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Abstract: In a group testing study, the researcher collects samples from multiple

individuals, pools the results, and tests them as a group. A realistic cost model for

such a study should consider both the costs of collecting the samples and those of

running the assays. Moreover, an efficient design should accommodate inaccuracies

in any prespecified nominal test sensitivity and specificity values, allowing them to

vary with the group size. We derive locally optimal designs in this setting, and

characterize their theoretical properties. We also provide a guaranteed algorithm

for constructing designs on discrete design spaces. Several simulated examples

based on a real-world group testing study show that the proposed designs have

high efficiency. In addition, the designs are not strongly sensitive to the working

parameter specification used to obtain the locally optimal design.
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1. Introduction

Group testing, first discussed by Dorfman (1943), plays an important role

in prevalence estimation and case diagnosis, and is likely to become increasingly

important in areas such as public health, environmental monitoring, and risk

surveillance as the use of sensors, assays, and data-driven risk monitoring prolif-

erates; see, for example, Gastwirth (2000), Xie et al. (2001), Pilcher et al. (2005),

and Liu et al. (2011). A successful group testing study should be based on an ef-

ficient and tractable design in order to maximize the information extracted from

limited resources. A critical aspect of such an efficient design is the overall study

cost (Turner, Stamey and Young (2009)), made up of separate costs incurred as

a result of collecting samples and running assays. Another important issue is

that the specificity and especially the sensitivity of the test may decline as the

group size increases. These are known as dilution effects in the literature (Zenios

and Wein (1998); McMahan, Tebbs and Bilder (2013)).

Many group testing studies for prevalence estimation utilize prespecified val-
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ues for the sensitivity and specificity. As a result, their designs involve one group

size only (Tu, Litvak and Pagano (1995); Liu et al. (2012)). However, Zhang et

al. (2014) indicate that misspecified sensitivity and specificity may introduce bias

into a prevalence estimate. Therefore, we estimate the prevalence while treating

the sensitivity and specificity as nuisance parameters inferred from the data.

Huang et al. (2017) theoretically characterize optimal designs for group test-

ing with uncertain testing parameters. However, because they do not incorporate

costs for assays and subjects, the optimal designs may place untenably many sub-

jects into large groups. In group testing, large groups are important for sensitivity

estimation, but it is arguably unlikely that scarce samples would be utilized this

way in practice. Therefore, introducing differential costs for subjects and assays

and, in particular, placing a realistic cost on subject recruitment can lead to

optimal designs in which the largest group sizes are moderated.

Here, we develop a theory and an algorithm that yield optimal designs for

prevalence estimation in a realistic group testing setting. We allow for different

costs for assays and subjects, and accommodate uncertain test accuracies that

vary with the group size. Our results indicate that the optimal design depends

substantially on the relative costs of assays and subjects. Therefore, a simplified

approach in which either assays or subjects are taken to be cost-free may not be

appropriate in many cases.

2. Preliminaries

Let θ = (p0, p1, p2)T, where p0 is the prevalence (the proportion of diseased

people in the population), and p1 and p2 are the sensitivity and specificity (true

positive rate and true negative rate of the test, respectively). We first consider

the case of unknown sensitivity and specificity values that do not change with

the group size. We assume that p0 ∈ (0, 1), p1, p2 ∈ (0.5, 1], and false positives

and false negatives occur randomly with rates 1 − p2 and 1 − p1, respectively.

Hence, the positive response probability (either true or false positive) of a trial

with group size x is

π(x) = π(x|θ) = p1 − (p1 + p2 − 1) (1− p0)x . (2.1)

We consider designs subject to a known group size constraint, 1 ≤ xL ≤ x ≤ xU <
∞, where the limits on the group sizes are driven by practical considerations, such

as the feasibility of the test. Note that when the upper bound xU is sufficiently

large, it is often not a support point of the optimal design in our setting. As a

result, it does not affect the design or the analysis.



COST CONSIDERATIONS FOR EFFICIENT GROUP TESTING STUDIES 287

To introduce costs, we let the total budget be C0, and we assume that the

costs of performing an assay and enrolling a subject are, respectively, q0 and q1.

In practice, these are known, with q0, q1 ≥ 0 and q0 + q1 > 0. Without loss of

generality, we rescale the total budget, the cost for an assay, and the cost for a

subject in terms of the cost for an individual test, q0 + q1. That is, the (rescaled)

total budget is C = C0/(q0 + q1), and the (rescaled) costs for an assay and for a

subject are 1− q and q, respectively, for q = q1/(q0 + q1) ∈ [0, 1]. We then model

the cost of a trial with group size x as

c(x) = 1− q + qx.

Under a fixed budget, setting q = 0 means that subjects incur no cost. Therefore,

this is equivalent to the scenario with a fixed number of trials. Similarly, the

scenario with q = 1 (i.e., assays are cost-free) is equivalent to that with a fixed

number of subjects.

For a study consisting of ni trials with group size xi, for i = 1, . . . , k, we de-

note its budget-constrained design as ξ = {(xi, wi)}ki=1, where wi is the proportion

of the budget expended at group size xi, expressed as

wi =
nic(xi)

C
, (2.2)

and the total budget is given by C =
∑

j njc(xj). The log-likelihood function in

θ is (omitting an unimportant additive constant)

L(θ) =

k∑
i=1

{yi log(π(xi|θ)) + (ni − yi) log(1− π(xi|θ))}

= C

(
k∑
i=1

wi
c(xi)

{
yi
ni

log(π(xi|θ)) +

(
1− yi

ni

)
log(1− π(xi|θ))

})
.

(2.3)

The maximum likelihood estimate (MLE) of θ, θ̂, is obtained by maximizing (2.3),

and the covariance matrix of θ̂ is asymptotically proportional to the inverse of

the information matrix of ξ, which is

M(ξ) =

k∑
i=1

wiλ(xi)f(xi)f(xi)
T, (2.4)

where

λ(x) = {c(x)π(x)(1− π(x))}−1 ,

f(x) =
(
(p1 + p2 − 1)x(1− p0)x−1, 1− (1− p0)x,−(1− p0)x

)T
.

Note that in equations (2.3) and (2.4), c(x) plays the role of an inverse weight in
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both the log-likelihood function and the information matrix.

Our main goal is to accurately estimate the prevalence, treating other un-

known parameters as nuisance parameters. Therefore, we use the Ds-optimality

criterion, which seeks a design that minimizes the asymptotic generalized vari-

ance of a given subset of model parameters. In this study, a Ds-optimal design

maximizes

Φs{M(ξ)} = − log
(
M(ξ)−

)
11

(2.5)

among all designs under which p0 is estimable. For a matrix M , M11 is the (1,

1)-entry and M− is a generalized inverse of M . Note that the Ds-optimality

above is equivalent to c-optimality with c = (1, 0, 0)T (Atkinson, Donev and

Tobias (2007, Chap. 17.5)), which minimizes the asymptotic variance of cTθ̂.

The optimal group sizes of a Ds-optimal design may be nonintegers. Thus, for

practical purposes, we further state that a design is DI
s -optimal (“I” stands for

“integers”) if it isDs-optimal among all designs supported on the positive integers

[xL, xU ] ∩ N. From (2.4) and (2.5), we can see that the optimality of a design

depends on the unknown parameters (p0, p1, p2)T and the cost parameter q, but

is invariant to the total budget C.

3. Ds-optimal Budget-constrained Designs

We first consider the design space as the interval [xL, xU ] to obtain an

overview of the behavior of Ds-optimal budget-constrained designs. The main

tools used in this section are the general equivalence theorem (Kiefer (1974)) and

the following two lemmas. Note that the three results still hold when the design

space [xL, xU ] is replaced by [xL, xU ] ∩ N. We use these results to obtain the

DI
s -optimal designs in Section 3.1. For the Ds-criterion, we say that a design ξ

with finitely many group sizes is valid if p0 is estimable under ξ. The first result

describes the collection Ξ of all valid designs (see Lemma 1). The proof for this

lemma and other results are provided in the online Supplementary Material.

Lemma 1. For the Ds-criterion (2.5), Ξ consists of all designs with at least

three support points in [xL, xU ].

This lemma also shows that all valid designs under model (2.1) have non-

singular information matrices. Moreover, for three group sizes x1 < x2 < x3,

letting F = (f(x1), f(x2), f(x3)), we have (v1, v2, v3)T = F−1 · (1, 0, 0)T, ui =

{λ(xi)
−1v2

i }1/2, and wsi = ui/
∑

j uj , for i = 1, 2, 3. The following lemma deter-

mines the optimal weights on the three group sizes. Moreover, when a three-point
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design is described by its support points, its weights are obtained from this lemma

directly.

Lemma 2. The weights {wsi }3i=1 are the unique optimal weights for the three

group sizes, x1 < x2 < x3 ∈ [xL, xU ], with

Φs{M({xi, wsi }3i=1)} = −2 log

3∑
i=1

ui. (3.1)

For completeness, we introduce the general equivalence theorem, as follows.

For x ∈ [xL, xU ], let δx be the one-point design supported on x. For a design

ξ ∈ Ξ and x ∈ [xL, xU ], let φs(x, ξ) be the directional derivative of Φs at M(ξ)

in the direction M(δx):

φs(x, ξ) = lim
α→0+

1

α
(Φs{M(ξ)} − Φs{M((1− α)ξ + αδx)})

= λ(x)f(x)TM−1(ξ)f(x)− λ(x)fs(x)TM−1
s (ξ)fs(x)− 1,

(3.2)

where fs(x) is the 2 × 1 subvector of f(x) after18 deleting its first element, and

Ms(ξ) is the 2×2 submatrix of M(ξ) after deleting its first row and first column.

Then, we have the following general equivalence theorem.

Theorem 1. For a design ξs ∈ Ξ, the following three assertions are equivalent:

(a) Φs{M(ξs)} = maxξ∈Ξ Φs{M(ξ)};

(b) maxx∈[xL,xU ] φs(x, ξs) = minξ∈Ξ maxx∈[xL,xU ] φs(x, ξ);

(c) for an arbitrary group size xs of ξs, φs(xs, ξs) = maxx∈[xL,xU ] φs(x, ξs) = 0.

Any linear combination of designs satisfying (a)–(c) also satisfies (a)–(c).

Based on Lemmas 1 and 2 and Theorem 1, we characterize the Ds-optimal

design in Theorem 2. This extends Theorem 3 in Huang et al. (2017) from the

special case with cost parameter q = 0 to an arbitrary q ∈ [0, 1].

Theorem 2. The Ds-optimal design ξs for estimating the prevalence only is

unique. It has three group sizes, xL = xs1 < xs2 < xs3 ≤ xU , with weights as given

in Lemma 2.

Theorem 2 shows that some properties of Theorem 3 in Huang et al. (2017)

continue to hold for q ∈ [0, 1]: (i) the unique Ds-optimal design has exactly three

group sizes; running a design with four or more distinct sizes would reduce the

efficiency for prevalence estimation; (ii) the information about the prevalence,
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sensitivity, and specificity mainly comes from xs2, xs3, and xs1, respectively; (iii) a

smaller value of xL strictly improves the accuracy of the estimation of p0; thus,

xL should be set to one whenever possible.

On the other hand, as q increases, the inverse weight c(x) tends to penalize

larger group sizes. Therefore, when q > 0, xU may not be a support point of

ξs. Thus, a two-dimensional optimization problem (x2 and x3 in equation (3.1))

needs to be solved in order to obtain ξs. In contrast, Theorem 3 in Huang et al.

(2017) shows that when q = 0, xs3 must be xU , and xs2 can be obtained using a

one-dimensional root-finding algorithm.

Example 1. Let θ = (p0, p1, p2)T = (0.07, 0.93, 0.96)T (this parameter setting

is based on a chlamydia study described in McMahan, Tebbs and Bilder (2012))

and let [xL, xU ] = [1, 150]. We obtain the Ds-optimal design for each q ∈ [0, 1], as

shown in Figure 1. First, we focus on the group sizes of the Ds-optimal designs.

Theorem 2 shows that the smallest group size xs1 of ξs must be the lower boundary

xL. In Figure 1(a), we observe that the intermediate and largest group sizes, xs2
and xs3, respectively, decrease as the cost parameter q increases. Moreover, when

xU is as large as 150, the largest group size of a Ds-optimal design is strictly less

than xU , unless q approaches zero.

The optimal weights (proportions of the budget) {ws1, ws2, ws3} of the Ds-

optimal designs are shown in Figure 1(b). Under this parameter setting, the

weight ws2 at xs2 always dominates the other two weights, ws1 and ws3. From Figures

1 (a) and (b), we note that what really matters is whether q ≈ 0. Furthermore,

the Ds-optimal designs are quite stable when q ≥ 0.4, which is roughly supported

on {1, 7, 77} with weights {0.09, 0.55, 0.36}.
Figure 1(c) shows another perspective on trial allocation related to cost.

Roughly speaking, we find that as the cost parameter q increases, only the pro-

portion of trials ts1 at xs1 increases, whereas the other two proportions decrease.

Comparing Figures 1(b) and (c), we conclude that as q increases, a trial with a

large group size becomes more expensive, and a greater proportion of the budget

will be spent on groups with larger sizes in order to obtain sufficient information

about p1 to efficiently estimate p0. On the other hand, the proportion of trials

at the smallest size still increases, reflecting a preference for less expensive trials.

Remark 1. In the online Supplementary Material, Section S2, we also consider

theD-optimal design under the setting of Example 1, where theD-criterion treats

p0, p1, and p2 as equally important. The D-optimal design also has exactly three

group sizes, with a low boundary xL and an intermediate size close to that of the
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Figure 1. Properties of the Ds-optimal designs for Example 1.

Ds-optimal design. However, a Ds-optimal design places much greater weight

(proportion of the budget) on its intermediate size (≥ 0.55 vs. 0.33).

3.1. DI
s-optimal designs

In practice, the group sizes in a group testing design must be supported on

the finite set [xL, xU ] ∩ N, rather than on the interval [xL, xU ]. To obtain the

optimal integer-valued group sizes, a natural approach would be to simply round

the Ds-optimal design ξs. However, to attain optimality, we develop an efficient

numerical search procedure that yields the DI
s -optimal designs on [xL, xU ] ∩ N.

Intuitively, a DI
s -optimal design should be close to the corresponding Ds-

optimal design ξs obtained from Theorem 2. Therefore, the three support points

of ξs, after rounding, form a good initial design. Then, by Theorem 1, we know

that either the initial design is optimal, or that it can be improved by adding

a point that has a positive derivative (3.2). We then recalculate the weights by

numerically optimizing (2.5). After excluding points with a zero weight, if any

exist, we check the optimality of the new design. These steps are iterated until
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optimality is attained.

The algorithm stops when the resulting design satisfies Theorem 1(c), which

guarantees optimality; otherwise, the design obtained in each iteration is strictly

better than the previous designs. Because [xL, xU ] ∩ N is finite, this algorithm

must stop in a finite number of steps. In addition, owing to the convexity of the

design criterion, this stepwise ascent algorithm converges to a global optimum.

The details of the search algorithm for obtaining a DI
s -optimal design ξI are pro-

vided in Section 4, together with the scenario with dilution effects, as Algorithm

1. In practice, the algorithm tends to converge in very few steps, because the

initial design is often already close to (and in many cases, exactly equal to) a

DI
s -optimal design.

Note that heuristic numerical search (e.g., Zhang et al. (2014)) may yield

incorrect results. When θ = (0.05, 0.95, 0.995)T, q = 1, and [xL, xU ] = [1, 150],

our algorithm obtains a DI
s -optimal design with group sizes {1, 8, 113}. In con-

trast, a design supported on {1, 12, 150} is reported by Zhang et al. (2014). From

Theorem 1, our design is optimal, whereas the other is not.

3.2. Design implementation

In the approximate design framework, the optimal weights include the con-

straints wi > 0 and
∑
wi = 1 only. For practical use, with a total budget C,

equation (2.2) shows that the number of trials at each point xi is ni = Cwi/c(xi),

which should be a positive integer, introducing additional restrictions on the

weights.

To implement a DI
s -optimal design ξI , we obtain the number of trials us-

ing a variant of the efficient rounding procedure (Pukelsheim (2006)). For a

budget-constrained design ξ = {(xi, wi)}ki=1 and a total budget C, let {n0
i }ki=1 =

{bCwi/c(xi)c}ki=1 and C1 = C −
∑

i n
0
i c(xi), where bxc is the largest integer not

greater than x. Then, we allocate C1 at each xi to obtain a design with trial

counts {n0
i + ∆i}ki=1 with minimum variance of the prevalence estimator, where

∆i ∈ N∪{0} for each i and
∑

∆ic(xi) ≤ C1. Note that
∑

∆ic(xi) may be strictly

less than C1 when the remaining cost is less than c(min(xi)). This is illustrated

in the following example.

Example 2. Following Example 1, let θ = (0.07, 0.93, 0.96)T, q = 0.2, and

[xL, xU ] ∩ N = {1, 2, . . . , 150}. A DI
s -optimal design ξI is supported on {1, 10,

81} with weights {0.104, 0.555, 0.341} and costs per test {1, 2.8, 17}. The

asymptotic variance of the prevalence estimate from ξI is 0.137633/C.

When the total budget is C = 10,000, we have {n0
i }3i=1 = {1,042, 1,981,
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Table 1. Allocations of C1 on support points {1, 10, 81} when C = 10, 000.

xi 1 10 81 remaining Var(p̂0)
c(xi) 1 2.8 17 budget (×1/C)

additional 0 4 0 0.0 0.137634
trials ∆i 2 3 0 0.8 0.137645

5 2 0 0.6 0.137642
8 1 0 0.4 0.137640

11 0 0 0.2 0.137638

200} and C1 = 11.2. Table 1 shows all possible allocations of C1. The variance

attains a minimum when the additional trials are at {0, 4, 0}. Thus, we set the

numbers of trials of the implemented design ξI(C) to {1,042, 1,985, 200}, with a

total number of trials of 3,227, and a total number of subjects of 37,092. Note

that when C is sufficiently large, as in this example, the loss of design efficiency

tends to be negligible, regardless of how we allocate C1 in Table 1.

4. DI
s-optimal Designs Under Dilution Effects

In Section 3, we treated the sensitivity and specificity as constants with

unknown values. As noted in the introduction, dilution effects, which reduce the

sensitivity or specificity for larger group sizes, are common, especially when the

allowable range of group sizes [xL, xU ] is wide. In this section, we provide an

algorithm for group testing with dilution effects.

The most natural form of dilution is the decrease in sensitivity with an

increase in group size (Zenios and Wein (1998)). For completeness, we also

consider the presence of diluted specificity. When there is a dilution effect on the

sensitivity or specificity, we work with the models,

p1(x) = p1(x|α) = link(α0 − α1 log(x)) and (4.1)

p2(x) = p2(x|β) = link(β0 − β1 log(x)), (4.2)

respectively, where link : R→ [0, 1] is a link function for probability. For conve-

nience of interpreting the dilution models, we adopt a logistic regression in the

following context: link(u) = expit(u) = {1 + exp(−u)}−1 (see equation (4) in

Zhang et al. (2014)). Thus, for instance, for the sensitivity model, expit(α0) is

the baseline sensitivity p1(1), and the sensitivity has a nearly polynomial rate of

decay, {1 + xα1 exp(−α0)}−1, as the group size x increases. In other scenarios,

log(x) in equations (4.1) and (4.2) can be replaced by x, log2(x), and so on,

and another link function can be adopted. Here, we assume that α0, β0 > 0 and



294 HUANG, HUANG AND SHEDDEN

α1, β1 ≥ 0, such that p1(1), p2(1) > 0.5 and p1, p2 decrease monotonically as x

increases.

When only the sensitivity has a dilution effect, the corresponding information

matrix becomes a variant of (2.4):

Mα(ξ) =

k∑
i=1

wiλ(xi)fα(xi)fα(xi)
T, (4.3)

where fα(x) = Hα(x)f(x) ∈ R4, and Hα(x) is a 4 × 3 block-diagonal matrix

with diagonal blocks (1, ∂p1(x)/∂α, 1). Similarly, when only the specificity has

a dilution effect, or when both the sensitivity and the specificity have dilution

effects, the corresponding information matrices are:

Mβ(ξ) =

k∑
i=1

wiλ(xi)fβ(xi)fβ(xi)
T, and (4.4)

Mαβ(ξ) =

k∑
i=1

wiλ(xi)fαβ(xi)fαβ(xi)
T, (4.5)

respectively, where fβ(x) = Hβ(x)f(x) ∈ R4, fαβ(x) = Hαβ(x)f(x) ∈ R5,

Hβ(x) = diag(1, 1, ∂p2(x)/∂β), and Hαβ(x) = diag(1, ∂p1(x)/∂α, ∂p2(x)/∂β).

Extending the ideas in Section 3.1, our search algorithm is described as

follows. From Theorem 2, the Ds-optimal design supported on {xs1, xs2, xs3} can

be used to efficiently estimate p0 in the absence of dilution effects. However, when

dilution effects exist, additional points should be added. Note that in Theorem

2, the information on p1 and p2 comes mainly from the larger and smaller group

sizes, xs3 and xs1, respectively. Therefore, to form an initial design, we add a

size between xs2 and xs3 (or a size in (xs1, x
s
2)) if the sensitivity (or specificity) is

diluted. The optimal weights for these group sizes can be obtained using Lemma

2 when there is no dilution effect, or using the following lemma when dilution

effects do exist.

Lemma 3.

(a) For group testing with one dilution effect (either sensitivity or specificity),

if the four distinct sizes {x1, x2, x3, x4} are such that F∗ = (f∗(x1), f∗(x2),

f∗(x3), f∗(x4)) is invertible, where f∗ = fα or fβ, then the Ds-optimal

weights at these sizes are proportional to (λ(xi)
−1v2

i )
1/2, for i = 1, . . . , 4,

where (v1, v2, v3, v4) = F−1
∗ · (1, 0, 0, 0)T.

(b) For group testing with two dilution effects (both sensitivity and specificity),

if the five distinct sizes {x1, x2, x3, x4, x5} are such that Fαβ = (fαβ(x1),
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fαβ(x2), fαβ(x3), fαβ(x4), fαβ(x5)) is invertible, the Ds-optimal weights at

these sizes are proportional to (λ(xi)
−1v2

i )
1/2, for i = 1, . . . , 5, where (v1, v2,

v3, v4, v5) = F−1
αβ · (1, 0, 0, 0, 0)T.

Based on the ideas above and applying Theorem 1 (where the information

matrix (2.4) should be replaced by Mα, Mβ, or Mαβ if dilution effects exist), Al-

gorithm 1 yields the DI
s -optimal designs. The use of Algorithm 1 is demonstrated

in the subsequent example.

Algorithm 1. Let Ω = [xL, xU ] ∩ N and let x
(0)
1 < x

(0)
2 < x

(0)
3 be the three

support points of ξs for θ = (p0, p1(1), p2(1))T in Theorem 2, after rounding. Set

X0 =
{
x

(0)
1 , x

(0)
β (if p2 is diluted), x

(0)
2 , x

(0)
α (if p1 is diluted), x

(0)
3

}
, where x

(0)
α =

b(x(0)
2 + x

(0)
3 )/2c and x

(0)
β = b(x(0)

1 + x
(0)
2 )/2c. Set W0 as the optimal weights

obtained from Lemma 2 or Lemma 3 at the points in X0. Set ξ0 = {X0,W0}.
For j = 0, 1, . . . , do:

Step 1. Set xj = arg maxΩ\Xj
φs(x, ξj). If φs(xj , ξj) ≤ 0, output ξj and stop.

Step 2. Set Xj+1 = Xj ∪ {xj}, and obtain

Wj+1 = arg max
W

{
Φs{M(Xj+1,W )}; min(W ) ≥ 0,

∑
w∈W

w = 1

}
.

The weights W are available in closed form (Lemmas 2 and 3) if the design

is minimally supported. Otherwise, W can be obtained by solving a convex

optimization.

Step 3. Set ξj+1 = {Xj+1,Wj+1} after deleting those (x,w) with w = 0.

Example 3. In order to better understand the structure of the optimal designs

in the presence of dilution effects, and how they relate to such designs when there

is no dilution, we provide several numerical examples. Following Examples 1 and

2, we let p0 = 0.07, [xL, xU ] ∩ N = {1, 2, . . . , 150}, and q = 0.2. We further let

the sensitivity and the specificity be 0.93 and 0.96, respectively, at group size 1

(α0 = 2.6 and β0 = 3.2), and let α1 and β1 vary from 0 to 0.5. Figure 2 shows

how the sensitivity and specificity decay as the group size increases.

Table 2 shows the DI
s -optimal designs for several settings, with and with-

out dilution effects. When there is no dilution effect, the design supported on

{1, 10, 81} is DI
s -optimal under the model with information matrix (2.4). When

the experimenters include dilution effects in the group testing model, the infor-

mation matrix becomes (4.3), (4.4), or (4.5).
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0.93 =expit{2.6 }

expit{2.6 -0.3log (x)}

expit{2.6 -0.5log (x)}
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(a) Sensitivity functions

0.96 =expit{3.2 }

expit{3.2 -0.3log (x)}

expit{3.2 -0.5log (x)}
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(b) Specificity functions

Figure 2. The sensitivity and specificity functions for Example 3.

If the sensitivity is diluted, the new support point falls between x2 and x3,

but does not approach either of the two. However, if the specificity is diluted,

the new support point falls near the lower end of the range of group sizes. This

is consistent with the fact that larger group sizes are more informative about

sensitivity, whereas smaller group sizes are more informative about specificity.

However, the new support points cannot approach the extremes of the range of

allowable group sizes, because these points are already included in the design,

and we need to observe results for sufficiently many distinct group sizes to be

able to estimate the slope parameters α1 and β1.

We also considered how the population parameters for dilution effects influ-

ence the structure of the optimal designs. As the slope parameter α1 increases,

x2 and xα tend to decrease. However, when the slope parameter β1 increases, xβ
and x2 tend to increase. These changes may allow for improved estimations of the

sensitivity or specificity curves. However, because we are using the Ds-criterion

that focuses on prevalence, the changes are not significant.

In the example above, it seems that the upper bound xU is always present in a

DI
s -optimal design when the sensitivity is diluted. However, xU is not necessarily

present, especially when xU is sufficiently large. For instance, under the same

parameter setting as that in the previous example, with α1 = β1 = 0.5, and

moving xU up to 1,000, the DI
s -optimal design is supported on {1, 3, 14, 51, 674}.

5. Design Performance

In this section, we study the performance of the DI
s -optimal design when the

working parameter is moderately misspecified. We can see below that its perfor-
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Table 2. DI
s -optimal designs for several scenarios in Example 3. (Here, α0 = 2.6 and

β0 = 3.2).

Model α1 β1 x1 xβ x2 xα x3 w1 wβ w2 wα w3

(2.4) – – 1 – 10 – 81 0.11 – 0.55 – 0.34
(4.3) 0.0 – 1 – 11 53 150 0.04 – 0.27 0.38 0.31

0.3 – 1 – 7 44 150 0.08 – 0.30 0.33 0.29
0.5 – 1 – 6 38 150 0.10 – 0.31 0.31 0.28

(4.4) – 0.0 1 3 18 – 89 0.07 0.19 0.44 – 0.30
– 0.3 1 3 20 – 91 0.11 0.25 0.38 – 0.26
– 0.5 1 3 22 – 92 0.15 0.27 0.34 – 0.24

(4.5) 0.0 0.0 1 3 15 57 150 0.05 0.14 0.29 0.31 0.21
0.0 0.3 1 3 17 58 150 0.09 0.20 0.29 0.26 0.16
0.0 0.5 1 3 18 58 150 0.13 0.24 0.27 0.23 0.13
0.3 0.0 1 2 13 51 150 0.08 0.17 0.25 0.29 0.21
0.3 0.3 1 3 14 52 150 0.09 0.21 0.27 0.26 0.17
0.3 0.5 1 3 15 53 150 0.12 0.24 0.25 0.24 0.15
0.5 0.0 1 2 12 46 150 0.08 0.17 0.24 0.29 0.22
0.5 0.3 1 3 13 47 150 0.08 0.21 0.26 0.27 0.18
0.5 0.5 1 3 13 46 150 0.12 0.25 0.25 0.23 0.15

Table 3. AEFF(ξ̃|θ) for selected θ ∈ Θ.

p0 = 0.05 p0 = 0.10
p1(x) = expit{α0 − α1 log(x)} p2 = 0.9 p2 = 1.0 p2 = 0.9 p2 = 1.0
α0 = 2 α1 = 0.0 0.363 0.393 0.908 0.902

α1 = 0.1 0.595 0.636 0.885 0.872
α1 = 0.5 0.974 0.925 0.613 0.591

α0 = 4 α1 = 0.0 0.197 0.223 0.920 0.945
α1 = 0.1 0.349 0.396 0.936 0.955
α1 = 0.5 0.761 0.826 0.892 0.881

mance is relatively stable when the working parameter is not too different to the

true value. Following Examples 1–3, and focusing on the most common setting

where only the sensitivity is diluted, we let [xL, xU ]∩N = {1, 2, . . . , 150} and q =

0.2, and let the working parameter θ̃0 = (p̃0, α̃0, α̃1, p̃2)T = (0.07, 2.6, 0.3, 0.96)T.

From Table 2 (Model (4.3), α1 = 0.3), the DI
s -optimal design ξ̃ under θ̃ is sup-

ported on {1, 7, 44, 150}.
In order to examine how a misspecified working parameter affects the perfor-

mance of ξ̃, we consider that the true value of θ = {p0, α0, α1, p2}T comes from

Θ = [0.05, 0.1] × [2, 4] × [0, 0.5] × [0.9, 1], which covers θ̃. The performance of ξ̃

under the true value of θ ∈ Θ is measured by
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Figure 3. AEFF(ξ̃|θ) under different θ for 1,000 draws.

AEFF(ξ̃|θ) =
AMSE(ξ̃|θ)
AMSE(ξIθ |θ)

∈ [0, 1],

where ξIθ is the DI
s -optimal design under θ, and AMSE(ξ|θ) = M(ξ|θ)−1

11 is the

(scaled) asymptotic mean squared error (AMSE) of the prevalence estimator

under ξ, which is also its (scaled) asymptotic variance.

Table 3 shows AEFF(ξ|θ) for selected θ ∈ Θ, and Figure 3 shows AEFF(ξ|θ)
for θ drawn randomly from Θ. Under this parameter setting, the accuracies of

the prespecified p0 and α1 are important factors within this range of parameters.

Figure 4 further shows how the true values of p0 and α1 affect the performance

of ξ̃. Note that when p̃0 and α̃1 are misspecified in the same direction, especially

when both are over-specified, the AEFF decreases rapidly. Roughly speaking,

when the true value of θ ∈ Θ falls between the two dashed lines in Figure 4, ξ̃

performs well, with an AEFF close to or greater than 80%.
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Figure 4. AEFF(ξ̃|θ) vs. various true values of p0 and α1 (·: AEFF ≥ 80%; ◦: AEFF ∈
[50%, 80%); ×: AEFF < 50%), where p̃0 = 0.07 and α̃1 = 0.3.

6. Conclusion

In this work, we develop efficient group testing designs that accommodate

real-world complexities, including differing subject and assay costs, and uncertain

sensitivity and specificity, which may include dilution effects. We characterize

these designs and present an algorithm that is guaranteed to yield an optimal

design on a discrete design space, as is encountered in practice. We found that

accounting for subject costs yields designs with a smaller maximum group size

than those of previously published optimal designs in which the subjects were

considered to be cost-free (Huang et al. (2017)). Our results reveal that if the

ratio of the cost per subject relative to the cost per assay increases even mod-

erately, the largest group size of the resulting design and its proportion of trials

decrease rapidly, although its proportion of the budget still increases.

As a practical illustration, we provided examples of optimal allocations, with

integer-valued trials at the optimal group sizes. Although the locally optimal de-

signs depend on the working parameters, our results based on a real-world setting

show that the proposed designs are robust against a misspecification of the work-

ing parameters and exhibit good asymptotic efficiency. When there are major

concerns about a possible misspecification of the working parameters, our opti-

mal designs can be utilized with a multistage adaptive approach (Hughes-Oliver

and Swallow (1994)). In the first stage, the working parameters may be specified

using domain knowledge, and in subsequent stages, they are estimated from the

previous stages. Alternatively, a Bayesian or minimax optimal design approach
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(Dette et al. (2014)) can be adopted. Here, a Bayesian approach seeks designs

that maximize the Ds-optimality criterion (2.5), averaged over the parameters

with respect to a prior distribution, and a minimax approach minimizes the

largest possible variance of the prevalence estimator.

The most flexible model for group testing would allow the sensitivity and

specificity to be estimated from the data and, potentially, to vary with the group

size. However, the sensitivity and specificity parameters are nuisance parameters

in practice, and are nonorthogonal to the prevalence, which is the primary pa-

rameter of interest. As a result, estimating these nuisance parameters increases

the variance of the prevalence estimate, but eliminates any bias that would re-

sult from misspecifying them in a “plug-in” approach. The increase in variance

is large for small numbers of trials. Therefore, it is unlikely to be favorable to

estimate the sensitivity and specificity parameters in practice if the budget is

small. However, if the budget is sufficiently large, the risk of bias due to a mis-

specification dominates the increase in variance due to the additional parameter

estimation. Therefore, our results provide guidance to practitioners, suggesting

that for smaller-scale research, a plug-in approach may be suitable, but that re-

searchers conducting larger studies should consider allowing the sensitivity and

specificity parameters to be estimated from the data.

Increased interest in near real-time safety monitoring for disease epidemics,

terror attacks, food safety, and environmental risks may provide new opportuni-

ties for group testing in future. If the cost considerations differ from the disease

prevalence estimation that has dominated group testing to date, larger pools or

larger total sample sizes may be practical. This could provide a setting in which

the additional cost of estimating the dilution effects along with the prevalence

is modest. Our results may also be applied to evaluate the feasibility of such a

procedure.

Supplementary Material

The online Supplementary Material provides technical proofs of the theorems

and lemmas, as well as a discussion on D-optimal group testing designs under

cost considerations.
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