TIME-VARYING ESTIMATION AND DYNAMIC MODEL SELECTION WITH AN APPLICATION OF NETWORK DATA

Lan Xue, Xinxin Shu and Annie Qu

Oregon State University, Merck and University of Illinois at Urbana-Champaign

Supplementary Material

A. Notations

In the following, let C_{κ} be the space of κ -times continuously differentiable functions on [0,1], and G_n be the spline approximation space of order κ and knot sequence Υ_n . Let $\|\cdot\|$ be the usual vector or function L_2 norm, unless otherwise defined. In the following, we use $\{\sigma^{ii}(t)\}_{i=1}^p$ and $\{\widehat{\sigma}^{ii}(t)\}_{i=1}^p$ to denote the true function and an initial estimator that satisfies condition (C2), respectively. For notation simplicity, we assume $w_{i_{ku}}=1$ in the following. The proof for the general form of w_{iu} follows similarly under condition (C1). We denote any positive constants by the same letters c, C without distinction in each case.

Let M be the model space as a collection of vectors of functions each with $p\left(p-1\right)/2$ elements,

$$M = \left\{ \rho\left(t\right) = \left(\rho^{ij}\left(t\right), 1 \le i < j \le p\right), \rho^{ij}\left(t\right) \in C_{\kappa} \right\},\,$$

and let the approximation space be defined similarly as,

$$M_n = \{g(t) = (g^{ij}(t), 1 \le i < j \le p), g^{ij}(t) \in G_n\}.$$

For any $\rho \in M$, we define the theoretical and empirical norms on M respectively as

$$\|\rho\|_2^2 = E\left[\sum_{i=1}^p \left(\sum_{j\neq i} \rho^{ij}(T) \sqrt{\frac{\sigma^{jj}(T)}{\sigma^{ii}(T)}} Y_j(T)\right)^2\right],$$

and

$$\|\rho\|_n^2 = \frac{1}{nm} \sum_{k=1}^n \sum_{u=1}^m \sum_{i=1}^p \left(\sum_{j\neq i}^p \rho^{ij}(t_{ku}) \sqrt{\frac{\sigma^{jj}(t_{ku})}{\sigma^{ii}(t_{ku})}} y_j^k(t_{ku}) \right)^2.$$

B. Technical Lemmas

Lemma 1. Under condition (C3), there exist constants C > c > 0, such that

$$C \sum_{1 \le i < j \le p} \|\rho^{ij}(T)\|_{2}^{2} \ge \|\rho\|_{2}^{2} \ge c \sum_{1 \le i < j \le p} \|\rho^{ij}(T)\|_{2}^{2},$$

where $\|\rho^{ij}(T)\|_{2}^{2} = E(\rho^{ij}(T))^{2}$.

Proof: Let $\rho^i(T)=(\rho^{ij}(T),j\neq i)$, and $\widetilde{\mathbf{Y}}_i(T)=\left(\sqrt{\frac{\sigma^{jj}(t)}{\sigma^{ii}(t)}}Y_j(T),j\neq i\right)$. Then by condition (C3), there exists a constant c>0, such that

$$\|\rho\|_{2}^{2} = E\left[\sum_{i=1}^{p} (\rho^{i}(T))^{T} \widetilde{\mathbf{Y}}_{i}^{T}(T) \widetilde{\mathbf{Y}}_{i}(T) \rho^{i}(T)\right] \ge cE\left[\sum_{i=1}^{p} (\rho^{i}(T))^{T} \rho^{i}(T)\right]$$

$$= cE\left[\sum_{i=1}^{p} \sum_{j \ne i} (\rho^{ij}(T))^{2}\right] = 2c\sum_{1 \le i < j \le p} E(\rho^{ij}(T))^{2} = 2c\sum_{1 \le i < j \le p} \|\rho^{ij}(T)\|_{2}^{2}.$$

The other side of the inequality follows similarly from condition (C3).

Lemma 2. Under conditions (C3), (C4), (C5) and (C7), there exist constants c, C > 0 such that, except on an event whose probability goes to zero, as $n \to \infty$, one has,

$$c \|\rho\|_2^2 \le \|\rho\|_2^2 \le C \|\rho\|_2^2$$
.

Proof: The proof follows similarly from Lemma A.4 of Xue and Yang (2006).

Lemma 3. Given conditions (C1), (C2), (C5), (C6) and (C8), there exist constants C > c > 0 such that, except on an event whose probability goes to zero, as $n \to \infty$, for any vector β_n of length $p(p-1) J_n/2$, one has,

$$\frac{c}{N_n} \left\| \boldsymbol{\beta}_n \right\|^2 \leq \frac{1}{nm} \boldsymbol{\beta}_n^T \boldsymbol{\mathcal{X}}_n^T \boldsymbol{\mathcal{X}}_n \boldsymbol{\beta}_n \leq \frac{C}{N_n} \left\| \boldsymbol{\beta}_n \right\|^2.$$

Proof: Write $\beta_n = \left(\beta^{ij}, 1 \leq i < j \leq p\right)^T$, and $\beta^{ij} = \left(\beta^{ij}_h, h = 1, \dots J_n\right)^T$. Let $g^{ij} = \sum_{h=1}^{J_n} \beta^{ij}_h B_h \in G_n$, and $g = \left(g^{ij}\left(t\right), 1 \leq i < j \leq p\right) \in M_n$. Then $\|g\|_n^2 = \frac{1}{nm} \beta_n^T \mathcal{X}_n^T \mathcal{X}_n \beta_n$. By Lemmas 1 and 2, one has that there exist constants $C \geq c > 0$, such that

$$c\sum_{1\leq i< j\leq p} \left\|g^{ij}\right\|_{2}^{2} \leq \frac{1}{nm} \beta_{n}^{T} \mathcal{X}_{n}^{T} \mathcal{X}_{n} \beta_{n} \leq C \sum_{1\leq i< j\leq p} \left\|g^{ij}\right\|_{2}^{2},$$

in which $\|g^{ij}\|_2^2 = E\left(\sum_{h=1}^{J_n} \beta_h^{ij} B_h\left(T\right)\right)^2$. Furthermore, Theorem 5.4.2 of Devore and Lorentz (1993) entails that there exists a constant c > 0, such that

$$E\left(\sum_{h=1}^{J_{n}}\beta_{h}^{ij}B_{h}\left(T\right)\right)^{2} \geq c\sum_{h=1}^{J_{n}}\left(\beta_{h}^{ij}\right)^{2}E\left(B_{h}^{2}\left(T\right)\right) \geq \frac{c}{N_{n}}\sum_{h=1}^{J_{n}}\left(\beta_{h}^{ij}\right)^{2}.$$

Therefore, $\frac{1}{nm}\beta_n^T\mathcal{X}_n^T\mathcal{X}_n\beta_n \geq \frac{c}{N_n}\|\beta_n\|^2$ for some c>0. The other side of the inequality follows similarly from the Cauchy-Schwarz inequality.

Let
$$G_{ij}^{(o)} = \left\{g = \sum_{h=1}^{N_n+q+1} \beta_h B_h \in G_n, \quad \beta_h = 0, \text{ for } h = \nu_{l_1^{ij}}, \dots, \nu_{l_2^{ij}} + q \right\}$$
, and $G_{ij}^{(o)} \subset G_n$ is the oracle spline approximation space containing spline functions with zero values on the null region E^{ij} .

Lemma 4. Under conditions (C5)-(C7), there exists a spline function $g_{ij}^{(o)} \in G_{ij}^{(o)}$, such that $\sup_{0 < t < 1} \left| \rho^{ij} \left(t \right) - g_{ij}^{(o)} \left(t \right) \right| = O\left(N_n^{-1} \right)$.

Proof: The approximation theory in de Boor (2001) entails that there exists a spline function $g_{ij} \in G_n$ such that $\sup_{0 < t < 1} |\rho^{ij}(t) - g_{ij}(t)| = O\left(N_n^{-(q+1)}\right)$, where $g_{ij} = \sum_{h=1}^{N_n+q+1} \beta_h^{ij} B_h$ for a set of coefficients $\left\{\beta_h^{ij}\right\}_{h=1}^{N_n+q+1}$. Now let $g_{ij}^* = \sum_{h \in J_{ij}} \beta_h^{ij} B_h$. Let $A_{ij} = J_{ij}^c \backslash E_{ij}$. Then $g_{ij}^* \in G_{ij}^{(o)}$, and $\sup_{t \in E_{ij}} \left| \rho^{ij} - g_{ij}^* \right| = 0$, $\sup_{t \in J_{ij}} \left| \rho^{ij} - g_{ij}^* \right| = O\left(N_n^{-(q+1)}\right)$, and

$$\sup_{t \in A_{ij}} |\rho^{ij} - g_{ij}^*| \leq \sup_{t \in A_{ij}} |\rho^{ij} - g_{ij}| + \sup_{t \in A_{ij}} |g^{ij} - g_{ij}^*|$$

$$\leq 2 \sup_{0 < t < 1} |\rho^{ij} - g_{ij}| + \sup_{t \in A_{ij}} |\rho^{ij}|$$

$$= O\left(N_n^{-(q+1)} + N_n^{-1}\right) = O\left(N_n^{-1}\right).$$

Putting these three cases together, one has $\sup_{0< t<1}\left|\rho^{ij}-g_{ij}^{*}\right|=O\left(N_{n}^{-1}\right)$. \square

Let

$$L(\boldsymbol{\beta}, \boldsymbol{\sigma}, \mathbf{t}, \mathbf{y}) = \frac{1}{2nm} \sum_{k=1}^{n} \sum_{i=1}^{p} \sum_{u=1}^{m} w_{i_{ku}} \left(y_i^k(t_{ku}) - \sum_{j \neq i}^{p} \sum_{h=1}^{J_n} \beta_h^{ij} B_h(t_{ku}) \sqrt{\frac{\sigma^{jj}(t_{ku})}{\sigma^{ii}(t_{ku})}} y_j^k(t_{ku}) \right)^2,$$

and

$$L'_{hij}(\boldsymbol{\beta}, \boldsymbol{\sigma}) = \partial L(\boldsymbol{\beta}, \boldsymbol{\sigma}, \mathbf{t}, \mathbf{y}) / \partial \beta_h^{ij},$$

and

$$L_{hij,h'i'j'}^{''}(\boldsymbol{\beta},\boldsymbol{\sigma}) = \partial^2 L(\boldsymbol{\beta},\boldsymbol{\sigma},\mathbf{t},\mathbf{y})/\partial \beta_h^{ij} \partial \beta_{h'}^{i'j'}.$$

Lemma 5. For any $\widehat{\sigma}(t)$ that satisfies condition (C2), one has,

$$\max_{h,i,j}\left|L_{hij}^{'}(oldsymbol{eta},oldsymbol{\sigma},\mathbf{t},\mathbf{y})-L_{hij}^{'}(oldsymbol{eta},\widehat{oldsymbol{\sigma}},\mathbf{t},\mathbf{y})
ight|=O_{p}\left(\sqrt{rac{log(nm)}{nmN_{n}}}
ight),$$

$$\max_{h,i,j,h',i',j'} \left| L_{hij,h'i'j'}^{"}(\boldsymbol{\beta},\boldsymbol{\sigma},\mathbf{t},\mathbf{y}) - L_{hij,h'i'j'}^{"}(\boldsymbol{\beta},\widehat{\boldsymbol{\sigma}},\mathbf{t},\mathbf{y}) \right| = O_p \left(\sqrt{\frac{log(nm)}{nmN_n}} \right).$$

Proof: Note that

$$L'_{hij}(\boldsymbol{\beta}, \boldsymbol{\sigma}, \mathbf{t}, \mathbf{y}) - L'_{hij}(\boldsymbol{\beta}, \widehat{\boldsymbol{\sigma}}, \mathbf{t}, \mathbf{y})$$

$$= -\frac{1}{nm} \sum_{k=1}^{n} \sum_{u=1}^{m} w_{i_{ku}} B_h(t_{ku}) y_j^k(t_{ku}) y_i^k(t_{ku}) \left(\sqrt{\frac{\sigma^{jj}(t_{ku})}{\sigma^{ii}(t_{ku})}} - \sqrt{\frac{\widehat{\sigma}^{jj}(t_{ku})}{\widehat{\sigma}^{ii}(t_{ku})}} \right)$$

$$-\frac{1}{nm} \sum_{k=1}^{n} \sum_{u=1}^{m} w_{i_{ku}} B_h(t_{ku}) y_j^k(t_{ku}) \times$$

$$\left[\sum_{j'\neq i}^{p}\sum_{h=1}^{J_{n}}\beta_{h}^{ij}B_{h}(t_{ku})\left(\sqrt{\frac{\sigma^{j'j'}(t_{ku})}{\sigma^{ii}(t_{ku})}}\sqrt{\frac{\sigma^{jj}(t_{ku})}{\sigma^{ii}(t_{ku})}}-\sqrt{\frac{\widehat{\sigma}^{j'j'}(t_{ku})}{\widehat{\sigma}^{ii}(t_{ku})}}\sqrt{\frac{\widehat{\sigma}^{jj}(t_{ku})}{\widehat{\sigma}^{ii}(t_{ku})}}\right)y_{j}^{k}(t_{ku})\right] - \frac{1}{nm}\sum_{k=1}^{n}\sum_{u=1}^{m}w_{j_{ku}}B_{h}(t_{ku})y_{j}^{k}(t_{ku})y_{i}^{k}(t_{ku})\left(\sqrt{\frac{\sigma^{ii}(t_{ku})}{\sigma^{jj}(t_{ku})}}-\sqrt{\frac{\widehat{\sigma}^{ii}(t_{ku})}{\widehat{\sigma}^{jj}(t_{ku})}}\right) - \frac{1}{nm}\sum_{k=1}^{n}\sum_{u=1}^{m}w_{j_{ku}}B_{h}(t_{ku})y_{i}^{k}(t_{ku})\times \left[\sum_{j'\neq j}^{p}\sum_{h=1}^{J_{n}}\beta_{h}^{ij}B_{h}(t_{ku})\left(\sqrt{\frac{\sigma^{j'j'}(t_{ku})}{\sigma^{jj}(t_{ku})}}\sqrt{\frac{\widehat{\sigma}^{ii}(t_{ku})}{\sigma^{jj}(t_{ku})}}-\sqrt{\frac{\widehat{\sigma}^{ij}(t_{ku})}{\widehat{\sigma}^{jj}(t_{ku})}}\sqrt{\frac{\widehat{\sigma}^{ii}(t_{ku})}{\widehat{\sigma}^{jj}(t_{ku})}}\right)y_{i}^{k}(t_{ku})\right].$$

By conditions (C2) and (C3), for any $1 \le i \ne j \le p$, one has,

$$\sup_{t} \left| \sqrt{\frac{\sigma^{jj}(t)}{\sigma^{ii}(t)}} - \sqrt{\frac{\widehat{\sigma}^{jj}(t)}{\widehat{\sigma}^{ii}(t)}} \right| \le c\sqrt{\frac{\log(nm)N_n}{nm}},$$

$$\sup_{1 \le j' \ne i \le p} \sup_{t} \left| \sqrt{\frac{\sigma^{j'j'}(t_{ku})}{\sigma^{ii}(t_{ku})}} \sqrt{\frac{\sigma^{jj}(t_{ku})}{\sigma^{ii}(t_{ku})}} - \sqrt{\frac{\widehat{\sigma}^{j'j'}(t_{ku})}{\widehat{\sigma}^{ii}(t_{ku})}} \sqrt{\frac{\widehat{\sigma}^{jj}(t_{ku})}{\widehat{\sigma}^{ii}(t_{ku})}} \right| \le c\sqrt{\frac{\log(nm)N_n}{nm}}.$$

Furthermore, by conditions (C1), (C4) and bounded property of B-spline basis, one has

$$\max_{h,i,j}\left|\frac{1}{nm}\sum_{k=1}^{n}\sum_{u=1}^{m}w_{i_{ku}}B_{h}(t_{ku})y_{j}^{k}(t_{ku})y_{i}^{k}(t_{ku})\right|=O_{p}\left(1/N_{n}\right),$$
 and

$$\max_{h,i,j} \left| \frac{1}{nm} \sum_{k=1}^{n} \sum_{u=1}^{m} w_{i_{ku}} B_h(t_{ku}) y_j^k(t_{ku}) \left[\sum_{j \neq i}^{p} \sum_{h=1}^{J_n} \beta_h^{ij} B_h(t_{ku}) y_j^k(t_{ku}) \right] \right| = O_p \left(1/N_n \right).$$

Therefore,

$$\max_{h,i,j}\left|L^{'}(oldsymbol{eta},oldsymbol{\sigma},\mathbf{t},\mathbf{y})-L^{'}(oldsymbol{eta},\widehat{oldsymbol{\sigma}},\mathbf{t},\mathbf{y})
ight|=O_{p}\left(\sqrt{rac{log(nm)}{nmN_{n}}}
ight).$$

The proof of the second order derivative follows similarly.

Lemma 6. Suppose conditions (C1)-(C6) hold. Let $Z_h^{ijk}(t) = B_h(t) \sqrt{\frac{\widehat{\sigma}^{jj}(t)}{\widehat{\sigma}^{ii}(t)}} y_j^k(t)$, and for any $1 \le i < j \le p$, let

$$\widetilde{\mathbf{c}}_{h}^{ij}(\beta) = -\frac{1}{nm} \sum_{k=1}^{n} \sum_{u=1}^{m} Z_{h}^{ijk}(t_{ku}) \left(y_{i}^{k}(t_{ku}) - \sum_{j' \neq i}^{p} \sum_{h \in J_{ij}} \beta_{h}^{ij'} Z_{h}^{ij'k}(t_{ku}) \right),$$

and $\mathbf{c}_{h}^{ij}\left(\beta\right)=\widetilde{\mathbf{c}}_{h}^{ij}\left(\beta\right)+\widetilde{\mathbf{c}}_{h}^{ji}\left(\beta\right)$. Then for any η_{n} that satisfies $\left(N_{n}^{-(q+2)}+\lambda_{n}/N_{n}\right)/\eta_{n}\rightarrow0$ and $\frac{1}{\eta_{n}}\sqrt{\frac{\log(nm)}{N_{n}nm}}\rightarrow0$, one has

$$P\left(\max_{1 \le i < j \le p, h \in J_{ij}^c} \left| \mathbf{c}_h^{ij} \left(\widehat{\boldsymbol{\beta}}^{(0)} \right) \right| \ge \eta_n \right) \to 0.$$

Proof: By Lemma 5 and conditions on η_n that $\frac{1}{\eta_n}\sqrt{\frac{log(nm)}{nmN_n}} \to 0$, it is sufficient to consider $\widetilde{\mathbf{c}}_h^{ij}$ (β) and \mathbf{c}_h^{ij} (β) with $\widehat{\boldsymbol{\sigma}}(t)$ replaced by $\boldsymbol{\sigma}(t)$. By Lemma 4, there exists a constant c>0 and spline functions $s^{ij}\in G_{ij}^{(o)}$, such that

$$\max_{1 \le i < j \le p} \sup_{0 < t < 1} \left| \rho^{ij} \left(t \right) - s^{ij} \left(t \right) \right| \le c \left(N_n^{-(q+1)} + \lambda_n \right). \tag{S0.1}$$

Let
$$e_h^{ij} = -\frac{1}{nm} \sum_{k=1}^n \sum_{u=1}^m Z_h^{ijk}(t_u) \left(y_i^k(t_u) - \sum_{j' \neq i}^p \rho^{ij'}(t_u) \sqrt{\frac{\sigma^{j'j'}(t_u)}{\sigma^{ii}(t_u)}} y_{j'}^k(t_u) \right),$$

$$\delta_h^{ij} = \frac{1}{nm} \sum_{k=1}^n \sum_{u=1}^m Z_h^{ijk}(t_u) \left(\sum_{j' \neq i}^p \left[s^{ij'}(t_u) - \rho^{ij'}(t_u) \right] \sqrt{\frac{\sigma^{j'j'}(t_u)}{\sigma^{ii}(t_u)}} y_{j'}^k(t_u) \right),$$

$$\text{ and } \varepsilon_{h}^{ij}\left(\beta\right) = -\frac{1}{nm} \sum_{k=1}^{n} \sum_{u=1}^{m} Z_{h}^{ijk}\left(t_{u}\right) \left\{ \sum_{j'\neq i}^{p} \left[s^{ij'}(t_{u}) - \sum_{h\in J_{ij}} \beta_{h}^{ij'} B_{h}^{ij'}(t_{u})\right] \sqrt{\frac{\sigma^{j'j'}(t_{u})}{\sigma^{ii}(t_{u})}} y_{j'}^{k}(t_{u}) \right\}.$$

Then one has

$$\widetilde{\mathbf{c}}_{h}^{ij}\left(\beta\right) = e_{h}^{ij} + \delta_{h}^{ij} + \varepsilon_{h}^{ij}\left(\beta\right).$$

Following similar arguments of Lemma 7 in Xue and Qu (2012) and Lemma 5, there exists a c>0 such that

$$E\left(\max_{1\leq i< j\leq p, h\in J_{ij}^c} \left| e_h^{ij} \right| \right) \leq c\sqrt{\log\left(N_n\right)/\left(N_n n m\right)}.$$

Therefore, by Markov's inequality, one has

$$P\left(\max_{1 \le i < j \le p, h \in J_{ij}^c} \left| e_h^{ij} \right| > \frac{\eta_n}{2} \right) \le \frac{2c}{\eta_n} \sqrt{\frac{\log\left(N_n\right)}{N_n n m}} \to 0, \tag{S0.2}$$

as $n \to \infty$. On the other hand,

$$\max_{1 \leq i < j \leq p, h \in J_{ij}^{c}} \left| \delta_{h}^{ij} \right| \leq \max_{1 \leq i < j \leq p, h \in J_{ij}^{c}} \frac{1}{nm} \sum_{k=1}^{n} \sum_{u=1}^{m} Z_{h}^{ijk} \left(t_{u} \right) \left| \sum_{l \neq i}^{p} \left[s^{il}(t_{u}) - \rho^{il}(t_{u}) \right] \sqrt{\frac{\widehat{\sigma}^{il}(t_{u})}{\widehat{\sigma}^{ii}(t_{u})}} y_{l}^{k}(t_{u}) \right| \\
\leq c N_{n}^{-1} \max_{1 \leq i < j \leq p, h \in J_{ij}^{c}} \frac{1}{nm} \sum_{k=1}^{n} \sum_{u=1}^{m} \left| Z_{h}^{ijk} \left(t_{u} \right) \right| \sum_{l \neq i}^{p} \sqrt{\frac{\widehat{\sigma}^{il}(t_{u})}{\widehat{\sigma}^{ii}(t_{u})}} \left| y_{l}^{k}(t_{u}) \right| \\
\leq c N_{n}^{-1} / N_{n} = o_{p} \left(\eta_{n} \right). \tag{S0.3}$$

Finally, by the definition of $\widehat{\beta}^{(0)}$ and the fact that $s^{ij} \in G_{ij}^{(o)}$, one has $\varepsilon_h^{ij} \left(\widehat{\beta}^{(0)}\right) = o_p\left(\eta_n\right)$, for $h \in J_{ij}^c$. Then Lemma 6 follows from (S0.2) and (S0.3).

C. Construction of initial estimators for $\left\{\sigma^{ii}\left(t\right)\right\}_{i=1}^{p}$.

To prove our asymptotic results, we assume there exist initial estimators of $\{\sigma^{ii}(t)\}_{i=1}^p$ that satisfy condition (C2). The following shows how such initial estimators can be constructed. For each fixed $i=1,\ldots,p$, note that $y_i(t)=\sum_{j\neq i}\rho^{ij}(t)\sqrt{(\sigma^{jj}(t)/\sigma^{ii}(t))}y_j(t)+\varepsilon_i(t)$, where $\mathrm{var}(\varepsilon_i(t))=1/\sigma^{ii}(t)$. Let $\mathbf{y}_i^k=(y_i^k(t_{k1}),\ldots,y_i^k(t_{km}))$ and $\mathbf{Y}_i=(\mathbf{y}_i^1,\ldots,\mathbf{y}_i^n)'$ be a $nm\times 1$ vector. Let $\mathbf{X}_{-i}=1/\sigma^{ii}(t)$

 $(\mathbf{x}_{(1)},\ldots,\mathbf{x}_{(i-1)},\mathbf{x}_{(i+1)},\ldots,\mathbf{x}_{(p)})$ be a $(nm)\times\{(p-1)J_n\}$ -dimensional matrix, with $\mathbf{x}_{(j)}=\left(\mathbf{z}_{(j)}^1,\ldots,\mathbf{z}_{(j)}^n\right)'$, and $\mathbf{z}_{(j)}^k=\left(\mathbf{B}(t_{k1})y_j^k(t_{k1}),\ldots,\mathbf{B}(t_{km})y_j^k(t_{km})\right)$. Let \mathbf{e}_i be the residuals from regressing \mathbf{Y}_i to \mathbf{X}_{-i} with

$$\mathbf{e}_i = \mathbf{Y}_i - \mathbf{X}_{-i} \left(\mathbf{X}_{-i}^{'} \mathbf{X}_{-i} \right)^{-1} \mathbf{X}_{-i}^{'} \mathbf{Y}_i.$$

Write $\mathbf{e}_{i}=\left(e_{i,ku}\right)_{k=1,u=1}^{n,m}$. Then the initial estimates of $\sigma^{ii}\left(t\right)$ at a fixed time point t can be obtained by

$$1/\widehat{\sigma}^{ii}(t) = \sum_{k=1}^{n} \sum_{u=1}^{m} K_h(t_{ku} - t) e_{i,ku}^2 / \sum_{k=1}^{n} \sum_{u=1}^{m} K_h(t_{ku} - t),$$

where $K_h(x) = K(x/h)/h$ and K(x) is a kernel function. We assume that the kernel K(x) is a symmetric probability density function on [-1,1], Lipschitz continuous and has a finite second moment. Kernel smoothing is used here for notation simplicity, but any other smoothing method can also be used here.

Lemma 7. If the bandwidth h satisfies $nmh^3/\log(nm) \to 0$, $nmh/\log(nm) \to \infty$, and $hN_n \to \infty$, and $\sigma^{ii}(t) \in C_2[0,1]$ for $i=1,\ldots,p$, then for any $\eta>0$, there exists a constant c such that $\max_{1\leq i\leq p}\sup_{t\in \mathbf{I}}|\widehat{\boldsymbol{\sigma}}^{ii}(t)-\boldsymbol{\sigma}^{ii}(t)|\leq c\sqrt{\frac{\log(nm)N_n}{nm}}$ holds with probability approaching to 1, as sample size $n\to\infty$.

Proof: Let $1/\tilde{\sigma}^{ii}(t) = \sum_{k=1}^{n} \sum_{u=1}^{m} K_h(t_{ku} - t) \varepsilon_i^2(t_{ku}) / \sum_{k=1}^{n} \sum_{u=1}^{m} K_h(t_{ku} - t)$ be the Nadaraya-Watson estimator of $1/\sigma^{ii}(t)$ using the true noises $\{\varepsilon_i(t_{ku})\}$ instead. Then by the uniform convergence result on the Nadaraya-Watson estimator (Thm. 6.5. Fan and Yao 2003), one has

$$\sup_{t \in [0,1]} \left| 1/\widetilde{\sigma}^{ii}\left(t\right) - 1/\sigma^{ii}\left(t\right) \right| = O_p\left(\sqrt{\frac{\log\left(nm\right)}{nmh}}\right).$$

On the other hand,

$$\sup_{t \in [0,1]} \left| 1/\widehat{\sigma}^{ii}\left(t\right) - 1/\widetilde{\sigma}^{ii}\left(t\right) \right|$$

$$= \sup_{t \in [0,1]} \left| \sum_{k=1}^{n} \sum_{u=1}^{m} K_{h}(t_{ku} - t) \left[e_{i,ku}^{2} - \varepsilon_{i}^{2}(t_{ku}) \right] / \sum_{k=1}^{n} \sum_{u=1}^{m} K_{h}(t_{ku} - t) \right|$$

$$= \sup_{t \in [0,1]} \left| \sum_{k=1}^{n} \sum_{u=1}^{m} K_{h}(t_{ku} - t) \left[e_{i,ku} - \varepsilon_{i}(t_{ku}) \right] \left[e_{i,ku} + \varepsilon_{i}(t_{ku}) \right] / \sum_{k=1}^{n} \sum_{u=1}^{m} K_{h}(t_{ku} - t) \right|$$

$$\leq \sup_{t \in [0,1]} \sqrt{\frac{\sum_{k=1}^{n} \sum_{u=1}^{m} K_{h}(t_{ku} - t) \left[e_{i,ku} - \varepsilon_{i}(t_{ku}) \right]^{2}}{\sum_{k=1}^{n} \sum_{u=1}^{m} K_{h}(t_{ku} - t)} \sqrt{\frac{\sum_{k=1}^{n} \sum_{u=1}^{m} K_{h}(t_{ku} - t) \left[e_{i,ku} + \varepsilon_{i}(t_{ku}) \right]^{2}}{\sum_{k=1}^{n} \sum_{u=1}^{m} K_{h}(t_{ku} - t)}}$$

$$= O_{p} \left(\sqrt{N_{n}^{-2(q+1)} + \frac{N_{n}}{nm}} \right),$$

where the last step is by the property of the Nadaraya-Watson estimator and the rate of convergence of the polynomial spline estimator involved in the definition of e_i . Therefore together with condition C3 and the conditions on h and N_n , one has,

$$\sup_{t \in [0,1]} \left| 1/\widehat{\sigma}^{ii}\left(t\right) - 1/\sigma^{ii}\left(t\right) \right| = O_p\left(\sqrt{\frac{\log(nm)N_n}{nm}}\right).$$

D. Proof of Theorem 1

We first consider $\widetilde{\boldsymbol{\beta}}^*$ that minimizes the objective function which defines the oracle estimator in section 4 of the main text, but with the true $\sigma^{ii}(\cdot)$ instead of $\widehat{\sigma}^{ii}(\cdot)$. Then one can write $\widetilde{\boldsymbol{\beta}}^*$ as

$$oldsymbol{\widetilde{eta}}^* = ig(oldsymbol{\chi}_{n,0}^Toldsymbol{\chi}_{n,0}^ig)^{-1}oldsymbol{\chi}_{n,0}^T\mathcal{Y}_n.$$

For any $t \in [0, 1]$, let

$$\widetilde{\rho}_{ij}^{*}(t) = \mathbf{B}_{ij}^{T}(t) \, \widetilde{\boldsymbol{\beta}}_{ij}^{*}.$$

Furthermore, by Lemma 4, there exist spline functions $g_{ij}^{(o)} \in G_{ij}^{(o)}$, such that $\left\| \rho^{ij} - g_{ij}^{(o)} \right\|_{\infty} \le c \left(N_n^{-(q+1)} \right)$ for some constant c that does not depend on n. Let

$$\widetilde{m}_{i}(t_{ku}) = \sum_{j \neq i}^{p} g_{ij}^{(o)}(t_{ku}) \sqrt{\frac{\sigma^{jj}(t_{ku})}{\sigma^{ii}(t_{ku})}} y_{j}^{k}(t_{ku}),$$

and

$$m_{i}(t_{ku}) = \sum_{j \neq i}^{p} \rho_{ij}(t_{ku}) \sqrt{\frac{\sigma^{jj}(t_{ku})}{\sigma^{ii}(t_{ku})}} y_{j}^{k}(t_{ku}), \ \varepsilon_{i}(t_{ku}) = y_{i}^{k}(t_{ku}) - m_{i}(t_{ku}).$$

Let $\widetilde{\mathbf{m}}_{iu} = \sqrt{\frac{w_{iu}}{nm}} (\widetilde{m}_i(t_{1u}), \dots, \widetilde{m}_i(t_{nu}))'$, $\widetilde{\mathbf{m}}_i = (\widetilde{\mathbf{m}}'_{i1}, \dots, \widetilde{\mathbf{m}}'_{im})'$, and $\widetilde{\boldsymbol{M}} = (\widetilde{\mathbf{m}}'_1, \dots, \widetilde{\mathbf{m}}'_p)'$. One defines \mathbf{M} and \mathbf{E} similarly as $\widetilde{\boldsymbol{M}}$, but using $m_i(t_{ku})$ and $\varepsilon_i(t_{ku})$, respectively. Then one has,

$$\widetilde{\rho}_{ij}^{*}(t) - \rho^{ij}(t)
= \mathbf{B}_{ij}^{T}(t) \left(\boldsymbol{\chi}_{n}^{T}\boldsymbol{\chi}_{n}\right)^{-1} \boldsymbol{\chi}_{n}^{T} \mathbf{E} + \mathbf{B}_{ij}^{T}(t) \left(\boldsymbol{\chi}_{n}^{T}\boldsymbol{\chi}_{n}\right)^{-1} \boldsymbol{\chi}_{n}^{T} \left(\mathbf{M} - \widetilde{\boldsymbol{M}}\right) + g_{ij}(t) - \rho^{ij}(t)
= I(t) + II(t) + III(t).$$

For I(t), the Cauchy-Schwartz inequality gives that

$$|I(t)| \leq \sqrt{\mathbf{B}_{ij}^{T}\left(t\right)\left(\boldsymbol{\chi}_{n}^{T}\boldsymbol{\chi}_{n}\right)^{-1}\mathbf{B}_{ij}\left(t\right)}\sqrt{\mathbf{E}^{T}\boldsymbol{\chi}_{n}\left(\boldsymbol{\chi}_{n}^{T}\boldsymbol{\chi}_{n}\right)^{-1}\boldsymbol{\chi}_{n}^{T}\mathbf{E}}.$$

Then condition (C1) and Lemmas 3 entail that there exists a constant c > 0 such that

$$|I(t)| \le \frac{cN_n}{nm} \sqrt{\mathbf{B}_{ij}^T(t) \mathbf{B}_{ij}(t)} \sqrt{\mathbf{E}^T \boldsymbol{\chi}_{n,0} \boldsymbol{\chi}_{n,0}^T \mathbf{E}},$$

in which $\sqrt{\mathbf{E}^T \boldsymbol{\chi}_{n,0} \boldsymbol{\chi}_{n,0}^T \mathbf{E}} = \sqrt{\sum_{i=1}^p \sum_{j \neq i} \sum_{h=1}^{J_n} \left(\sum_{k=1}^n \sum_{u=1}^m B_h(t_{ku}) \sqrt{\frac{\sigma^{jj}(t_{ku})}{\sigma^{ii}(t_{ku})}} y_j^k(t_{ku}) \varepsilon_i(t_{ku})\right)^2} = O_p(\sqrt{nm})$. On the other hand, $\sqrt{\mathbf{B}_{ij}^T(t) \mathbf{B}_{ij}(t)} \leq \sqrt{N_n + q + 1}$, since B-spline bases are upper bounded by 1. Thus one has

$$\sup_{0 < t < 1} |I(t)| = O_p \left(\frac{N_n^{3/2}}{\sqrt{nm}} \right). \tag{S0.4}$$

Similarly, one can show that

$$\sup_{0 < t < 1} |II(t)| \le \frac{cN_n}{nm} \sqrt{\mathbf{B}_{ij}^T(t) \mathbf{B}_{ij}(t)} \sqrt{\left(\mathbf{M} - \widetilde{\boldsymbol{M}}\right)^T \boldsymbol{\chi}_n \boldsymbol{\chi}_n^T \left(\mathbf{M} - \widetilde{\boldsymbol{M}}\right)} = O_p \left(\frac{N_n^{-(1+2q)/2}}{\sqrt{nm}}\right). \tag{S0.5}$$

Lastly,

$$\sup_{0 < t < 1} |III(t)| \le \sup_{0 < t < 1} |g_{ij}(t) - \rho^{ij}(t)| \le c \left(N_n^{-1}\right). \tag{S0.6}$$

Therefore, $\sup_{0 < t < 1} \left| \widetilde{\rho}_{ij}^*(t) - \rho^{ij}(t) \right| = O_p \left(N_n^{-1} + \frac{N_n^{3/2}}{\sqrt{nm}} \right)$ by combining (S0.4), (S0.5) and (S0.6), and condition (C8). Let $\widetilde{\boldsymbol{\beta}}$ be the spline coefficients for the oracle estimator and $\widetilde{\rho}_{ij}(t) = \mathbf{B}_{ij}^T(t) \widetilde{\boldsymbol{\beta}}_{ij}$. By Lemma 5 and the convexity of the objective function, the argmax continuous mapping theorem ensures that

$$\sup_{0 < t < 1} \left| \widetilde{\rho}_{ij}(t) - \rho^{ij}(t) \right| = O_p \left(N_n^{-1} + \frac{N_n^{3/2}}{\sqrt{nm}} \right).$$
 (S0.7)

E. Proof of Theorem 2

Let $\alpha_n = N_n^{-1} + \sqrt{N_n/nm}$. For any $g(t) \in M_n$ with $\|g - \widetilde{\rho}\|_2 = c\alpha_n$, write $g = \widetilde{\rho} + \delta_n$ with $\|\delta_n\|_2 = c\alpha_n$ for a constant c > 0. Denote the corresponding spline coefficients for $g(t), \widetilde{\rho}(t)$, and $\delta_n(t)$ as $\left\{\beta_{ij}^h\right\}, \left\{\widetilde{\beta}_{ij}^h\right\}$, and $\left\{u_{ij}^h\right\}$ respectively. Then one has

$$PL(g) = \frac{1}{2} \left\| \mathcal{Y}_n - \mathcal{X}_n \left(\widetilde{\boldsymbol{\beta}} + \mathbf{u} \right) \right\|^2 + \sum_{i < j}^p \sum_{h=1}^{N_n+1} \lambda_n \tau_h^{ij} \| \widetilde{\boldsymbol{\gamma}}_h^{ij} + \widetilde{\mathbf{u}}_h^{ij} \|,$$

and

$$PL(g) - PL(\widetilde{\rho})$$

$$= \frac{1}{2} \left\| \mathcal{Y}_n - \mathcal{X}_n \left(\widetilde{\boldsymbol{\beta}} + \mathbf{u} \right) \right\|^2 - \frac{1}{2} \left\| \mathcal{Y}_n - \mathcal{X}_n \widetilde{\boldsymbol{\beta}} \right\|^2 + \sum_{i < j}^p \sum_{h=1}^{N_n+1} \lambda_n \tau_h^{ij} \left(\| \widetilde{\boldsymbol{\gamma}}_h^{ij} + \overline{\mathbf{u}}_h^{ij} \| - \| \widetilde{\boldsymbol{\gamma}}_h^{ij} \| \right)$$

$$= I + II,$$

in which by similar arguments as in the proof of Theorem 2 in Xue (2009), there exists a constant C>0, such that $2I=\left\|\mathcal{Y}_n-\mathcal{X}_n\left(\widetilde{\boldsymbol{\beta}}+\mathbf{u}\right)\right\|^2-\left\|\mathcal{Y}_n-\mathcal{X}_n\widetilde{\boldsymbol{\beta}}\right\|^2\geq C\alpha_n^2$. For the second term, if $\|\widetilde{\boldsymbol{\gamma}}_h^{ij}\|\neq 0$, then $\tau_h^{ij}\approx 1/\|\widetilde{\boldsymbol{\gamma}}_h^{ij}\|$, and $\|\widetilde{\boldsymbol{\gamma}}_h^{ij}+\overline{\mathbf{u}}_h^{ij}\|-\|\widetilde{\boldsymbol{\gamma}}_h^{ij}\|\approx \left(\overline{\mathbf{u}}_h^{ij}\right)^T\widetilde{\boldsymbol{\gamma}}_h^{ij}/2\|\widetilde{\boldsymbol{\gamma}}_h^{ij}\|$. Therefore, $\lambda_n\tau_h^{ij}\left(\|\widetilde{\boldsymbol{\gamma}}_h^{ij}+\overline{\mathbf{u}}_h^{ij}\|-\|\widetilde{\boldsymbol{\gamma}}_h^{ij}\|\right)\approx \lambda_n\left(\overline{\mathbf{u}}_h^{ij}\right)^T\widetilde{\boldsymbol{\gamma}}_h^{ij}/\left(2\|\widetilde{\boldsymbol{\gamma}}_h^{ij}\|^2\right)\leq \lambda_n\|\widetilde{\mathbf{u}}_h^{ij}\|/\left(2\|\widetilde{\boldsymbol{\gamma}}_h^{ij}\|\right)=o_p\left(\alpha_n^2/N_n\right)$, by Condition C8. If $\|\widetilde{\boldsymbol{\gamma}}_h^{ij}\|=0$, then $\lambda_n\tau_h^{ij}\left(\|\widetilde{\boldsymbol{\gamma}}_h^{ij}+\overline{\mathbf{u}}_h^{ij}\|-\|\widetilde{\boldsymbol{\gamma}}_h^{ij}\|\right)=\lambda_n\tau_h^{ij}\|\overline{\mathbf{u}}_h^{ij}\|\geq 0$. Thus $II=o_p\left(\alpha_n^2\right)$. Therefore, when n is sufficiently large, for any $\varepsilon>0$, there exists a sufficiently large c>0 such that

$$P\left(\inf_{g\in M_{n},\|g=\widetilde{\rho}\|=c\alpha_{n}}PL\left(g\right)\geq PL\left(\widetilde{\rho}\right)\right)\geq 1-\varepsilon.$$

Hence there exists a minimizer $\widehat{\rho} \in M_n$ in a neighborhood of $\widetilde{\rho}$ with $\|\widehat{\rho} - \widetilde{\rho}\| = O_p(\alpha_n)$. Together with Theorem 1, one has $\|\widehat{\rho} - \rho\| = O_p(\alpha_n)$.

F. Proof of Theorem 3

Let $c\left(\beta\right) = \frac{1}{2nm} \sum_{i=1}^{p} \sum_{k=1}^{n} \sum_{u=1}^{m} \left(y_{i}^{k}(t_{u}) - \sum_{j \neq i}^{p} \sum_{h=1}^{J_{n}} \beta_{h}^{ij} B_{h}^{ij}(t_{u}) \sqrt{\frac{\widehat{\sigma}^{ij}(t_{u})}{\widehat{\sigma}^{ii}(t_{u})}} y_{j}^{k}(t_{u})\right)^{2}, \ c_{h}^{ij}\left(\beta\right) = \partial c\left(\beta\right) / \partial \beta_{h}^{ij}, \ \text{and} \ \overline{c}_{h}^{ij}\left(\beta\right) = \left(c_{h}^{ij}\left(\beta\right), \ldots, c_{h+p}^{ij}\left(\beta\right)\right). \ \text{By the KKT condition,} \ \widehat{\beta} \ \text{is the solution of }$

the penalized minimization problem if and only if

$$c_{k}^{ij}\left(\widehat{\beta}\right) + \sum_{s=\max(k-p,1)}^{\min(k,N_{n}+1)} \frac{\lambda_{n} \tau_{s}^{ij}}{\|\widehat{\gamma}_{s}^{ij}\|} \widehat{\beta}_{k}^{ij} = 0, \quad if \quad \|\widehat{\gamma}_{s}^{ij}\| \neq 0 \text{ for } \max(k-p,1) \leq s \leq \min(k,N_{n}+1),$$

$$\left\|\overline{\mathbf{c}}_{k}^{ij}\left(\widehat{\beta}\right)\right\|_{2} \leq \lambda_{n} \tau_{k}^{ij}, \quad if \quad \|\widehat{\gamma}_{k}^{ij}\| = 0. \tag{S0.8}$$

Let $\beta^{ij} = \left(\beta_1^{ij}, \dots, \beta_{J_n}^{ij}\right)^T$, and $\beta_{J_{ij}}^{ij} = \left(\beta_k^{ij}, k \in J_{ij}\right)^T$. Define $\beta_{J_{ij}}^{ij}$ similarly. Let $\widehat{\beta} = \left(\widehat{\beta}^{ij}, 1 \leq i < j \leq p\right)$ such that for each $\widehat{\beta}^{ij}$ with $\widehat{\beta}_{J_{ij}}^{ij} = 0$ and $\widehat{\beta}_{J_{ij}}^{ij}$ solving

$$c_k^{ij}(\beta) + \sum_{s=\max(k-p,1)}^{\min(k,N_n+1)} \frac{\lambda_n \tau_s^{ij}}{\|\widehat{\boldsymbol{\gamma}}_s^{ij}\|} \beta_k^{ij} = 0,$$
(S0.9)

for $k \in J_{ij}$. Write $\widehat{\beta}^{(A)} = \left\{ \widehat{\beta}^{ij}_{J_{ij}}, 1 \leq i < j \leq p \right\}$. Then

$$\widehat{\beta}^{(A)} = \left(\boldsymbol{\chi}_{n,0}^T \boldsymbol{\chi}_{n,0} \right)^{-1} \left(\boldsymbol{\chi}_{n,0}^T \mathcal{Y}_n + \mathbf{W}_n \right),$$

where $\mathbf{W}_n = \left\{\sum_{s=\max(k-p,1)}^{\min(k,N_n+1)} \lambda_n \tau_s^{ij} \beta_k^{ij} / \|\widehat{\boldsymbol{\gamma}}_s^{ij}\|, k \in J_{ij}\right\}$. Theorem 2 entails that elements in \mathbf{W}_n : $w_k^{ij} = \sum_{s=\max(k-p,1)}^{\min(k,N_n+1)} \lambda_n \tau_s^{ij} / \|\widehat{\boldsymbol{\gamma}}_s^{ij}\| = O_p\left(\lambda_n\right). \text{ Therefore, together with Lemma 3, one has, } \|\widehat{\boldsymbol{\beta}}^{(A)} - \widetilde{\boldsymbol{\beta}}^{(A)}\| = \sqrt{\mathbf{W}_n^T \left(\boldsymbol{\chi}_{n,0}^T \boldsymbol{\chi}_{n,0}\right)^{-2} \mathbf{W}_n} = O_p\left(\lambda_n N_n / nm\right), \text{ and } \|\mathbf{c}_h^{ij} \left(\widehat{\boldsymbol{\beta}}\right) - \mathbf{c}_h^{ij} \left(\widetilde{\boldsymbol{\beta}}\right)\| = O_p\left(\lambda_n\right). \text{ Then Lemma 6}$ and condition (C9) entail that

$$P\left(\max_{1\leq i< j\leq p, k\in J_{ij}^c} \left\| \overline{\mathbf{c}}_k^{ij} \left(\widehat{\beta} \right) \right\|_2 \geq \lambda_n \tau_k^{ij} \right) \to 0.$$

Therefore, $\widehat{\beta}$ satisfies the KKT condition, and is the solution of the adaptive Lasso objective function. It is clear from the definition of $\widehat{\beta}^{ij}$ that $\widehat{\rho}^{ij}(t)=0$ for $t\in E^{ij}=[e_1^{ij},e_2^{ij}]$. Now let $\widehat{\rho}^{ij}=\left(\widehat{\beta}^{ij}\right)^TB$ be the corresponding estimator of the partial correlation functions. We now show

that $\sup_{0\leq t\leq 1}\left|\widehat{\rho}^{ij}\left(t\right)-\rho^{ij}\left(t\right)\right|=O_{p}\left(N_{n}^{-1}\right)$. One notices that

$$\widehat{\rho}^{ij}\left(t\right) - \widetilde{\rho}^{ij}\left(t\right) = \left(\mathbf{B}^{(A)}\left(t\right)\right)^{T} \left(\left(\mathcal{X}_{n}^{(A)}\right)^{T} \mathcal{X}_{n}^{(A)} + W_{n}^{(A)}\right)^{-1} W_{n}^{(A)} \widetilde{\beta}^{(A)},$$

and by Lemma 3

$$\sup_{0 < t < 1} \left| \widehat{\rho}^{ij} \left(t \right) - \widetilde{\rho}^{ij} \left(t \right) \right| \leq \frac{N_n}{nm} \lambda_n \sup_{0 < t < 1} \left| \mathbf{B}_{J_{ij}}^T \left(t \right) \widetilde{\beta}_{J_{ij}}^{ij} \right| = \frac{N_n}{nm} \lambda_n \sup_{0 < t < 1} \left| \widetilde{\rho}^{ij} \left(t \right) \right|$$

$$= O_p \left(\frac{N_n}{nm} \lambda_n \right) = o_p \left(\frac{N_n^{3/2}}{\sqrt{nm}} \right).$$

Then Theorem 3 follows from the triangular inequality and condition (C8).

Bibliography

- [1] de Boor, C. (2001). A Practical Guide to Splines, New York: Springer.
- [2] Devore, R. A., & Lorentz, G. G. (1993). *Constructive Approximation*, Berlin Heidelberg: Springer-Varlag.
- [3] Fan & Yao (2003). Nonlinear Time Series: Nonparametric and Parametric Methods, New York: Springer.
- [4] Xue, L. (2009). Variable selection in additive models. Statistica Sinica 19, 1281-1296.
- [5] Xue, L. & Qu, A. (2012). Variable selection in high-dimensional varying-coefficient models with global optimality. *J. Mach. Learn. Res.* **13**, 1973-1998.
- [6] Xue, L. & Yang, L. (2006). Additive coefficient modeling via polynomial spline. *Statistica Sinica* 16, 1423-1446.