Supplementary Materials for “Monotone Nonparametric

Regression for Functional /Longitudinal Data”
Ziqi Chen'?, Qibing Gao®, Bo Fu* and Hongtu Zhu'®
YThe University of Texas MD Anderson Cancer Center,

2Central South University, 3 Nanjing Normal University, * Fudan University

> The University of North Carolina at Chapel Hill

1. Appendix

1.1 Assumptions

We present all the assumptions as follows.

(A) Kernel function.
K,.(-) is assumed to be a symmetric probability density function on

[—1,1] and K, is twice continuously differentiable on its support such that
ko(K,) < 00, /Kf(u)du < 00.

The assumptions on Ky are the same as those on K,.



(B) Time points and true functions

(B1) {s;j : ¢ =1,...,n;57 = 1,...,n;} are i.i.d. copies of a random
variable S defined on [0,1]. The density f(-) of S is bounded from below
and above with 0 < mjy < mingepq) f(s) < maxepqy f(s) < My < oo and
f(s), the second derivative of f(-), is continuous on [0, 1].

(B2) m(s), the second derivative of m(s), is continuous on [0, 1].

(B3) (s), the second derivative of o(-), is continuous on [0, 1].

(B4) {n;(-)}; are i.i.d. copies of n(-) and {e;;};; are i.i.d. copies of ¢.
Furthermore, E(¢) = 0, E(?) = 1.

(B5) X is independent of S and ¢ is independent of S and 7.

(B6) 0%v(s,t)/0s%, 0*v(s,t)/0sOt and O*y(s,t)/Ot* are continuous on

0, 1]2.

(C) Bandwidths and moments
(C1) h, = 0, hg — 0, h?/hg — 0, h,/hg — o0, hg/log(n)* = O(1),
h2h, 8 max { S niw? he, S wing(ng — 1)} — 00,
log(n)? 2 mass{SSI e, Sy (i — 1)} = 0,
> wy (g +nd fha+nd [hG + g [R){3ZT wing/he + 327 wing(n; —
H}2—o0.
(C2) E(e®) < o0, Esupypyn°(s) < oo, and En°(s) is continuous on

0, 1].



(C3)

n {Z niwih, + Z ni(n; — 1)%.2}17%} {IOg(n)/n}‘3/5 s ool
i=1 i=1

(C4) sup,,(nmax; nw;) < B < oc.

1.2 Lemmas and Proofs

Define my'(t) := N~ [ SN Kyp, (m (i/N) — u) du, and let my(t) de-
note its inverse. Let Kg5(v) := h™2K4(v/h) and Kgp(v) := h=3K4(v/h)
with K,(-) and K,4(-) being the first and second derivatives of K4(-), respec-
tively. Let (m~1)(t) := d®m~1(t) /dt2.

The following two lemmas are essentially Lemmas 2.1 and 2.2 in Dette

et al.| (2006), respectively.

Lemma 1. If function m(-) is strictly increasing, continuous and twice
continuously differentiable, then for eacht € [m(0), m(1)] with m(m='(t)) >

0, we have
mt(t) = m™H(t) + ka(Ka)h2(m=1)(t) + o(h3) + O {(Nha)™'} .

Lemma 2. If function m(-) is strictly increasing, continuous and twice

continuously differentiable, then for each s € [0, 1] with m(s) > 0, we have

mN<S) = m(s) + KQ(Kd)h?l% -+ O(h?l) + O {(th)_l} .



The next lemma gives the uniform convergence rate of m(s).

Lemma 3. Assuming that Conditions (A)-(C) hold, then we have

1
2

log(n) {Z niw?/hy + Z n;(n; — l)wf}] a.s.

This assertion can be proven following the same argument for the proof

sup |m(s) —m(s)| = O [ hZ +
s€[0,1]

of Theorem 3.1 in |Li & Hsing (2010)).

The next lemma gives the consistency properties of m; ' (s) and iz (s).

Lemma 4. Assume that Conditions (A)-(C) hold. If function m(-) is

strictly increasing,
R () = mat (1) + o0,(1)

holds uniformly for t € [m(0), m(1)] with m(m~(t)) > 0 and
my(s) = mn(s) + op(1),

holds uniformly for s € [0, 1] with m(s) > 0.

Proof. There exists a constant My such that sup, Kq(u) < M, by the as-

sumptions on the kernel function. We have the decomposition

m;l(t):Nl/_ ZKdJLd (M (i/N) —u)du = my(t)+ Ax(t),



where

An(@t)] = |V Z / (K (7 (i/N) — 1) — Kap, (m (i/N) — u)} du

_ |~ Z/ Kap, (& —u) {7 (i/N) = m (i/N)} du

= |—-N~ Zthd (Z/N) (Z/N)}'

< N— Z|thd ;—t)| sup |m(s) —m(s)|
s€[0,1]
< Mdh;1 sup |m(s) —m(s)|

s€[0,1]
in which we have used |§; —m/(i/N)| < |m(i/N)—m(i/N)| fori =1,..., N.
Define I, = h2 + [log(n){3 ", niw?/he + S0 ni(n; — 1)w?2}z. Tt follows
from Lemma [3| and Condition (C1) that sup IAL(E)] = Op(ln/ha) = 0,(1)
holds. This finishes the proof of the first equation of Lemma [4]
By using Taylor expansion of Lemma 2.2 in Dette et al. (2006) and

similar arguments, we have
my(s) —mn(s) = Op(ln/ha)

holding uniformly for s € [0, 1] with r(s) > 0, which implies the second

equation of Lemma O

Lemma 5. Suppose that all assumptions of Theorem 1 hold. Then, for a



fized interior point t € (m(0),m(1)) satisfying m(m~(t)) > 0, we have

"

e {0 - mit o)+ i) (55 ) o) | 4 Vo, (1

m

where T =T¢ 30 wing/hy + T§ 370 wing(n; — 1).

Jj= 1
Proof. Without loss of generality, we assume that the number of design

points N equals the sample size n. We use the decomposition

my(t) / Zthd (i/n) —u)du = m; ')+ An(t),

with A () = n ' S0, [* Kap, (m (i/n) — u) {i (i/n) —m (i/n)} du and
AP @) = pt Z/_ Kap, (& —w) {m(i/n) —m (i/n)}* du

= Zthd (& — ) {7 (i/n) = m(i/n)}",

where |§;—m(i/n)| < |m(i/n)—m(i/n)|,i = 1,...,n. A straight calculation

shows that

Zthd & —t){m(i/n) — (Z/”)}2

/Kmd — ) {7 () — m () Pda| {1 + 0, (1)}




By Lemma we have AP (t) = 0, (12 /hy), where I, = h2+[log(n) {3 ", niw?/h+
S na(ng — Dw?}2. Tt follows from Condition (C1) that AP(t) is of an
order smaller than the orders of the bias term in and the square root

of the variance term in , respectively.

To finish the proof of Lemma |5, we only need to prove

"

12 {A,(})(t) + h2ky(K,) (-) (m—l(t))} 4 N(0,1).

m
We have, by simple calculations,

T?L(S) _ ROSQ - Rlsl
SoSs — 57

where for £k = 0,1, 2,

3
3

n ng S/L—S :
Si= Do wi > Ko (=) (L) Ri= Y wn D Ko (=) (2= .

Thus, we can have

AU = 07 Y Kan, (i) —thZKrhr sy — ifm) ) )

f(ifn)

i,j=1

Zthd (i/n) —t) %ZKMT (sjx —1/n)

f(fn) (s — Z/n) {m(sjk) —m(i/n)}
f2(i/n) ’




AU () = —n7! Z; Kap, (m(i/n) —t)w; kz:; Ko, (856 —i/n) nj(sjk}z;;f;jk)gjk.

We have

- ol —ml)
_ jzl ]Z/ Koy () = 1) Ko, (o — ) 725 21+ 0,(1)

3 [ ot o A=) ),
x {1+ 0,(1)}.
Therefore, we have

E{AlV ()}
o /0 /0 Ko (@) =) Ko (4 —2) f(y){m§y(i6; D g1 4 o(1))
+ /01 /01 Kan, (m(z) —t) K.p, (y — ) fW)f @)y — x){m(y) — m(x)}dydiv{l +o(1)}

72(a)
C R2y(K,) (mf ;jmf > (m= ()1 + o(1)} + K2 (K. (2}”—mf> (m 1 (1)1 + o(1)}
= () () (700 + o), (1.2

(1.2) is the dominant bias term. We next calculate the variance, i.e.,

var{A{"? ()}. Note that E{AY?(£)} = 0. Define

) o= [ Patelns O o (=D g1 = )4

fork=1,..., ng, j=1,..., n. It follows that

AID (1) = —(hgh,)~ Z%Z@tsjk {1+ 0(1)}.

j=1

8



We use a change of variables

Tz m(z) —t m(y) —t

(1.3)

because of h,./hg — 00, we obtain,

s oy 2 0) 4 P ) [
{0} = b iy

For k £ 1l with k,l=1,..., n;, we have

E{0(t, 53%)0(t, Syl)}/(hth)

[ gt st

><7( y)f( )f(y)dfr:dy

_ /{/ Kan, (m (r—u) }{/ Kap, (m xv)dv}f(:r)d:r{1+o(1)}

— / / Kapn, (m(u) —t) Kgp, (m(v) —t) y(u,v)dudv{1 + o(1)}
. 1<t>> )
- L)

Thus, we have
var{ AU ()} = (hgh,)” Zvar{wjzet Sik }{1 +0o(1)}

—  (hahy)” szE{Zé) (t, 851 } {1+ 0(1)}

= FAZw n;/h. —l—FBZw nj(n; —{l1+o(1)}. (1.4)



Because of Condition (C3), all moments of {n,(-) +o(-)e;j;} up to order

four are bounded. By similar changes of variables as , we have
E{O(t, 51, )0(t, 871, )08, 872, )0(t, 352)} = O(hghy),
E{0%(t, 50, )0(t, 80,)0(t, 851s)} = O(hghy),
E{0°(t, 551, )07 (¢, sjx, ) } = O(hghy),
E{0°(t, 5j0,)0(t, 551,)} = O(hghy),

E{0*(t, sx,)} = O(hqhy),

which imply that

n 7y 4 n
SE {wj(hdhr)_l S o, sjk)} —0 {ij‘(n;* +n3/hq +n} /b + nj/hi)} :
j=1 k=1 J=1

Because we have

Zw?(n?—I—n?/hd—l—n?/h?ﬁnj/hz){z w?-nj/hr +Zw]2-nj(nj —~1)} 2 =0,
j=1 j=1 j=1

the Lyapunov condition is satisfied. Consequently, the asymptotic normal-

ity (1.1)) follows from the Lyapunov central limit theorem. m
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