to estimate the func-

tional linear model (4.1). Figure 5 compares the estimated η̂k(t) for the stacking
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Table 5. The mean squared prediction errors of the four methods for the CVD death
rate.

Methods Mean Squared Prediction Errors
Functional single-index Model (1) 2.14×10−6

Stacking functional linear model (12) 3.11×10−6

Functional additive model 2.56×10−6

single-index model 2.44×10−6

functional linear model (4.1) and the estimated β̂kα̂(t) for our functional index

model (1.1), where k = 1, . . . , 4. While there is slight disagreement between

the two sets of estimations from the two models, it is clear that the unstruc-

tured model has very large variability and can hardly deliver any statistically

significant results.

We further assessed the prediction performance of our proposed method in

comparison with three other methods: the stacking functional linear model (4.1),

the functional additive model (Müller and Yao (2008)), and a single-index model,

where each covariate is simply the yearly average of each pollutant. The eval-

uation is conducted using a 10-fold cross-validation. Table 5 displays the mean

squared prediction errors (MSPE) of our proposed method and the three compar-

ison methods. It shows that our proposed functional single-index model has the

smallest MSPE among the four methods. For instance, the MSPE decreases by

31% when using our proposed functional single-index in comparison with using

the stacking functional linear model (4.1).

6. Discussion

We have proposed a functional single-index model for examing the relation

between pollutants and the CVD death rate. The model contains a single-index

that summarizes the pollution severity level, and a time-varying coefficient that

captures the seasonality of the pollution effects. Furthermore, the model is robust

against the misspecification of the conditional density function fY |X(t)(·). When

replacing the function α(·) with its B-spline approximation, the model reduces

to a dimension-folding model, and our estimator yields a new estimator as a by-

product. This new estimator requires more relaxed conditions on the covariates,

but still outperforms existing methods. Finally, the model and method can be

used in high-dimensional settings because the numbers of covariate functions

and spline bases are added. In contrast, the traditional functional single index

described in (4.1) results in a multiplication of these two numbers.
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In our analysis, to simplify the problem, we assume the functional covariate

Xi(t) is known. However, in practice, measurements for the functional covariate

Xi(t) may contain errors. To take into account such errors, model (1.1) needs to

be extended. The resulting model falls within the measurement error framework

and deserves careful investigation in future work.

Supplementary Material

The online Supplementary Material includes comprehensive proofs of all the-

oretical results. The computing code for our simulation studies and application

can be downloaded from https://github.com///sbaek306/FSIM.
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Ferré, L. and Yao, A. (2005). Smoothed functional inverse regression. Statistica Sinica 15,

665–683.
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