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A. Notations

In the following, let C); be the space of x-times continuously differentiable functions on [0, 1], and
G, be the spline approximation space of order x and knot sequence Y,,. Let ||-|| be the usual vector
or function L norm, unless otherwise defined. In the following, we use {o"(t)};_, and {5"(t)},_|
to denote the true function and an initial estimator that satisfies condition (C2), respectively. For
notation simplicity, we assume w;,, = 1 in the following. The proof for the general form of wj,

follows similarly under condition (C1). We denote any positive constants by the same letters ¢, C'

without distinction in each case.

Let M be the model space as a collection of vectors of functions each with p (p — 1) /2 elements,

M={p(t)=(p" (1), 1<i<j<p)p(t)€C},

and let the approximation space be defined similarly as,

M,={g(t)=(g"(t),1<i<j<p).g" () €Cn}.
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For any p € M, we define the theoretical and empirical norms on M respectively as

2

Jolfs = B Z(Zwm jﬁfg))mﬂ) ,

i=1 \ j#i

and

ol = -3 (Zw‘(w jﬁfffjjsyf<tku>>

B. Technical Lemmas

Lemma 1. Under condition (C3), there exist constants C > ¢ > 0, such that

2
2

C S D=l = Y o)

1<i<j<p 1<i<j<p

where ||p7(T)||; = E (p(T))".

Proof: Let p/(T) = (p(T),j # i), and Y; (T) = ( &(t))Y](T),j + z) . Then by condition

ot (t

(C3), there exists a constant ¢ > 0, such that

p p
loll; = B |- (@) YT ()Y (D) p(T)| 2 eB |3 (/D))" p(T)
i=1 i=1
p
= B33 (M) =2 30 E(ID) =2 30 U@
=1 j#i 1<i<j<p 1<i<j<p
The other side of the inequality follows similarly from condition (C3). U

Lemma 2. Under conditions (C3), (C4), (C5) and (C7), there exist constants ¢,C > 0 such that,

except on an event whose probability goes to zero, as n — oo, one has,

2 2 2
cllelly < llell, < Clloll; -
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Proof: The proof follows similarly from Lemma A.4 of Xue and Yang (2006). [

Lemma 3. Given conditions (C1), (C2), (C5), (C6) and (C8), there exist constants C' > ¢ > 0 such
that, except on an event whose probability goes to zero, as n — oo, for any vector 3, of length

p(p—1)J,/2, one has,
—Hﬁ IP < — B X X8, < —||B [

Proof: Write 8, = (87,1 <i < j gp)T,andBij = (B}, h=1,...J ) Letgy =30 BB, €
o ii . . 2 _ 1 QT T
Gn,and g = (g7 (t),1 <i < j <p) € M,. Then |g|; = —-f,X, X.53,. By Lemmasand one
has that there exist constants C' > ¢ > 0, such that

o )
D D 1 e e M el W ']

2 )
1<i<j<p 1<i<j<p

g 2
in which ||g¥ ||§ = (Zh By (T)> . Furthermore, Theorem 5.4.2 of Devore and Lorentz
(1993) entails that there exists a constant ¢ > 0, such that

E<zn:ﬁ2th ) >CZ": T>)2Nii(ﬁ)2

" p=1

Therefore, -L-3T X7 X, 3, > |l B,|” for some ¢ > 0. The other side of the inequality follows
similarly from the Cauchy-Schwarz inequality. U

Let Gz(g) = {g = hN;qu BnLBr € G, B, =0, for h = Vi, -+ Vg + q}, and GZ(;) C G, is
the oracle spline approximation space containing spline functions with zero values on the null region

EY,

Lemma 4. Under conditions (C5)-(C7), there exists a spline function g GSJ), such that

Supo<ry |07 (1) — 9 (£)] = O (N;1).
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Proof: The approximation theory in de Boor (2001) entails that there exists a spline function

gij € Gy, such that supg, ., |p7 (t) — g5 (t)| = ( St )> , where g;; = S0t 31 B, for a set

Nn+q+

of coefficients {ﬁ . Now let g; = Zhejij 5§th. Let A;; = J§\E;j;. Then gj; € G” ,

ij % ij ¥ —(g+1
SUP¢eE,; T = gij| = O»SUPteJij P — gij‘ =0 (Nn @ )> , and

sup |p7 — g

< sup ‘p” —gi]’| + sup ’g” — 95
teAy teAy teAy

< 2 sup |p7 — gij| + sup |p”]
0<t<1 teAy;

= O(N;“ 4+ N1 =0(N,).

n

Putting these three cases together, one has supg_,, |07 — g;;| =

Let

2

LA L oii
L(B,o,t,y) = ﬁ Zzwiku (2/Z thu) — 225 B (thu) g::;yf(%ﬁ) ;

k=1 =1 u=1 j#i h=1

and

L,;(B,0) = 0L(B,0,t,y)/08],

and

1

h’L]h/Z/j/<’87 ) 2L(B7U y)/@ﬁ 862]

Lemma 5. For any & (t) that satisfies condition (C2), one has,

' ' ~ log(nm)
i sy Oy ta — Ly, sy Uy t7 ‘ = O N )
log(nm)
h,i,rj{lh?d,}i( Jj hzy h/z/]/ (/6 g, ) Lm] h/z/]/ , O, 7 ’ - nmN
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Proof: Note that

L;’Lij (/67 o, t7 y) - L;’LZJ (/67 6-7 t7 y)

k=1 u=1 g

1 n m
B, Z Z wikuBh(tkU)yf(tkU) X
nm

k=1 u=1

077 (tyy) 099 (thy Gi'd' (tra) |07
Zzﬁ B (tru) u(k) m(k)_ Au o A7,7, y] (tku)
i h=1 o (tru) o (thu) tku
I e o (thy) " (tru)
__EE BtV () Y (Lo — -
o 22 Wiy, h( k )y]( k )yz( k ) (\/UJJ (tku) \//\]] (tku)

1 &
o Z Z wjkuBh(tku)yzk(tku) X
nm

k=1 u=1

tku O'” ’\]J
g;ﬁ Bh tku O'N tk H O'J] AJJ tk H AJJ yz tku
J 7FJ

By conditions (C2) and (C3), for any 1 < i # j < p, one has,

oJi t o7 t
O-’LZ t a\_ll t
\/aj/j/ (trw) 099 (L) 517 o7 ( log( nm)N
Sup  Sup ii i - Azz /\’L’L IR
1<j' #i<p o (tgw) \ 0 (ku) tku

Furthermore, by conditions (C1), (C4) and bounded property of B-spline basis, one has

log nm)N

’

sup

maX}m"j ‘% ZZ:I Zum:1 wzkuBh(tku)y]k(tku)yf@ku)’ = Op (1/Nn), and

max
hyisj

% O wi Bulti)yf (th) [Z S B By () (1)

k=1 u=1 j#i h=1

‘ = Op (1/Ny) .
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Therefore,

log(nm)

max |L' (8,0, t,y) — L’(ﬁ,a—,t,y)) )

hiij nmN,

The proof of the second order derivative follows similarly.

Lemma 6. Suppose conditions (C1)-(C6) hold. Let Zfljk (t) = B(t) 577 (t) *(t), and for any 1 <

5 () s
1< g <p,let
~ij 1 X ik ; zk
Ch](ﬁ):—%zzzﬁ (tew) | ¥ (thu) — ZZﬁhJZ] (tru) |
k=1 u=1 ' #i heTij

and ¢} (B) = €7 (B) + ) ( B). Then for any n,, that satisfies (Nn_(qH) + )\n/Nn> /N, — 0 and

1 [log(nm)
M Npnm

— 0, one has

P ( max

L<i<j<pheTy

ICRIE nn) N

Proof: By Lemmaand conditions on 7,, that 1 % — 0, it is sufficient to consider E";f (B)
nm.

and ¢ ( 3) with &(t) replaced by o (t). By Lemma @, there exists a constant ¢ > 0 and spline

functions s¥ € Gw , such that

max sup [p” () — s (t){ <c(N, (e+1) ) n) - (S0.1)

1<i<j<po<i<1

ij n m ijk i o
Lete) = _% D ket D2ouer 21 (L) (yf(tU> T2 7&1 ;z: )

n m P -/ /
! !

g % SN 7 (1) Z[s"j (tu) = p” (t )} U: Zq; j (t

k=1 u=1 j’;éi

and < <5>=—¢2::122;2?’“<f“>{ 57 () = S, B0 BY (0] )/ syt o }
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Then one has
Gl (B) =e +6] +¢ (8).

Following similar arguments of Lemma 7 in Xue and Qu (2012) and Lemma [5] there exists a ¢ > 0

such that

FE ( max

1<i<j<p,he g

eﬁf‘) < c\/log (N,) / (Nynm).

Therefore, by Markov’s inequality, one has

ij| < n <% log (N») )
ef| > 2)_%,/ N — 0, (S0.2)

P ( max

1<i<j<p,h€J

as n — oo. On the other hand,

n m

p Al
1<i<)Sphels, 0| < 1<i<ySphels % ; ; Zil" () ; [s"(tu) = " ()] ;EZ;ylk(tu)
< 1 1 | ik 5"t | &
< N, 1§z‘<rjn§%}5zlej nm Z:; uz:; )Zh () l%; Zf\ii(tu) {yl (tu)}
< eNJYNw=0,(ny,) . (S0.3)

Finally, by the definition of B(O) and the fact that s7 € G\

ij

one has ¢} <5(0)> = 0p (1), forh € Jg,.

Then Lemma 6] follows from (S0.2)) and (SO.3). O]

p

C. Construction of initial estimators for {o" (t)}_ .

To prove our asymptotic results, we assume there exist initial estimators of {o% (#)}}_, that satisfy

condition (C2). The following shows how such initial estimators can be constructed. For each fixed

i = 1,...,p, note that y; (t) = ., p (t) \/(0%7 (t) /o (1))y; (t) + & (t), where var(e; () =
1/c% (t). Lety¥ = (y¥(tr1), .., ¥¥(trm)) and Y; = (y},...,y") be anm x 1 vector. Let X_; =
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(X), - - X(@i=1)s X(i+1) - - - » X(p)) e a (nm) x{(p—1)J,, }-dimensional matrix, with x;) = (z(j), B
and z’(“j) = (B(te1)y! (ter), - - - B(tem )y (tkm)). Let e; be the residuals from regressing Y; to X_;
with

’ -1 ’
Y, - X, (X_iX_i) X Y.

n,m

k=1.u—1 - Then the initial estimates of o' (t) at a fixed time point ¢ can be obtained

Write €, = (€ 4u),

by

n

1/5% (t > Kn (tku = 1) €/ D> K (o — 1),

k=1 u=1 k=1 u=1
where K, () = K (xz/h) /h and K (x) is a kernel function. We assume that the kernel K (x) is
a symmetric probability density function on [—1, 1], Lipschitz continuous and has a finite second
moment. Kernel smoothing is used here for notation simplicity, but any other smoothing method can

also be used here.

Lemma 7. If the bandwidth h satisfies nmh?/ log(nm) — 0, nmh/log(nm) — oo, and hN,, — oo,

and 0% (t) € (C]0,1] for i = 1,...,p, then for any n > 0, there exists a constant ¢ such that

Max; <j<, SUP,cy |0 (1) — o (t)] < v/ % holds with probability approaching to 1, as sample

size N — 00.

Proof: Let 1/6" (t) = > p_  S°m Ky (tku — ) 2 (teu) / S pey Somy K (tgu — t) be the Nadaraya-
Watson estimator of 1/0% (¢) using the true noises {; (¢,)} instead. Then by the uniform conver-

gence result on the Nadaraya-Watson estimator (Thm. 6.5. Fan and Yao 2003), one has

sup !1/0 —1/a" (t |— < M)

te[0,1] nmh
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On the other hand,

sup [1/" (1) — 1/5" (t)|

t€[0,1]

= sup Z Z K (thu = 1) [€] g0 — €7 (te)] /DY K (tew — 1)
S IR k=1 u=1

= ow SN K (tru — 1) ik — &i (k)] ik + 20 ()] /DY K (tru — 1)
L0 =1 u=1 k=1 u=1

IN

sup \/ZZ:1 S K (the — 1) [k — &1 (tr)]” \/ZL S K (tke — 1) [eiu + €0 (tr)]
t€0,1] Zk:l Zu:l K (tku - t) Zk:l Zu:l Ky (tku - t)

_ N,
— Op <\/Nn 2(Q+1) + _) ,
nm

where the last step is by the property of the Nadaraya-Watson estimator and the rate of convergence

of the polynomial spline estimator involved in the definition of e;. Therefore together with condition

C3 and the conditions on h and N,,, one has,

te[0,1] nm

sup ‘1/0 —1/d" (t)| =0 ( M)

D. Proof of Theorem 1

~ %
We first consider 3 that minimizes the objective function which defines the oracle estimator in sec-

tion 4 of the main text, but with the true ¢"(+) instead of "(+). Then one can write 3 as

~

B = (XZ,OXn,O)_l Xg,oyn'

9
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For any ¢t € [0, 1], let

7(t) = BY (1) B;.

(0)

P = Gi; <

Furthermore, by Lemma@ there exist spline functions gi(;-’) € G’Z(j ,

such that ’

c (Nn_ (QH)) for some constant c that does not depend on n. Let

o 0—]] tku
) = 3 09ty ) ey,

oy 0" (thu) ™

and

ozl t )
J#i

Let M= /T (1), -, Ag(tn))s By = (B, 6,), and M = (..., i) . One

defines M and E similarly as M , but using m; (tx,) and €; ({1, ), respectively. Then one has,

pr(t) — pV(t)
= B/ () (XZXn)_l x,E+BJ (1) (ngn)_l x2 (M — ]\7) +g(t) — P (8)

= I(t)+ II(t) + III(t).

For I(t), the Cauchy-Schwartz inequality gives that

1(0] < /BE () (i) ™ By (0 ETx, (xEx,) " XE.

Then condition (C1) and Lemmas [3| entail that there exists a constant ¢ > 0 such that

Bj; (t)\/ETXn,OXZ,OEv

10
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- 2
. . Jn n m 077 (tku
in which A/ ETXn,OX%,OE = \/Z?:l Zj;éi Zh:l (Zk:l Zuzl Bh(tku) J“((f:u))yf(tku)gz (tku)) =
O, (v/nm). On the other hand, |/BJ; (t) B; (t) < /N, 4+ ¢+ 1, since B-spline bases are upper

bounded by 1. Thus one has

N3/2
It =0, —|. S0.4
OS<1;I<>1| (t)] p(%) (S0.4)

Similarly, one can show that

cN — \/ NG — N—(1+2q)/2
110 < & /BT (1B (¢ (M—M) T(M-M):O AU
Oiggll O = ——y/Bi; (1) By; (¢) Xn X7 o\
(S50.5)
Lastly,
sup |II1(t)| < sup |gi;(t) — p?(t)] < c (N, ). (S0.6)
0<t<1 0<t<1

Therefore, supq.,; |75;(t) — p7(t)| = O, (N,;l + %) by combining (S0.4), (S0.5) and (S0.6),

and condition (C8). Let 3 be the spline coefficients for the oracle estimator and pij(t) = B (t) BU

By Lemma [5] and the convexity of the objective function, the argmax continuous mapping theorem

ensures that

N3/
(1) — Y — -1 n
oS<1;I<)1‘p”(t) p (t)| O, <Nn +m> (S0.7)
E. Proof of Theorem 2

Let a, = N,;' + /N, /nm. For any g(t) € M, with ||g —p|l, = ca,, write ¢ = p + 4, with
10,|l, = cov, for a constant ¢ > 0. Denote the corresponding spline coefficients for ¢(¢), p (¢), and
oy (t) as { BZ} , {BZ} ,and {u?]} respectively. Then one has

P Notl

~ 2 . . ..
Vo= X (Bu)|| + D0 D A A + ),

i<j h=1

PL(g) =5

11
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and

PL(g) = PL(p)

()]

1 2 L Nl g N
= 5 Vo= B[+ D2 D" dard (I + 0 - 1771
i<j h=1

= [+1I,

in which by similar arguments as in the proof of Theorem 2 in Xue (2009), there exists a con-

2 ’ 2

stant C' > 0, such that 2/ = ’ > Ca?. For the second

yn - Xn/é

yn—/'\?n(5+u>

term, if |73/ # 0. then 7§/ ~ 1/|[5} |, and |5} + W/ | — [57] ~ ()" 7} /2|77 || Therefore,

(20, =i ~ij —ij\ T ~ij ~ij ~ij ~ij
Mty (I3 + W = 1331~ X (@) 37/ QIAEIZ) < Aallwll/ (21F371) = op (af/Na) , by
Condition C8. If |7}/|| = 0, then A, 7y (|77 +T/|| — |771]) = A7/ |W/|| > 0. Thus I =
0, (a2) . Therefore, when n is sufficiently large, for any € > 0, there exists a sufficiently large ¢ > 0

such that

( int PL@ZPL(E))Zl—g.
9EMn,||g=p||=can

Hence there exists a minimizer p € M,, in a neighborhood of p with |[p — || = O, («ay,) . Together

with Theorem 1, one has ||[p — p|| = O, (a,) .

F. Proof of Theorem 3

Let ¢(8) = 3 30 oy Yoy (W (ta) = 000 o0 87 BY (ha) Zeleub () e (8) =
dc(B) /037, and T/ (B) = (cﬁf B),... ,czj;rp (8)) . By the KKT condition, 3 is the solution of

12
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the penalized minimization problem if and only if

min(k,Np+1)

czj <B> + Z

s=max(k—p,1)

)\ T]AZ]

‘AmHﬁk = 0, if HA”H#Ofor max(k — p,1) < s < min(k, N, + 1),
<t (7)),

Let 37 = (BY,..., Y ) andﬁf,{j = (BY.k € Jij)T. Deﬁneﬁ% similarly. Let 3 = (5 A<i<ji<p

IN

At if AP =0. (S0.8)

N———

such that for each BU with Bljc = 0 and BZJJJ solving
(%) U

min(k,Np+1)

CACIE Y

s=max(k—p,1)

A\, 79
Ts gii _ (S0.9)

R

~(A i
for k € J;;. Write 5( ) _ {5(]]1.].,1 <1<y < p} . Then

~(A) _
g = (XZ,oXn,o) ' (XZ,Oyn + Wn) ;

where W,, = {Z?Hi];xz(vg +p1 1 BY/ ‘ ij} . Theorem 2 entails that elements in W,
wy! = Zfﬂ:xNﬁ;l AT ) |7 H = . Therefore, together with Lemma , one has, H g - B H

-2

c;f (B) — c’h] ( )H = . Then Lemmaﬁ

\/W}f (Xz,oxn,o)

and condition (C9) entail that

W,, = O, (A, N,,/nm),

P ( max

1<i<j<p,keJf

& ()], = m;‘g’) S0,

Therefore, B satisfies the KKT condition, and is the solution of the adaptive Lasso objective func-

tion. It is clear from the definition of 3" that 5" (t) = 0 fort € F9 = [e¥ €] . Now let

p’ = <B”> B be the corresponding estimator of the partial correlation functions. We now show

13
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that supg<,<; [p” (t) — p” (t)| = O, (N,/!). One notices that

70— (1) = (B )" () 20+ ) e,

and by Lemma
g N, ~ij N, ’
sup |7 (£) =2 ()] < ==\, sup |BY ()3, | = =2\, sup |27 (¢
0<t£)1 P =P >‘ onm 0<t£1 Jis ( )BJ” nm O<t£)1 |p ( )}
N, N?
o () - (2).
nm nm
Then Theorem 3 follows from the triangular inequality and condition (C8). U
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