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Abstract: In many biomedical and social science studies, it is important to identify

and predict the dynamic changes of associations among network data over time.

We propose a varying-coefficient model to incorporate time-varying network data,

and impose a piecewise penalty function to capture local features of the network

associations. The proposed approach is semi-parametric, and therefore flexible in

modeling dynamic changes of association in network data problems. Furthermore,

the approach can identify the time regions when dynamic changes of associations

occur. To achieve a sparse network estimation at local time intervals, we implement

a group penalization strategy involving parameters that overlap between groups.

However, this makes the optimization process challenging for large-dimensional

network data observed at many time points. We develop a fast algorithm, based

on the smoothing proximal-gradient method, that is computationally efficient and

accurate. We illustrate the proposed method through simulation studies and chil-

dren’s attention deficit hyperactivity disorder fMRI data, showing that the proposed

method and algorithm recover dynamic network changes over time efficiently.

Key words and phrases: B-spline, dynamic network, model selection consistency,

proximal gradient method, varying-coefficient model.

1. Introduction

In social science, genomic, environmental, and biomedical studies, it is scien-

tifically important to identify and predict associations and interactions between

genes, spatial locations, or social structures effectively. Network modeling (e.g.,

Kolaczyk (2009)) can effectively quantify the associations between variables. Our

method is motivated by a study on children’s attention deficit hyperactivity

disorder. The data are available from the ADHD-200 sample initiative web-

site: http://fcon_1000.projects.nitrc.org/indi/adhd200/. The test sam-

ples contain fMRI data from regions of interest (ROIs) in the brains of children

with ADHD. These data are measured repeatedly at many time-points. We are
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Figure 1. Changes of associations between different sites of a brain over three time-points.

interested in identifying associations and interactions between ROIs of the brain

over time in order to better understand how ADHD patients’ brains function.

Figure 1 illustrates the dynamic changes of associations between several ROIs

of a brain over three time-points. We are interested in extracting the underlying

signals of associations by modeling the responses of brain activities over time.

This can be formulated as a time-varying network problem, where the ROIs are

variables or nodes in the network, and the associations between ROIs represent

edges connecting nodes of the network.

Recent development in the field of network modeling includes the high-

dimensional graphical models of Meinshausen and Bühlmann (2006); Friedman,

Hastie and Tibshirani (2007), and Peng et al. (2009). The central idea of these

approaches is to estimate the precision matrix or the inverse of the covariance

matrix, which provides a conditional correlation interpretation for the variables

in the graph, where a zero partial correlation implies pairwise conditional inde-

pendence. In addition, Shen, Huang and Pan (2012) and Zhu, Shen and Pan

(2013) both develop methods for simultaneous grouping pursuit and feature se-

lection in high-dimensional graphs. For multiple graphs, Guo et al. (2011) jointly

estimate graphical models to capture the dependence between multiple graphs

and their common structure. In addition, Zhu, Shen and Pan (2014) propose

a maximum penalized likelihood approach to model the structural changes over

multiple graphs, thus incorporating the dependencies between interacting units.

Most of the existing literature focuses on the network data problem ob-

served at one time-point only. However, networks can be observed at multiple

time-points; where dynamic changes of associations are of scientific interest and

require quantification. For example, in gene-expression data, functional magnetic

resonance imaging (fMRI), and social network data, associations often change
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over time. Therefore it is important to model and estimate the dynamic changes

to the network structure.

Modeling time-varying network data can be statistically and computation-

ally challenging. This is because the network structures can become complex over

time, involve large-dimensional parameter estimations, and be computationally

intensive with high-dimensional matrix operations. Existing approaches for time-

course network data include using linear mixed-effect modeling to incorporate

temporal correlations (Shojaie and Michailidis (2010)), the kernel-reweighted lo-

gistic regression method for network structure that change over time (Song, Kolar

and Xing (2009); Kolar, Parikh and Xing (2010)), and time-varying Markov ran-

dom fields (Kolar and Xing (2009)). However, these approaches are mainly used

to estimate time-varying networks, and are not designed to select models that

capture changes of associations in local time regions.

We propose a dynamic network model that captures the changes of associ-

ations using a varying-coefficient model (Hastie and Tibshirani (1993); Huang,

Wu and Zhou (2002); Cheng, Honda and Zhang (2016)). The model of the dy-

namics of the partial correlations is semiparametric and, therefore, flexible in

modeling the nonlinear changes of the coefficients. In addition, we propose a

one-step penalized polynomial spline method to detect zero regions in the vary-

ing coefficients. Therefore, we are able to locate the time regions when dynamic

changes of associations occur. This method can be used to identify the changes of

associations between ROIs over time, as in the example of fMRI data for ADHD

patients, which could be useful for detecting dynamic changes in brain functions.

The one-step penalized polynomial spline method proposed here is quite dif-

ferent from the penalization methods (Xue (2009); Wei, Huang and Li (2011);

Xue and Qu (2012)) developed recently for variable selection in semiparametric

models. The latter approaches were developed to determine whether a nonpara-

metric function is zero in the entire region. Therefore, an L2-norm of the spline

coefficients is penalized to shrink the function to zero on the entire region. In con-

trast, our one-step penalized polynomial spline method aims to detect local zero

regions in the varying coefficients, thus locating the time regions when dynamic

changes of associations occur. We use the local property of polynomial splines

that the spline functions on a given local interval depend only on the neighboring

B-spline bases. Therefore, we propose penalizing only those coefficients relevant

to a given local interval in a groupwise fashion. This new form of penaliza-

tion raises challenges in terms of both computation and theory development, as

discussed in Sections 3 and 4.
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In order to achieve sparse network data at local time intervals, we pro-

pose a piecewise penalized loss function that incorporates the local features of

the varying-coefficient models in the dynamic modeling. The piecewise penaliza-

tion strategy involves spline-coefficient parameters that overlap between different

penalty groups. However, the popular coordinate-wise descent algorithm cannot

be applied in our optimization. Thus we propose an alternative algorithm that is

computationally efficient and accurate, based on the proximal-gradient method.

This approach does not involve large-dimensional matrix inversion and is capable

of handling large-dimensional network data.

One computational challenge we face when using time-varying network data

is that the volume of data is extremely large, because they include observations

for many nodes over many time points. For example, when the network comprises

about 100 nodes and is observed over 50 time points, the dimension of the matrix

operation could reach 105 in the iteration process. Existing methods for handling

time-varying networks mainly target relatively small network sizes and limited

time points. Therefore, there is great demand for computationally efficient and

fast algorithms to solve large-dimensional time-varying network problems. The

proposed group penalization strategy effectively ensures sparsity at local time

intervals. However, it incurs an additional computational cost in the optimization

process, because it requires a high degree of memory storage and the use of matrix

operations when solving the dynamic network problem. In theory, it is also

more challenging to establish local-feature than global-feature model selection

consistency. We show that the proposed method identifies zero estimators in the

nonsignal time regions, and estimates the partial correlation functions uniformly

and consistently in the signal regions.

Recent works on the dynamic modeling of network changes include the re-

versible jump MCMC (Lebre et al. (2010)), time-series model for covariance

matrix (Zhou, Lafferty and Wasserman (2010)), piecewise constant varying-

coefficient varying-structure (VCVS) models (Kolar, Song and Xing (2009); Kolar

and Xing (2011, 2012)), and nonparametric model for the dynamic covariance

matrix (Chen and Leng (2016)). Our approach differs from these approaches

because we use a penalized polynomial spline function to model the network

changes, allowing us to accommodate many time points at a scalable computing

cost. In contrast, the reversible jump MCMC approach is mainly applicable for a

limited number of time points, and the piecewise constant VCVS approach is used

to model abrupt change rather than smooth changes to the network structure.

The method of Zhou, Lafferty and Wasserman (2010) is based on the penalized
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maximum likelihood approach, where the covariance matrix is estimated using

a kernel smoother. However, they do not establish the sparsistency property,

by which all zero parameters are estimated as zero with probability approaching

one. In contrast, we establish the sparsistency property for the proposed method,

which is important for detecting dynamic changes on the network structure. The

approach of Chen and Leng (2016) is nonparametric, in that they make no as-

sumption on the covariance matrix. In contrast, our method is semiparametric

in that we model each partial correlation function as a semiparametric varying-

coefficient function.

In addition, dynamic brain network models are receiving much attention.

The study of neural connectivity disruptions caused by disease pathology re-

quires models that capture the temporal connectivity of brain networks. Current

dynamic brain network models include the dynamic causal models (DCMs) (Fris-

ton, Harrison and Penny (2003)) and a nonlinear extension of a DCM (Stephan

et al. (2008)) that builds on a causal neuronal model. The latter takes dynamic

specified input, state, and output variables, corresponding to the stimulus func-

tions, neuronal activities or biophysical variables, and outcomes measured from

the brain ROIS, respectively. In addition, Wang, Lin and Wu (2015) investi-

gate the important role of the dynamic temporal–topological structure of the

ADHD brain network using sliding time-window correlation coefficients. Wee et

al. (2016) propose a fused sparse learning algorithm to jointly estimate tempo-

ral networks, while encouraging temporally correlated networks to form similar

network structures using the fused LASSO (Tibshirani et al. (2005)). Further-

more, Lee et al. (2011) recover the sparse brain network derived from partial

correlations when the sample size is relatively small, but the dimension of the

parameters is high. Wee et al. (2012) also consider a constrained sparse linear

regression model using the LASSO penalty when there is a relatively small num-

ber of connections within a brain network. However, the sparse network models

do not incorporate dynamic changes to the brain network.

Furthermore, the diffusion wavelet has been proposed to analyze time-varying

brain networks. It provides a framework within which to study the properties

and structures of a graph in the spectral domain, and provides multi-resolution

and interpretable basis representations of network data. Chung (1997) gives a

comprehensive overview of spectral graph theory. Leonardi and Van De Ville

(2011) applied a spectral graph wavelet transform (SGWT) to brain functional-

connectivity data. They decomposed fMRI data using the SGWT, and then used

wavelet coefficients to understand the connectivity of the network. However, this
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connectivity can only be interpreted in a specific frequency band. Kim et al.

(2013) applied a diffusion wavelet to conduct a multi-resolution analysis on brain

networks, comparing the connectivity differences between healthy and bipolar

patients. The aforementioned works represent information contained in a graph

using a few interpretable wavelet bases, that capture structural differences in

brain networks. In general, diffusion wavelets are to reduce the dimensionality,

while appropriately incorporating the network topology information. In contrast,

our work aims to model the pairwise connectivity of the network. In future re-

search, we will first use our method to estimate the network connectivity, after

which we will conduct a multi-resolution analysis using the diffusion wavelet to

understand the differences between such networks.

The reminder of the paper is organized as follows. Section 2 proposes the

penalized polynomial spline method for time-varying network data. Section 3

provides the smoothing proximal-gradient (SPG) algorithm that captures dy-

namic changes in the network data over time. Section 4 presents the asymptotic

theory of model selection local consistency. In Section 5, we compare the numeri-

cal performance of the proposed SPG algorithm with that of existing approaches.

Section 6 illustrates the proposed method using the fMRI data on ADHD pa-

tients. The final section concludes the paper.

2. Time-varying Networks

In this study, we focus on time-varying network data and model the dynamic

changes in its partial correlations or structural changes of the network over time.

Both the correlation function and the partial correlation function can be used to

characterize associations between variables of interest. We focus on the partial

correlation function, mainly because we are interested in the conditional depen-

dence/independence between variables in a network. This correlation measures

the direct relationship between two variables, while removing the influence of

other variables.

Let y(t) =
(
y1(t), . . . , yp(t)

)′
be a set of time-varying variables observed

at time t, and {y(t), t ∈ I} be the corresponding continuous stochastic process

defined on a compact interval I. Without loss of generality, let I = [0, 1]. Suppose

the data consist of n subjects with measurements taken at m discrete time-

points 0 ≤ tk1 < · · · < tkm ≤ 1, for each subject k = 1, . . . , n. For each

subject, the observation yk(tk) =
(
yk(tk1), . . . ,y

k(tkm)
)′

is a discrete realization

of the continuous stochastic process {y(t), t ∈ I} atm subject-specific time-points
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tk = (tk1, . . . , tkm). Here, yk(tku) =
(
yk1 (tku), . . . , ykp(tku)

)′
, for u = 1, . . . ,m, are

p variables observed at time tku for the kth subject.

Let ρ(t) = {ρ12(t), . . . , ρ(p−1)p(t)}′ be the partial correlation function of y(t).

Suppose each partial coefficient function ρij(t) varies in time smoothly. Then we

can apply the polynomial spline to approximate the time-varying coefficients,

because this provides a good approximation of any smooth function, even with a

small number of knots. Let {νh}Nn

h=1 be Nn interior knots within the interval [0,

1], and let Υ be a partition of the interval [0, 1] with Nn knots. That is, Υn =

{0 = ν0 < ν1 < · · · < νNn
< νNn+1 = 1}. The polynomial splines of order q + 1

are functions with q-degree polynomials on intervals [νh−1, νh), h = 1, . . . , Nn,

and [νNn
, νNn+1], and q− 1 continuous derivatives globally. We denote the space

of such spline functions by Gn. Let {Bh (·)}Jn

h=1 be a set of B-spline bases of Gn,

where Jn = Nn + q + 1 and the function ρij(t) for any 1 ≤ i < j ≤ p can be

approximated by

ρij(t) ≈ gij(t) =

Jn∑
h=1

βijh Bh(t) = (βij)′B(t),

where βij = (βij1 , . . . , β
ij
Jn

)′ is a set of coefficients, and B(t) = (B1(t), . . . , BJn
(t))′

are B-spline bases. In practice, different B-spline bases can be used to approxi-

mate ρij(t). For simplicity, the same set of B-spline bases is used for the various

partial correlation functions presented here.

In addition to polynomial splines, other basis functions can be used to ap-

proximate unknown functions, including wavelet and trigonometric polynomials.

Sections 2.5 and 2.6 of Fan and Gijbels (1996) provide a review of the basis

choices. We chose the polynomial spline owing to its sound numerical proper-

ties and excellent approximation power. Given a sufficient number of knots, any

continuous function can be approximated arbitrarily well by polynomial splines,

assuming it is reasonably smooth. However, in general, polynomial splines do

not approximate functions with discontinuities and rapid variations sufficiently

well. In such cases, other basis functions, such as the wavelet, might be more

suitable.

Suppose y(t) has mean 0 and covariance Σ(t). Denote the concentration

matrix Σ−1(t) by
(
σij(t)

)
p×p. Then we can express yi(t) by a varying-coefficient

model, as

yi(t) =
∑
j 6=i

βij(t)yj(t) + εi(t), (2.1)

where βij(t) = ρij(t)
√
σjj(t)/σii(t), and V ar(εi(t)) = 1/σii(t). The errors εi(t)
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can be correlated over time. However, in the following, longitudinal correla-

tion is not incorporated. Instead we assume that εi(t) is independent over

time. We develop a method for identifying the local sparsity of the coeffi-

cient functions {βij(t)} over time. In a traditional polynomial spline estima-

tion, we would replace ρij(t) with gij(t), and then estimate the spline coefficients

β =
{
βij , 1 ≤ i < j ≤ p

}
by minimizing the weighted sum of squares in (2.2). The

benefit of using a spline approximation for the time-varying coefficient model is

that it is computationally fast and efficient.

In this study we are interested in locally sparse estimators of the partial

correlations that characterize the dynamic changes of network associations over

time. The B-spline basis function has a desirable local property. Denote any

interval constructed by two consecutive knots as (νh−1, νh), for 1 ≤ h ≤ Nn + 1.

If t ∈ (νh−1, νh), the spline function gij(t) is only affected by the basis functions

Bh, . . . , Bh+q. Therefore, the spline function gij(t) is locally zero within the in-

terval (νh−1, νh), if and only if the spline coefficients γijh = (βijh , . . . , β
ij
(h+q))

′ are

all zero. In addition, the whole region [0, 1] can be divided into Nn + 1 intervals

by the spline knots. Therefore, we penalize the group of spline coefficients asso-

ciated with each local interval [νh−1, νh] in a groupwise fashion. Consequently,

this provides locally sparse spline estimators ρ̃ij(t), which can be completely zero

on certain time intervals spanned by the knot sequence.

We propose the following piecewise penalized loss function to achieve sparse

network data:

PL(β,σ, t,y)

=
1

2nm

n∑
k=1

p∑
i=1

m∑
u=1

wiku

yki (tku)−
p∑
j 6=i

Jn∑
h=1

βijh Bh(tku)

√
σjj(tku)

σii(tku)
ykj (tku)

2

+

p∑
i<j

Nn+1∑
h=1

Pλn
(‖γijh ‖), (2.2)

where y =
{
yk(tk)

}n
k=1

, β = (β1,21 , . . . , β1,2Jn
, . . . , βp−1,p1 , . . . , βp−1,pJn

)′ is a p(p −
1)Jn/2-dimensional spline coefficient, σ =

{
σii(t)

}p
i=1

with t = (t1, . . . , tn)′, and

wiku
are nonnegative weights, typically chosen as σii(tku). In addition, ‖ · ‖ is

the vector L2-norm. Note that in contrast to the loss function of Peng et al.

(2009), both the weights and the components in the concentration matrix vary

over time.

The first term of (2.2) is the weighted sum of squares, and the second term
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Pλn
is the penalty function, which can be chosen from the LASSO, SCAD, or

adaptive LASSO, described in subsection 3.1. The performance of the penalty

function depends on the tuning parameter λn, the selection of which is discussed

in subsection 3.2. Intuitively, if ‖γijh ‖ shrinks to zero, then all elements of γijh are

zero and the spline function gij(t) is locally zero on the corresponding interval.

The penalty term in (2.2) differs from the typical penalty for global model selec-

tion in semiparametric models, such as those proposed in Xue (2009) and Xue and

Qu (2012). Here, we incorporate the local features of varying-coefficient mod-

els and ensure local sparsity of the dynamic modeling. Zhou, Wang and Wang

(2013) incorporated a similar idea to detect zero subregions for the functional

coefficients in a functional linear regression model using a two-step procedure.

Both β and σ are unknown parameters, but β is the main parameter of

o interest. We need to specify σ to estimate β in the penalized loss (2.2). A

two-step iterative procedure is proposed in the algorithm in the next section.

Let yiu = (y1i (t1u), . . . , yni (tnu))′, ỹiu =
√
wiu/nm yiu , ỹi = (ỹ′i1, . . . , ỹ

′
im)′,

and Yn = (ỹ′1, . . . , ỹ
′
p)
′ be an nmp-dimensional vector. Let Xn = (x̃′(1,2), . . . , x̃

′
(p−1,p))

be an (nmp) × {p(p − 1)Jn/2}-dimensional matrix, with x̃(i,j) = (01, . . . ,0i−1,

zj(i,j),0i+1, . . . ,0j−1, z
i
(i,j), . . . ,0p)

′, where 0k = {0}Jn×nm, and zj(i,j) = (zj(i,j),1,

. . . , zj(i,j),m)′, with

zj(i,j),u =

(
B(t1u)

√
σ̃jj(t1u)

σ̃ii(t1u)
y1j (t1u), . . . ,B(tnu)

√
σ̃jj(tnu)

σ̃ii(tnu)
ynj (tnu)

)
,

for u = 1, . . . ,m, and σ̃ii(tu) = σii(tu)/wiu. Then, the corresponding loss func-

tion (2.2) is equivalent to

L(β,σ,Yn) =
1

2
‖Yn −Xnβ‖2 +

p∑
i<j

Nn+1∑
h=1

Pλn
(‖γijh ‖). (2.3)

Let β̂ be the minimizer of objective functions (2.2) or (2.3). Then, the result-

ing estimator for the partial correlation function ρij(t) is defined as ρ̂ij(t) =

(β̂ij)TB (t).

3. Implementation

3.1. Algorithms

In this section, we propose an algorithm that determines an optimal so-

lution for the objective function (2.3). Let the penalty function Pλn
(‖γijh ‖) in

(2.3) follow the adaptive LASSO penalty (Tibshirani (1996); Zou (2006)); that
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is, Pλ(‖γijh ‖) = λnτ
ij
h ‖γ

ij
h ‖, where τ ijh = 1/‖γ̃ijh ‖

r with r > 0, and γ̃ijh is a con-

sistent estimator of γijh . So the penalty term can be considered as an adaptive

group LASSO with overlapping groups. When the groups overlap, if one group

is shrunk to zero, all coefficients in the group shrink to zero as well, even though

some belong to other nonzero-coefficient groups. The solution space and theo-

retical properties of the group LASSO with overlaps are discussed in Jenatton,

Audibert and Bach (2011) and Obozinski, Jacob and Vert (2011), who indicate

that traditional LASSO algorithms cannot be applied directly to the penalized

loss function in (2.2).

However, because the dual norm of the L2-norm is still the L2-norm, the L2-

norm γijh can be formulated as max‖αij
h ‖≤1(α

ij
h )′γijh , whereαijh ∈ R

(q+1) is an aux-

iliary vector associated with γijh . A similar transformation and its properties is

discussed in Chen et al. (2012); Jacob, Obozinski and Vert (2009), and Obozinski,

Jacob and Vert (2011). Let Q = {α|‖αijh ‖ ≤ 1, 1 ≤ i < j ≤ p, h = 1, . . . , Nn+1}.
We can rewrite the group adaptive LASSO penalty for the overlapping parame-

ters in (2.2) as follows:

g0(β) = λn

p∑
i<j

Nn+1∑
h=1

τ ijh ‖γ
ij
h ‖ = max

α∈Q

p∑
i<j

Nn+1∑
h=1

λnτ
ij
h (αijh )′γijh = max

α∈Q
α′Cβ,

(3.1)

where C ∈ R[(q+1)(Nn+1)p(p−1)/2]×[p(p−1)Jn/2] is an indicator matrix, with each

element defined as

C(k,l) =


λnτ

ij
h k = (r − 1)(Nn + 1)(q + 1) + (h− 1)(q + 1) + v,

l = (r − 1)Jn + (h− 1) + v,

0 otherwise,

where r = (i − 1)(p − i + 2) + (j − i − 1) and v = 1, . . . , (q + 1). Note that

C is a very sparse matrix, with only one nonzero element in each row. Thus it

only requires a relatively small amount of memory storage in the optimization

procedure. As a result of the transformation, the group penalization terms no

longer present overlapping parameters.

However, this introduces a new problem, because the penalty function g0(β)

in (3.1) is a nonsmooth function of β. To resolve this problem, we need to build

a smooth function to approximate g0(β). Let D = maxα∈Q ‖α‖2/2 and

gµ(β) = max
α∈Q

(
α′Cβ − µ

2
‖α‖2

)
, (3.2)

where µ is the tolerance parameter. Then, gµ(β) is a quadratic approximation
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for g0(β), with a maximum difference of µD. That is,

g0(β)− µD ≤ gµ(β) ≤ g0(β).

In order to control the maximum difference, we choose the tolerance level ε =

µD or, equivalently, µ = ε/D. Consequently, the loss function in (2.3) can be

approximated by

P̃L(µ,β,σ) =
1

2
‖Yn −Xnβ‖2 + gµ(β).

To minimize the loss function P̃L(µ,β), we need to calculate the gradient

of P̃L(µ,β). For any µ > 0, gµ(β) is convex and continuously differentiable and

the corresponding gradient function ∇gµ(β) is C ′α∗, where α∗ is the optimal

solution to (3.2). Let uijh = λnτ
ij
h γ

ij
h /µ. Then the closed form of α∗ can be

expressed as

(αijh )∗ =


uijh

‖uijh ‖
, if

∥∥∥uijh ∥∥∥ > 1,

uijh , if
∥∥∥uijh ∥∥∥ ≤ 1.

(3.3)

Therefore, the partial derivative ∇P̃L(µ,β,σ) with respect to β can be calcu-

lated as X ′n (Xnβ − Yn) +C ′α∗. Moreover, ∇P̃L(µ,β,σ) is Lipschitz-continuous,

with the Lipschitz constant

M = λmax

(
X ′nXn

)
+
‖C‖2

µ
,

where λmax is the largest eigenvalue of (Xn)′Xn and ‖C‖ = max‖α‖≤1 ‖Cα‖. The

proximal operator can be defined as

QL(β,β′,σ) =

{
P̃L(µ,β′,σ) +∇PL(µ,β′,σ)(β − β′) +

M

2
‖β − β′‖2

}
,

and β can be updated at the (l+1)th iteration by applying the proximal-gradient

algorithm through

β(l+1) = argminβQL(β,β(l),σ) = argminβ

{
P̃L(µ,β(l),σ(l))

+∇PL(µ,β(l),σ(l))(β − β(l)) +
M

2
‖β − β(l)‖2

}
. (3.4)

Convergence is guaranteed because the inequality P̃L(µ,β(l+1),σ(l)) ≤
QL(β,β(l),σ(l)) holds for each iteration. It is not difficult to check whether

the inequality holds; see Chen et al. (2012) for a detailed discussion. The above

penalization strategy achieves sparsity corresponding to the group parameters

γh; however, it does not guarantee the sparsity of each element in β̂ obtained
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Algorithm 1 Proximal-gradient algorithm for estimating partial correlation networks

Input: Set desired tolerance levels ε and ε∗ (set to be 10−3), obtain µ = ε/D and matrix

C, and calculate the step size M ; initialize the parameters β,σ as β(0) and σ(0),
respectively.

Output: β̂ and σ̂.
1: Compute α∗ according to (3.3) and calculate ∇P̃L(β(l), µ) = X ′n(Xnβ

(l) − Yn) +
C ′α∗;

2: Obtain β(l+1) by minimizing (3.4), i.e., β(l+1) = argminβ QL(β(l),β), and set the

elements in β(l+1) less than ε∗ as zero;
3: Update σ(l+1) and w(l+1) by calculating (3.5);

4: Return to Step 1 if ‖QL(β(l+1),β(l),σ(l+1))−QL(β(l),β(l−1),σ(l))‖ > ε.

from (3.4). Alternatively, we can set βijh = 0 if ‖βijh ‖ < ε∗ for a small tolerance

level ε∗. For σ, if each subject is observed at the same time over m time-points

(i.e., tku = tu, for any k = 1, . . . , n and u = 1, . . . ,m), then each component of

σ(l+1) =
{(

(σ11)(l+1)(tu), . . . , (σpp)(l+1)(tu)
)}m

u=1
at the (l+1)th iteration can be

updated by

1

(σii)(l+1)(tu)
=

1

n

n∑
k=1

yki (tu)−
p∑
j 6=i

Jn∑
h=1

(βijh )(l)Bij
h (tu)

√
(σjj)(l)(tu)

(σii)(l)(tu)
ykj (tu)

2

,

(3.5)

and the weight component for the ith subject is w
(l+1)
iu = (σii)(l+1). If each

subject is observed at the m time-points, we can update (σii)(l+1)(t) using a

polynomial spline estimation method. Let ε̂2i (tku) = (yki (tku)−
∑p

j 6=i
∑Jm

h=1(β
ij
h )(l)

Bij
h (tku)

√
((σjj)(l)(tku))/((σii)(l)(tku))ykj (tku))2. For each i = 1, . . . , p, we can

estimate σii(t) by a polynomial spline regression, using
{

1/ε̂2i (tku)
}n,m
k=1,u=1

as the

response variables and the spline basis generated on time-points {(tku)}n,mk=1,u=1

as the explanatory variables. We summarize the algorithm as follows.

Algorithm 2 Alternating direction method of multipliers for estimating partial corre-
lation networks

Input: Set desired tolerance levels ε, ε∗, and scalar κ, obtain µ = ε/D and matrix C;

initialize the parameters β,σ as β(0) and σ(0).
Output: β̂ and σ̂, respectively.
1: Compute α∗(l) according to (3.3);

2: Obtain β(l+1),β∗(l+1),η(l+1) according to (3.8), and set the elements in β(l+1) less
than ε∗ as zero;

3: Update σ(l+1) and w(l+1) by calculating (3.5);

4: Return to Step 1 if ‖β(l+1) − β∗(l+1)‖ > ε.
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We can also apply the alternating direction method of multipliers (ADMM)

(Boyd et al. (2011)) to approximate g0(β) by gµ(β) in (3.2), as follows. The adap-

tive LASSO with overlapping group penalty can be solved using a constrained

optimization:

min
β,β∗

1

2
‖Y − Xβ‖2 + gµ(β∗), (3.6)

s.t. β = β∗.

This can be further formulated as a scaled augmented Lagrangian problem:

Lρ =
1

2
‖Y − Xβ‖2 + gµ(β∗) +

κ

2
‖β − β∗ + η‖22, (3.7)

where η are dual variables, and κ is a scalar and can be preset. Therefore, the

ADMM algorithm solving (3.7) leads to three iteration steps for β,β∗, and η.

That is, at the (l + 1)th iteration,

β(l+1) = argmin
β

1

2
‖Y − Xβ‖2 +

κ

2
‖β − β∗(l) + η(l)‖22, (3.8)

β∗(l+1) = argmin
β

gµ(β∗) +
κ

2
‖β(l+1) − β∗ + η(l)‖22,

η(l+1) = η(l) + (β(l+1) − β∗(l+1)).

The first minimization problem in (3.8) is easy to solve because the objective func-

tion is quadratic. The function gµ(β∗) in the second minimization is a smoothing

function and, thus, can be approximated by the Taylor expansion at β∗(l); that is

gµ(β∗) ≈ gµ(β∗(l))+1/2∇gµ(β∗(l))(β∗−β∗(l)). Thus, ∇gµ(β∗) ≈ ∇gµ(β∗(l))/2 =

C ′α∗(l)/2, where α∗(l) can be calculated by (3.3) corresponding to β∗(l). There-

fore, the solution is β∗(l+1) = β(l+1) + η(l) − λC ′α∗(l)/(2κ). The algorithm is

summarized as Algorithm 2:

Both the SPG and ADMM provide approximations of (3.1); however, they

use different approximation methods and, therefore, yield different the final so-

lutions. The proximal-gradient method has the following advantages: (1) we can

construct a smoothing approximation to the objective function, which makes the

convergence fast; and (2) it does not require a large matrix inversion and only in-

volves sparse matrix operations. These benefits reduce algorithm complexity and

improve the computational speed significantly. On the other hand, the ADMM

requires the inversion of a matrix, which may be infeasible when the network size

is large. More details are provided in Section 5.
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3.2. Tuning parameter selection

The choice of tuning parameters is critical, because this determines the

performance of the proposed method. The tuning parameter selection for the

varying-coefficient model involves two parts. First, we select the sequence of

knots for the polynomial spline. Second, we select the tuning parameter in the

penalty function. For simplicity, we set the number of knots to be the same

order of n1/(2q+3), where n is the sample size and q is the order of the polynomial

spline. This choice of the number of knots balances between the variance and the

squared bias of the polynomial spline estimators (Huang (1998); Xue and Yang

(2006); Huang, Zhang and Zhou (2007)). We can also use a data-driven knot

number, which can be selected using a similar a BIC procedure that described

below. A more detailed discussion on knot selection can be found in Huang, Wu

and Zhou (2004); Xue, Qu and Zhou (2010); Xue and Qu (2012). However, for

convenience, we select equally spaced knots in our numerical studies. Neverthe-

less, our theory is developed under a more general setup that allows for more

flexible choices of knot sequence.

To select tuning parameters associated with the penalty function, we use

the BIC, which is documented in the model selection literature (e.g., Qu and Li

(2006); Wang, Li and Tsai (2007)). Specifically, given the tuning parameters λn,

denote the estimator β̂λn
, and calculate the estimators σ̂λn

and ŵλn
using (3.5).

Let κn be the total number of nonzero elements in β̂λn
. Then, the BIC is given

as BIC(λn) = nm log {MSE (λn)}+ κn log(nm), with

MSE (λn) =

1

nm

n∑
k=1

p∑
i=1

m∑
u=1

ŵiu,λn

yki (tku)−
p∑
j 6=i

Jn∑
h=1

β̂ijh,λn
Bij
h (tku)

√√√√ σ̂jjλn
(tku)

σ̂iiλn
(tku)

ykj (tku)


2

.

The optimal tuning parameter λ̂n is selected by minimizing BIC(λn).

4. Asymptotic Theory

In this section, we investigate the asymptotic properties of the varying-

coefficient estimator ρ̂(t) based on the polynomial spline approximation. Because

a distinct feature of our approach is the estimation and selection of local features

in dynamic network modeling, we focus on establishing the local-feature model

selection consistency of ρ̂(t). That is, if the true ρ(t) is zero for any given region,

the estimator of ρ(t) is zero with probability approaching one.



DYNAMIC MODEL SELECTION OF TIME-VARYING NETWORK 265

Before presenting the asymptotic properties of the proposed model, we first

introduce the following regularity conditions, which are required to establish the

asymptotic properties.

C1: The weights {wit}pi=1 are uniformly finite for t ∈ I. That is, there exist

positive constants w0 and w∞ such that 0 < w0 ≤ mini{wit} ≤ maxi{wit} ≤
w∞ <∞, for any t ∈ I.

C2: There exists a constant c such that max1≤i≤p supt∈I |σ̂
ii(t) − σii(t)| ≤

c
√

(log(nm)Nn)/(nm) holds, with probability approaching to one as the

sample size n→∞.

C3: We assume that for any t ∈ I, y(t) has mean 0 and covariance matrix

Σ(t), the eigenvalues of which are assumed to be uniformly bounded for

t ∈ I. That is, 0 < inft∈I λmin(Σ(t)) ≤ supt∈I λmax(Σ(t)) < ∞, where λmin

and λmax are the minimum and maximum eigenvalues of Σ(t), respectively.

Furthermore, for some sufficiently large l > 0, supt∈IE |Yi (t)|l< +∞, for

i = 1, . . . , p.

C4: The observation times {tku}n,mk=1,u=1 are independent and follow a distribu-

tion fT (t) on I, and fT (t) is absolutely continuous and bounded away from

zero and infinity.

C5: For 1 ≤ i 6= j ≤ p, the partial correlation function ρij(·) has q continuous

derivatives, with q ≥ 1.

C6: For 1 ≤ i 6= j ≤ p, let Eij ⊂ I be the null region such that ρij(t) = 0

if t ∈ Eij , and ρij(t) 6= 0 if t ∈ (Eij)c. If Eij 6= ∅, we assume that

Eij = [eij1 , e
ij
2 ] is a closed interval. Let ρ̇ij(t) be the first-order derivative of

ρij(t). We assume there exists a constant C > 0 such that
∣∣ρ̇ij(t)∣∣ ≥ C, for

any t ∈ [eij1 − ε, e
ij
1 ] ∪ [eij2 , e

ij
2 + ε] and a small constant ε > 0.

C7: The set of knots, denoted as Υn = {0 = ν0 < ν1 < · · · < νNn
< νNn+1 = 1},

is quasi-uniform; that is, there exists b > 0 such that

max(νh+1 − νh, h = 0, . . . , Nn)

min(νh+1 − νh, h = 0, . . . , Nn)
≤ b.

C8: The number of interior knots Nn and tuning parameters λn satisfy

λnNn

αn
→ 0,

λnN
2
n

αn
→∞,

λn
√
Nnnm/ log (nm)

αn
→∞,

where αn =
√
Nn/nm+N−1n .
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Condition C1 indicates that the weights are bounded away from zero and

infinity. Condition C2 assumes there exists a consistent estimator for σii(t), for

each i = 1, . . . , p. Similar conditions to C1 and C2 can also be found in Peng et al.

(2009). In the Supplementary Material, we propose an estimator that meets this

condition by kernel smoothing the residuals of a least-square fitting, as discussed

in the algorithm. Conditions C3, C4, C5, and C7 are standard conditions in

a polynomial spline framework, and are required to ensure the consistency of

the spline estimation in the varying coefficient model. Similar conditions can

be found in Huang, Wu and Zhou (2002); Xue and Qu (2012), and Wang et al.

(2014). Condition C6 divides the time regions into those with zero and nonzero

correlations, leading consistency of the partial correlation estimators.

To present our theoretical results, we first introduce an oracle estimator,

which estimates each ρij (t) under the assumption that the null regions of each

ρij (t) are known. It is constructed only for the proof of the asymptotic results,

and is not useful for analyzing real data. Note that, for each end point of the

null region Eij = [eij1 , e
ij
2 ] in condition (C6), there exist knots νlij1 and νlij2 in

the knot sequence Υ = {0 = ν0 < ν1 < · · · < νNn
< νNn+1 = 1}, such that eij1 ∈

[νlij1 , νl
ij
1 +1) and eij2 ∈ [νlij2 −1, νl

ij
2

). Let Jij =
{

1, . . . , νlij1 − 2, νlij2 + q + 2, . . . , Jn

}
.

An oracle estimator β̃(o) =
{
β̃
ij(o)
h , 1 ≤ h ≤ Jn, 1 ≤ i < j ≤ p

}
is constructed by

taking all coefficients β̃
ij(o)
h = 0, for h = νlij1 −1, . . . , νl

ij
2

+ q + 1, and estimating

the remaining coefficients by minimizing the sum of the squares

1

2nm

p∑
i=1

n∑
k=1

m∑
u=1

wiu

yki (tku)−
p∑
j 6=i

∑
h∈Jij

βijh Bh(tku)

√
σ̂jj(tku)

σ̂ii(tku)
ykj (tku)

2

. (4.1)

Denote the resulting oracle estimator of the partial coefficient functions by ρ̃ij (t),

for 1 ≤ i < j ≤ p. Then, the oracle estimators enjoy both estimation consistency

and null-region selection consistency, as indicated in the following theorem.

Theorem 1. Under conditions (C1)–(C8), for any 1 ≤ i < j ≤ p, the oracle

estimators satisfy ∥∥∥ρ̃ij(o) − ρij∥∥∥
2

= Op

(√
Nn

nm
+N−1n

)
,

sup
t∈I

∣∣∣ρ̃ij(o)(t)− ρij(t)∣∣∣ = Op

(
N

3/2
n√
nm

+N−1n

)
. (4.2)

In addition, let Ẽij =
{
t ∈ I, ρ̃ij (t) = 0

}
be the corresponding null region of
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ρ̃ij(o) (t) . Then, Eij ⊂ Ẽij , and the set Ẽij\Eij converges to the empty set with

probability approaching one as n→∞.

Theorem 2. Under conditions (C1)–(C8), when n is sufficiently large, the min-

imizer
{
ρ̂ij
}
1≤i<j≤p of the penalized likelihood function in (2.2) satisfies ‖ρ̂ij−

ρij‖2 = Op(
√
Nn/(nm) +N−1n ), for any 1 ≤ i < j ≤ p.

Theorem 3. Under conditions (C1)–(C8), for any 1 ≤ i < j ≤ p, let Êij ={
t ∈ I, ρ̂ij (t) = 0

}
be the corresponding null region of ρ̂ij (t) . Then, Eij ⊂Êij ,

and the set Êij\Eij converges to the empty set with probability approaching one

as n→∞.

Theorem 2 shows that the estimator that minimizes the penalized loss func-

tion (2.2) is L2-consistent when estimating the partial correlation functions. Fur-

thermore, Theorem 3 shows that, with probability approaching one, the estimator

correctly identifies zero estimators in the nonsignal time regions. Therefore, the

proposed method can correctly produce a locally sparse network and efficiently

model the dynamic changes in large volumes of network data. The proof of the

theorem is provided in the Supplementary Material.

Note that Theorems 2 and 3 assume that the network structure changes

smoothly over time (e.g., Condition C5). Therefore, the proposed spline method

is developed for networks with smooth changes.

5. Simulation

In this section, we conduct simulation studies to illustrate the performance

of the proposed SPG described in Section 3. We first compare the performance

of the SPG method using different degrees of polynomial spline. Then, the pro-

posed approach with the best order of B-spline approximation is selected for the

comparison with other existing approaches, such as SPACE (Peng et al. (2009)),

the kernel-based method (Kolar, Parikh and Xing (2010)), and the ADMM. Note

that the ADMM does not apply directly to our dynamic partial correlation net-

works, because the original ADMM is not formulated for overlapping parameters

from penalty terms. Therefore, we provide an adaptation of the ADMM ap-

proach to accommodate our setting. We also compare the proposed method with

the time-varying undirected graph (TVUG) model proposed by Zhou, Lafferty

and Wasserman (2010) and the varying-coefficient and varying-structure graphic

model (VCVS) proposed by Kolar and Xing (2012). Specifically, Zhou, Lafferty

and Wasserman (2010) develop a kernel-based nonparametric method for esti-
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mating time-varying covariance matrices for multivariate Gaussian distributions

using an l1-regularization. As such, the authors show that the TVUG model is

able to obtain l1-penalized maximum likelihood estimators at each time-point, as

long as the covariances change smoothly over time. The VCVS model is based

on the neighborhood selection procedure (Meinshausen and Bühlmann (2006)),

which allows the coefficients of the precision matrix to change in a piecewise con-

stant fashion. That is, their model assumes that the network structures change

abruptly, rather than changing smoothly, by incorporating both a modified fused

LASSO penalty and a LASSO penalty.

We generate dynamic networks by assuming that the network structures have

disjoint blocks. Such networks are quite common in applications where networks

are connected within blocks, but are not associated with each other between

blocks. See Girvan and Newman (2002) and Valencia et al. (2009) for more

examples on brain and biological functions, gene expressions, and social, sports,

and computer network associations. In the following simulations, the number of

disjoint blocks is three. To generate the concentration matrix at time t, we first

create an initial matrix (At)p×p with three blocks, asA1
t

A2
t

A3
t

 ,

where the diagonal entries for each block Akt (k = 1, 2, 3) are set to one, and each

off-diagonal entry of Ak is set to fk(t)U , where U follows a Bernoulli distribution

with Pr(U = 1) = ω. The blocks Akt are exchangeable, because the partial

correlations between the nodes of networks are undirected and interchangeable.

We use ω to control the number of nonzero elements in Akt and, thus, the sparsity

within each block, such that the networks are sparse if ω is small. We consider

moderate associations between the nodes of the network, and therefore choose

ω = 0.8 in our settings. The functions fk(t), for k = 1, 2, 3, are defined as follows:

f1(t) =


5(t− 0.5)2 − 0.125, if 1 ≤ t ≤ 0.342,

0, if 0.342 < t ≤ 0.658,

−5(t− 0.5)2 + 0.125, if 0.658 < t ≤ 1,

f2(t) =


−3t+ 0.9, if 0 ≤ t ≤ 0.3,

0, if 0.3 < t ≤ 0.7,

3t− 2.1, if 0.7 < t ≤ 1,
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(a) f1(t) (b) f2(t) (c) f3(t)

Figure 2. The function f(t) at time interval t ∈ [0, 1].

Table 1. Model selection performance of the SPG method for three-block disjoint net-
works with time-points T = 50 and sample size 200, based on 100 simulation runs.

Network size C O U Sensitivity Specificity
Time per run

(seconds)
Linear p=18 0.920 0.056 0.024 0.802 0.967 27.46

p=54 0.859 0.071 0.070 0.679 0.910 467.71
p=108 0.830 0.023 0.147 0.772 0.836 3,726.48

Quadratic p=18 0.887 0.063 0.050 0.760 0.932 41.87
p=54 0.838 0.073 0.089 0.642 0.888 670.89
p=108 0.799 0.088 0.113 0.560 0.859 7,510.36

Cubic p=18 0.860 0.091 0.049 0.688 0.931 60.13
p=54 0.791 0.099 0.110 0.526 0.861 1,192.30
p=108 0.764 0.113 0.123 0.474 0.843 14,102.38

and

f3(t) =

{
−22.5(t− 0.5)2 + 0.9, if 0.3 ≤ t ≤ 0.7,

0, if o.w..

The plots of fk(t) are provided in Figure 2. After constructing a concentration

matrix, we follow a similar strategy to that in Peng et al. (2009) to ensure that

the simulated covariance matrix is positive-definite.

We first compare the performance of the local signal selection using the

linear, quadratic, and cubic spline approximations in the simulation studies. We

consider network sizes of p = 18, 54, and 108, and time length T = 50. The

sample size is chosen as n = 200.

Table 1 compares the model selection performance of the SPG method in

detecting the true time-varying signals under different orders of spline approxi-

mations. Here correct-fitting (C), over-fitting (O), and under-fitting (U) are cal-

culated as the percentage of T equally spaced time-points in the interval [0, 1],

where the true signal and nonsignal points are identified correctly, true nonsignal
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points are misclassified as signal points; and true signal points are not selected,

respectively. In addition, we calculate the sensitivity and specificity, as defined

by Peng et al. (2009). Here the sensitivity is the ratio of the number of correctly

detected signals to the number of true signals; the specificity is the ratio of the

number of correctly detected signals to the number of detected signals.

Table 1 indicates that the SPG with a linear spline tends to select correct

edges with the highest frequency, compared with the quadratic and cubic splines.

When the network size increases from 18 to 108, the percentage of selecting

correct associations decreases by about 9.8% in the linear spline approach. When

the network size is 108, the percentage of selecting correct edges based on the

SPG is about 83.0% for the linear spline approach. In addition, the overall

sensitivity and specificity rates are best when using the linear spline approach.

This simulation indicates that the SPG with a linear spline performs best in terms

of detecting local changes in network associations, compared with the quadratic

and cubic splines.

We further compare the performance of the proposed model with the SPACE,

kernel-based method (KEN), ADMM approach, TVUG model, and VCVS

method. We compare the performance of these methods under the network sizes

of 18, 54, and 108, with a sample size n = 200 and time length T = 50, based on

100 simulations. Because Table 1 indicates that the SPG method with a linear

spline outperforms the quadratic and cubic splines, we use the linear spline for

the SPG in the following comparison.

Table 2 provides the model selection performance of the SPG, ADMM,

SPACE, KEN, TVUG, and VCVS under various network sizes. The SPG and

ADMM exhibit similar performance, and are best in terms of selecting the true

model with the highest frequency when the network size is 18 or 54. When the

network size increases to 108, the rates of selecting the correct model for SPACE

and VCVS decrease to 51.2% and 66.7%, respectively. This is probably due to the

over-fitting problem. For the TVUG, the correct-fitting rate is down to 75.4%.

In comparison, the SPG still has a correct-fitting rate of 83.0%. However, neither

the ADMM nor the KEN is feasible owing to the problem of a high-dimensional

matrix inversion for the ADMM approach and a highly intensive computing pro-

cedure for the kernel method. The ADMM requires inverting large-dimensional

matrices if p is large. We tried the SparseM package in R, and the Eigen pack-

age and SparseLib++ in C++, which are designed for large-dimensional matrix

operations. However, when the dimension of a matrix is beyond that which the

package can handle, the ADMM approach becomes infeasible.
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Table 2. Model selection performance of SPG, ADMM, SPACE, KEN, and VCVS for
three-block disjoint networks with time-points T = 50 and sample size 200, based on 100
simulation runs.

Network Methods C O U Sensitivity Specificity Time per
size run (seconds)
p=18 SPG 0.920 0.056 0.024 0.802 0.967 27.46

ADMM 0.920 0.055 0.025 0.804 0.965 10.53
SPACE 0.907 0.082 0.011 0.745 0.984 1.33
KEN 0.909 0.065 0.026 0.775 0.963 109.35

TVUG 0.880 0.079 0.041 0.726 0.942 2.03
VCVS 0.901 0.052 0.047 0.796 0.937 25.49

p=54 SPG 0.859 0.071 0.070 0.679 0.910 467.71
ADMM 0.860 0.068 0.072 0.685 0.908 286.87
SPACE 0.691 0.220 0.089 0.373 0.863 36.39
KEN 0.786 0.123 0.091 0.512 0.878 14,328.74

TVUG 0.820 0.096 0.084 0.586 0.891 26.79
VCVS 0.748 0.127 0.124 0.430 0.840 123.94

p=108 SPG 0.830 0.023 0.147 0.772 0.836 3,726.48
ADMM NA NA NA NA NA NA
SPACE 0.512 0.418 0.070 0.271 0.836 349.98
KEN NA NA NA NA NA NA

TVUG 0.754 0.136 0.110 0.458 0.853 383.76
VCVS 0.667 0.220 0.113 0.337 0.831 944.03

For the ADMM, the required number of iterations is O(1/ε) (Wang and

Banerjee (2014)), given a desired accuracy ε. For the SPG, the convergence

rate is also O(1/ε) (Chen et al. (2012)). The SPACE and TVUG are basically

LASSO approaches; the computational complexity is the same as that of the

quadratic programming algorithm, which is O(n3) in the worst case, where n is

the sample size. For Kolar and Xing’s (2012) approach, the accelerated gradient

method also has a convergence rate of O(1/ε). For the kernel-based method, the

computation complexity is due to the number of iterations, because the method

only updates one parameter in each iteration. That is, if we have p nodes and

m time-points, the model has p(p− 1)/2 ∗m-dimensional parameters, where the

number of parameters increases as the number of time points increases. This

leads to an intensive calculation, because each iteration requires p(p − 1)/2 ∗m
updates.

Table 2 also provides the average computing time per simulation run for

each method. We performed our simulations on a cluster server running Linux

equipped with a 2.67 GHz CPU and 48 GB memory. The computing time in-
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Figure 3. Plot of the moving tuning parameter versus the BIC for the SPG algorithm
when n = 200, T = 50, and p = 18.

creases significantly because the dimension of the matrix operations increases ex-

ponentially from 102 to 105 when the network size increases from 18 to 108. The

SPACE and TVUG are the fastest of the methods. This is because the SPACE

does not utilize neighboring information of the time-points observed from the

same subject. In the case of TVUG, the kernel-based sample covariance matrices

can be preprocessed before minimization, and the covariance matrix is penal-

ized through its determinant rather than for each element. KEN is the slowest

of the methods, because it requires updating the neighborhood information for

each nonparametric coefficient estimation at each iteration. The computing time

ranges from 27.46 seconds to 1.04 hours per run for the SPG algorithm, and

25.49 seconds to 15.8 minutes per run for the VCVS method. We were not able

to record the times for the KEN and ADMM when p = 108 owning to feasibility

issues for these two approaches. In summary, the SPG performs best in terms of

computational feasibility and correct-fitting performance.

We also compare the number of edges correctly identified by the SPG, KEN,

SPACE, and ADMM with a moving tuning parameter. The TVUG and VCVS

are not provided here, because they require two tuning parameters, making a

comparison unsuitable. Figure 3 shows that the BIC reaches the minimum if the

tuning parameter is selected as λ = 0.145 when the network size is 18, the sample

size is 200, and number of time-points is 50. In addition, Figure 4 indicates that

both the SPG and the ADMM have the highest ratio of correctly identified edges

over total detected edges, for any given tuning parameter. For example, when the

number of total detected edges is equal to the number of true edges (1,876), the

SPG and ADMM are able to identify 1,444 and 1,441 correct edges, respectively,
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Figure 4. Correctly detected edges versus total detected edges using the four methods.

whereas the KEN detects 1,345 correct edges and the SPACE detects only 1,243

correct edges.

6. Application

In this section, we analyze data obtained from an attention deficit hyper-

activity disorder (ADHD) study. ADHD is a mental disorder found in children

and adolescents, and common symptoms include being easily distracted, impul-

siveness, and restlessness. To better understand how ADHD patients’ brains

function and react to stimuli, we focus on identifying associations and interac-

tions between different ROIs of the brain. A distinct feature of ADHD patients

is that they have high variability of brain function over time; therefore, it is sci-

entifically important to identify the dynamic changes in the ROIs of the brain in

order to locate the ADHD pathology.

The ADHD-200 samples contain fMRI data, measured repeatedly over time.

The data are available from http://www.nitrc.org/frs/?group_id=383|, which

contains resting-state fMRI (rs-fMRI) data on 78 patients (mean age = 9.0 and

s.d. = 1.12) from the Oregon Health & Science University, with 116 ROIs mea-

sured over 74 time points. Software for automated anatomical labeling was used

to label macroscopic brain structures, which are used to categorize the brain into

116 ROIs (http://neuro.imm.dtu.dk/wiki/Automated_Anatomical_Labeling|).

The patients were instructed to stay still, keep their eyes open, and focus on a

standard fixation cross in the center of the display. Participants were scanned

after a minimum washout of short-acting stimulant medications. The temporal-

resolution of fMRI data is 2,500 ms.

We apply only the SPG and SPACE methods to these data, because the

http://www.nitrc.org/frs/?group_id=383|
http://neuro.imm.dtu.dk/wiki/Automated_Anatomical_Labeling|
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Table 3. Number of associations identified by SPG and SPACE from time-points 1 to
74.

Method Number of associations from 1 to74
SPG 70 77 77 77 76 77 77 76 77 77 77 77 77 77 78 77 77 77 77

35 36 35 35 35 35 35 35 35 35 35 35 35 35 36 35 35 35
34 34 34 34 34 34 34 34 34 34 34 34 34 35 34 34 34 34

76 76 76 75 76 76 76 76 76 77 76 76 76 76 76 76 76 76 66
SPACE 3,024 3,102 3,257 2,059 2,691 2,839 3,278 2,962 3,111 3,080 2,926

2,946 2,833 3,079 3,171 3,156 3,067 2,932 3,129 2,955 2,934 3,025
1,998 3,076 3,130 3,278 3,230 2,786 3,176 2,828 2,979 2,981 3,057
3,045 2,695 3,070 2,665 3,120 3,090 2,916 3,054 2,982 2,670 3,038
2,836 2,969 3,006 3,154 2,756 3,056 3,179 3,024 2,975 2,974 3,067
3,273 1,956 3,157 2,707 3,132 3,115 2,948 2,799 2,967 3,028 3,059

2,969 3,165 3,089 3,039 3,109 2,950 3,103 2,779

ADMM and KEN approaches are not able to handle a network size of 116. The

numbers of connections between the ROIs at each time point are shown in Table

3. Note that the SPACE method identifies more than 2,000 connections at most

of the time-points. In contrast, the SPG method identifies at most 78 connections

at each time-point. The over-identifying problem of the SPACE method makes

it difficult to select any useful connections. In the following, we provide a data

analysis and a graphical illustration based on the SPG method only.

Figure 5 illustrates the associations and connections of the 116 ROIs formu-

lated as a network at time-points t = 1, 10, 20, 50, 60, and 74. Note that each

ROI in the brain is represented as a node or a vertex with either a green or a pink

color. The associations between the nodes are shown as blue lines. A pink node

represents five or more associations with other ROIs. A green node indicates

fewer than five associations with other ROIs.

We are able to identify the dynamic changes of associations between the 116

ROIs over time. Specifically, the ADHD patients experience three distinct periods

of brain activity during the test. The numbers of connections at each time-point

are shown in Table 3. At the beginning of the test, the ADHD patients’ brains

are active. However, as the test proceeds, the patients’ brains are mostly in

a resting state, because there are few connections between the 116 ROIs, with

most of the ROIs containing fewer than 36 connections. This is possibly because

that patients are less disturbed in the middle of the experiment, because there is

actually no stimulus imposed on the brain. In the latter part of the test, when

t > 57, patients’ brains again have more connections between ROIs, because

patients might anticipate something happening by the end of the experiment.
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(a) t = 1 (b) t = 10

(c) t = 20 (d) t = 50

(e) t = 60 (f) t = 74

Figure 5. Estimation of brain networks using ADHD-200 data at time-points t =
1, 10, 20, 50, 60, and 74.
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Table 4. ROIs with five or more associations identified by SPG from time-points 1 to
74.

Time(t) ROIs with 3 or more associations Total
1-19 24 38 51 53 54 59 70 75 82 85 89 100 106 113 115 15

20-55 83 112 2
58-74 5 25 32 52 63 71 76 81 82 90 95 100 110 116 14

These phenomena are also indicated in Figure 5, showing that there are more

associations between the ROIs for t = 1 and t = 10, and t = 60 and t = 74, but

fewer brain activities for t = 20 and t = 50.

Table 4 confirms our findings and indicates that there are few associations

between t = 20 and t = 55, with only two vertices having three or more con-

nections during this period. However, between time-points t = 1 and 19, there

are 15 vertices containing three or more connections between ROIs, and between

t = 56 and 74, there are 14 vertices with three or more connections. The corre-

sponding names of the ROIs with three or more connections and their gray levels

are provided in Table 5 (gray level is defined as the percentage of gray matter in

an ROI. Gray matter as distinguished from white matter, consists of cell bodies,

neuropil, glial cells, and capillaries). These findings could be helpful in studying

ADHD patients’ brain function over time, even without any stimulation.

Compared with task-based fMRI experiments, results from resting-state fMRI

studies can be more easily synthesized, because they investigate the differences

between ADHD patients’ ROIs connected in the absence of tasks. Fox and Gre-

icius (2010) and Greicius (2008) studied the connections between any two ROIs,

and used two-sample t-tests to infer whether the average strength of a connec-

tion between two ROIs is significantly different between ADHD and healthy

patients. Dickstein et al. (2006) found that several ROIs consistently under-

activated among patients with ADHD. These include portions of the frontal lobe:

anterior cingulate cortex (ACC) (regions 31 and 32 in AAL), dorsolateral pre-

frontal cortex (DLPFC), and inferior prefrontal cortex (11-16, AAL), along with

portions of the basal ganglia, thalamus, and parietal cortices. Hart et al. (2013)

discovered that portions of the frontal lobe (the inferior frontal cortex, ACC, and

supplemental motor area), basal ganglia, and thalamus are under-activated in re-

sponse to inhibition tasks among ADHD patients. Furthermore, patients with

ADHD showed under-activation in the DLPFC, parietal areas, basal ganglia, and

thalamus in response to attention tasks. In Figure 5, we highlighted the nodes in

our network graphs. Nodes 11–16 and 31, 32 are not active, except that node 32
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Table 5. ROIs with three or more associations identified by SPG.

Number Name Gray level
5 Frontal Sup Orb L 2,111

24 Frontal Sup Medial R 2,602
25 Frontal Mid Orb L 2,611
32 Cingulum Ant R 4,002
38 Hippocampus R 4,102
51 Occipital Mid L 5,201
52 Occipital Mid R 5,202
54 Occipital Inf R 5,302
59 Parietal Sup L 6,101
63 SupraMarginal L 6,211
70 Paracentral Lobule R 6,402
71 Caudate L 7,001
75 Pallidum L 7,021
76 Pallidum R 7,022
82 Temporal Sup R 8,112
83 Temporal Pole Sup L 8,121
85 Temporal Mid L 8,201
89 Temporal Inf L 8,301
90 Temporal Inf R 8,302
95 Cerebelum 3 L 9,021

100 Cerebelum 6 R 9,042
106 Cerebelum 9 R 9,072
110 Vermis 3 9,110
112 Vermis 6 9,130
113 Vermis 7 9,140
115 Vermis 9 9,160
116 Vermis 10 9,170

becomes active at the end of the test (with four connections). Thus, in general,

our analysis results are consistent with the findings in the existing literature, as

mentioned above.

Figure 6 describes the changes of associations between three ROIs (right-

middle frontal gyrus, right gyrus rectus, and right angular gyrus) at t = 1, 20,

and 60. The ROIs are indicated in as green if they are associated with each other

at certain time-points. Figure 7(a) illustrates the locations of certain ROIs in the

brain using an automated anatomical labeling (AAL) software package. Here,

the ROIs are marked using different colors. Note that most of the ROIs have

counterparts located on the opposite side of the brain, and are marked using the

same color. For example, the cyan blue color is used for both Temporal Mid L

and Temporal Mid R in Figure 7 (a). However, these counterpart ROIs are not
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Figure 6. Changes of associations between the right-middle frontal gyrus, right gyrus
rectus, and right angular gyrus over three time-points.

necessarily associated with each other. Figure 7(a) shows 50 of the 116 ROIs, and

Figure 7(b) provides a partial network of the ROIs to illustrate the associations

based on the 15 selected ROIs. The partial network is quite sparse. For a better

visualization of the associated network, Figure 7(c) also provides the associated

names of the 15 selected ROIs.

In addition, we provide an animated video (“ADHD.mp4”) to illustrate the

dynamic changes for the 116 ROIs of the brain over 74 time points. The colors

of the nodes in the video range from red to purple, blue, and green, reflecting

the level of connections with other ROIs over the entire period. The red nodes

are the most active ROIs, with the number of connections ranging from 30 to

36; the purple nodes have 18-29 connections, and the blue and green nodes have

moderate to few associations (8 to 17, and 0 to 7, respectively) with other ROIs

of the brain.

7. Discussion

The time-varying network model is powerful for identifying time-evolving

associations for brain and biological functions, gene networks, social networks,

and environmental networks over time. In this study, we develop a local varying-

coefficient model to effectively quantify and detect dynamic changes in network

associations and interactions. A distinctive feature of the proposed approach is

that we are able to incorporate local features of a varying-coefficient function.

Furthermore, we provide local signal detection and estimation simultaneously for

time-varying network data.

We propose a piecewise penalized loss function, such that the coefficients
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(a) Locations of AAL ROIs in the brain (b) The partial network of ROIs

(c) ROIs in the partial network

Figure 7. Illustration of AAL ROIs in the brain and its networks.

associated with the varying-coefficient model at the local region shrink to zero if

the magnitude of the grouped coefficients is sufficiently small. This has significant

advantages over the traditional varying-coefficient model selection approach that

does not incorporate local features, especially for time-varying network data.

This is because the network associations can be quite volatile over time, and
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local-region estimations and signal detection are of greater scientific interest than

global feature selection. Our simulations and data application to the ADHD

study indicate that the proposed method is quite effective at capturing the local

features of the time-varying network data.

However, it is challenging to develop computationally intensive algorithms

that achieve sparsity properties in estimations and signal detection at local time

intervals. The group penalization strategy employs parameters that overlap be-

tween groups, which makes the optimization process extremely challenging when

the network size is large. To overcome these difficulties, we develop a smoothing

proximal-gradient method, which does not require inverting a large-dimensional

matrix. The proposed algorithm has significant computational advantages in

terms of increased computational speed and efficiency. Most importantly, the

proposed algorithm is able to analyze a relatively large quantity of network data

within a reasonable time frame. We also compare out method with the ADMM

and kernel-based algorithms, which require inverting a large-dimensional matrix,

and therefore cannot feasibly estimate large amounts of network data.

From a theoretical viewpoint, we show that the proposed method achieves

model selection consistency in local regions and provides a uniform rate of con-

vergence for local-signal coefficient estimators. Scientifically, it is important to

detect dynamic changes in networks, because identifying the associations between

biological functions over time can help us to better understand the mechanisms

underlying network changes.

The proposed method is developed for networks with a fixed dimension. For

a high-dimensional network, we suggest first using screen methods to reduce the

dimensionality. For example, we can use a global selection method similar to

those in Xue (2009) and Xue and Qu (2012) to delete pairs of variables that are

not associated/connected in the entire region. Then, for the remaining pairs, we

can apply the proposed method to locate the time region where this association

might change.

We do not consider the longitudinal dependence structure over time in our

estimation, although this can be incorporated using either the generalized esti-

mation equation (Liang and Zeger (1986)) or the quadratic inference function

approach, as in Xue, Qu and Zhou (2010) and Wang et al. (2014). However,

incorporating the dependence structure does not effect the convergence rate, as

in Section 4, but does affect the estimation efficiency. This is left for future

research.
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Supplementary Material

The Supplementary Material includes detailed proofs of the main theorems

and necessary lemmas.

Acknowledgments

Xue’s research was supported by the Simons Foundation (F0782A) and Na-

tional Science Foundation (DMS-1812258). Qu’s research was supported by the

National Science Foundation (DMS-1308227, DMS-1415308, and DMS-1613190).

References

Boyd, S., Parikh, N., Chu, E., Peleato, B. and Eckstein, J. (2011). Distributed optimization

and statistical learning via the alternating direction method of multipliers. Foundations

and Trends in Machine Learning 3, 1–122.

Chen, Z. and Leng, C. (2016). Dynamic covariance models. Journal of the American Statistical

Association 111, 1196–1207.

Chen, X., Lin, Q., Kim, S., Carbonell, J. G. and Xing, E. P. (2012). Smoothing proximal

gradient method for general structured sparse regression. The Annals of Applied Statistics

6, 719–752.

Cheng, M.-Y., Honda, T. and Zhang, J.-T. (2016). Forward variable selection for sparse ultra-

high dimensional varying coefficient models. Journal of the American Statistical Associa-

tion 111, 1209–1221.

Chung, F. R. K. (1997). Spectral graph theory. CBMS Regional Conference Series in Mathe-

matics, No. 92.

Dickstein, S. G., Bannon, K., Castellanos, F. X. and Milham, M. P. (2006). The neural corre-

lates of attention deficit hyperactivity disorder: An ALE meta-analysis. Journal of Child

Psychology and Psychiatry 47, 1051–1062.

Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications. Chapman and

Hall, London.

Fox, M. D. and Greicius, M. (2010). Clinical applications of resting state functional connectivity.

Frontiers in Systems Neuroscience 4, 19.

Friedman, J. H., Hastie, T. and Tibshirani, R. (2007). Sparse inverse covariance estimation with

the graphical lasso. Biostatistics 9, 432–441.

Friston, K. J., Harrison, L. and Penny, W. (2003). Dynamic causal modelling. Neuroimage 19,

1273–1302.

Girvan, M. and Newman, M. E. J. (2002). Community structure in social and biological net-

works. Proceedings of the National Academy of Sciences 99, 7821–7826.

Greicius, M. (2008). Resting-state functional connectivity in neuropsychiatric disorders. Current

Opinion in Neurology 21, 424–430.

Guo, J., Levina, L., Michailidis, G. and Zhu, J. (2011). Joint estimation of multiple graphical

models. Biometrika 98, 1–15.

Hart, H., Radua, J., Nakao, T., Mataix-Cols, D. and Rubia, K. (2013). Meta-analysis of



282 XUE, SHU AND QU

functional magnetic resonance imaging studies of inhibition and attention in attention

deficit/hyperactivity disorder: Exploring task-specific, stimulant medication, and age ef-

fects. JAMA Psychiatry 70, 185–198.

Hastie, T. and Tibshirani, R. (1993). Varying-coefficient models. Journal of the Royal Statistical

Society: Series B (Statistical Methodology) 55, 757–796.

Huang, J. Z. (1998). Projection estimation in multiple regression with application to functional

ANOVA models. The Annals of Statistics 26, 242–272.

Huang, J. Z., Wu, C. O. and Zhou, L. (2002). Varying-coefficent models and basis function

approximations for the analysis of repeated measurements. Biometrika 89, 111–128.

Huang, J. Z., Wu, C. O. and Zhou, L. (2004). Polynomial spline estimation and inference for

varying coefficient models with longitudinal data. Statistica Sinica 14, 763–788.

Huang, J. Z., Zhang, L. and Zhou, L. (2007). Efficient estimation in marginal partially linear

models for longitudinal/clustered data using splines. Scandinavian Journal of Statistics

34, 451–477.

Jacob, L., Obozinski, G. and Vert, J. P. (2009). Group lasso with overlap and graph lasso. In

Proceedings of the International Conference on Machine Learning, 433–440.

Jenatton, R., Audibert, J.-Y. and Bach, F. (2011). Structured variable selection with sparsity

inducing norms. Journal of Machine Learning Research 12, 2777–2824.

Kim, W. H., Adluru, N., Chung, M. K., Charchut, S., GadElkarim, J. J., Altshuler, L., Moody,

T., Kumar, A., Singh, V. and Leow, A. D. (2013). Multi-resolutional brain network filtering

and analysis via wavelets on non-Euclidean space. In International Conference on Medical

Image Computing and Computer-Assisted Intervention, 643–651.

Kolaczyk, E. D. (2009). Statistical Analysis of Network Data: Methods and Models. New York,

Springer.

Kolar, M., Parikh, A. and Xing, E. P. (2010). On sparse nonparametric conditional covariance

selection. The 27th International Conference on Machine Learning.

Kolar, M., Song, L. and Xing, E. P. (2009). Sparsistent learning of varying-coefficient models

with structural changes. Advances in Neural Information Processing Systems 23, 1006–

1014.

Kolar, M. and Xing, E. P. (2009). Sparsistent estimation of time-varying discrete Markov ran-

dom fields. arXiv Preprint ArXiv:0907.2337.

Kolar, M. and Xing, E. P. (2011). On time varying undirected graphs. In Proceedings of the

Fourteenth International Conference on Artificial Intelligence and Statistics, 407–415.

Kolar, M. and Xing, E. P. (2012). Estimating networks with jumps. Electronic Journal of

Statistics 6, 2069–2106.

Lebre, S., Becq, J., Devaux, F., Stumpf, M. P. and Lelandais, G. (2010). Statistical inference of

the time-varying structure of gene-regulation networks. BMC Systems Biology 4, 130–145.

Liang, K. Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models.

Biometrika 73, 13–22.

Lee, H., Lee, D. S., Kang, H., Kim, B. N. and Chung, M. K. (2011). Sparse brain network

recovery under compressed sensing. IEEE Transactions on Medical Imaging 30, 1154–

1165.

Leonardi, N. and Van De Ville, D. (2011). Wavelet frames on graphs defined by fMRI functional

connectivity. In 2011 IEEE International Symposium, 2136–2139.
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