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The supplement has four sections. The first section illustrates the effect of preconditioning while

the second section provides a connection between REML estimation and non-linear gamma

regression. The second section also provides new insight into the spectral decomposition of the

precision matrix. The third section provides an analysis of monthly soil moistures across North

America. Finally, the last section discusses possible extensions of the proposed method.

S1 Effect of Preconditioning

To illustrate the effect of preconditioning in Section 4, we next focus on the

eigenvalues for λ2RF
TFRT +M and (λ2I+M)−1/2(λ2RF

TFRT +M)(λ2I+

M)−1/2. In Section 6.1 we sampled y1, y2, . . . , y10 from the state-space model

(2.3)–(2.5) on a 128× 128 array at times t = 1, 2, . . . , 10 with λ0 = 1, λ1 =

2, λ2 = 0.01, and λ3 = 1. However, most available softwares such as Matlab,

Python and R failed to accurately compute the eigenvalues decomposition of

the 163840×163840 matrices as used in the simulation study in Section 6.1.
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Instead, we choose r = 64, c = 64, and s = 3, i.e., we sample y1, y2, y3 from

the state-space model (2.3)–(2.5) on a 64× 64 array at time t = 1, 2, 3 with

λ0 = 1, λ1 = 2, λ2 = 0.01, and λ3 = 1. The data generation follows the same

sampling steps in Section 6.1. The dimension of matrices λ2RF
TFRT +M

and (λ2I+M)−1/2(λ2RF
TFRT+M)(λ2I+M)−1/2 reduces to 12288×12288.

Figure S1 provides the eigenvalues plot for these matrices. For the latter,

we see that a large proportion of eigenvalues are clusters at 1 and others

are below 1 but strictly about from 0, which results in a much smaller

conditioning number compared with

λ2RF
TFRT +M

and the original A matrix. As a consequence of this preconditioning, we

get a speed up in the convergence of the Lanczos algorithm.

S2 Non-convexity in REML estimation

To characterize the non-convexity in the REML estimation, we apply cir-

culant embedding and rewrite spatial-temporal autoregressions (2.5) as

ψ1 = Gψ2s + ν1, ψi = Gψi−1 + νi, i = 2, . . . , 2s.

Let ψT

E = (ψT1 , . . . , ψ
T

2s), ψE is normally distributed with mean 0 and a

precision matrix ΓE, whose spectral decomposition takes the form of ΓE =
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Figure S1: The left plot shows the eigenvalues of λ2RF
TFRT +M . The right plot shows

eigenvalues of (λ2I +M)−1/2(λ2RF
TFRT +M)(λ2I +M)−1/2

RT

EMERE. The 2ns×2nsmatrix RE is a block diagonal matrix with all n×n

diagonal blocks equal to P . The matrix ME is block circulant matrix with

non-zero blocks ME,(i,i) (diagonal), ME,(i,i+1) (upper diagonal), ME,(i−1,i)

(lower diagonal), ME,(1,2s)(last block in first row) and ME,(2s,1)(first block

in last row) are such that

ME,(i,i) = Λ−1
1 (I + e−λ0Λ), i = 1, . . . , 2s,

ME,(1,2s) = ME,(2s,1) = −e−λ0Λ/2Λ−1
1 ,

ME,(j,j+1) = ME,(k−1,k) = −e−λ0Λ/2Λ−1
1 , j = 1, . . . , 2s− 1, k = 2, . . . , 2s.

Furthermore, symmetric permutation of rows and columns on ME results in

a block diagonal matrix with circulant blocks. Let P be the permutation
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matrix with PTP = I, then ME = PTK P. The matrix K is a block

diagonal matrix with 2s × 2s diagonal blocks Ki, i = 1, . . . , n. Each Ki

is circulant matrix with spectral decomposition denoted as Ki = ΦTTiΦ,

where Φ corresponds to the discrete Fourier transform and Ti is a diagonal

matrix with jth element

Ti,j = ρi(1+e−λ0ρi)/(1−e−λ0ρi)−2{ρie−λ0ρi/2/(1−e−λ0ρi)} cos{π(j−1)/(2s)}

(S2.1)

for i = 1, . . . , n and j = 1, . . . , 2s, where ρi is the ith diagonal element of Λ.

Let ΦE denote a 2ns× 2ns block diagonal matrix with all 2s× 2s diagonal

blocks equal to Φ. Then, K = ΦT

ET Φ, where T is a diagonal matrix with

diagonal blocks T1, . . . ,Tn. Therefore, the spectral decomposition of the

original precision matrix ΓE is

ΓE = ΦT

EPTRT

ET REPΦE. (S2.2)

Now we follow the settings in Section 3.1. Let ηT

E = (ηT

1 , . . . , η
T

2s). It is

immediate that ηE ∼ N(0,M−1
E ). Next, let n+ × 2ns matrix FE be the

column binding of F and a n+ × 2ns 0 matrix, and assume that

uE =

 y

0

 , XE =

 FE

REPΦE

 , ζE =

 ε

ηE

 , QE =

 λ3In+ 0

0 T

 ,

where uE is a (n+ +2ns) column vector and QE is a (n+ +2ns)×(n+ +2ns)

diagonal matrix. The state-space model with circulant embedding takes the
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regression form

uE = XEψE + ζE,

where ζE ∼ N(0, Q−1
E ), which is very similar to (3.1) and the state vectors

can be reestimated as

XT
EQEXEψ̂E = XT

EQEuE.

The log-residual likelihood function in Section 3.2 now can be rewritten as

2lE(λ) = log |QE| − log |XT
EQEXE| − (uE −XEψ̂E)TQE(uE −XEψ̂E).

Next, denote by HE = XE(XT

EQEXE)−1XT

EQE the hat matrix. Let δi be

the square of the ith element of the residual vector uE −XEψ̂E and let qE,i

be the ith diagonal element of QE. Take δ∗i = δi/(1− hE,i), where hE,i the

ith diagonal element of the hat matrix HE. The score equations in (3.3)

are then same as

∂lE/∂λ3 = (1/2)
2ns∑
i=1

(1− hE,i)(δ∗i − λ3)/λ2
3,

∂lE/∂λi = (1/2)

n++2ns∑
i=n++1

(∂qE,i/∂λj)(1− hE,i)(δ∗i − qE,i)/q2
E,i, j = 0, 1, 2.

These score equations coincide with estimating equations of a gamma re-

gression where the response variables are adjusted squared residuals δ∗i and

follow independent gamma distribution. Furthermore, we have inverse link,

nonlinear predictors qE,i as a non-linear function of λ0, . . ., λ3 and prior
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weights (1 − hE,i). The non-linearly in the gamma regression specifies the

exact nature of the non-convexity in the REML estimation.

S3 Analysis of soil moisture data

The Climate Prediction Center of the National Weather Service provides

monthly mean soil moistures at 0.5o × 0.5o spatial resolution for the time

period 1948 to 2014. For further references, see Fan and van den Dool

(2004). Here, we consider a subset of the data with latitudes between 40oN

and 50oN, longitudes between 95oW and 75oW, for the time period from

January, 2009 to December, 2009. The subset constitutes s = 12 months

of data, and is spatially embedded into a 40× 20 array. Due to presence of

lakes and water bodies, there are 36 array cells with no observations. Let

y1, . . . y12 be the observed monthly mean soil moisture in this subset. Next,

we consider the state-space model in (2.4)–(2.5). We consider two differ-

ent scenarios. First, the underlying state vectors ψt, t = 1, . . . , 12, follow

spatial-temporal autoregressions as in equation (2.4) at the original spatial

resolution 0.5o × 0.5o. Second, the state vectors follow spatial-temporal

autoregressions at a finer spatial resolution 0.125o × 0.125o.

In Scenario 2, we split each array cell into 4 × 4 sub-cells so that ψt,

t = 1, . . . , 12 lie on a160× 80 spatial array, and rcs = 153600. Accordingly,
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Table S1: REML estimates of precision parameters for soil moisture data under no

splitting (Scenario 1) and 4×4 splitting (Scenario 2) of the original array. The standard

errors are in parentheses.

Parameters λ0 λ1 λ2 λ3

Scenario 1
0.325 220.289 473.386 0.977

(0.005) (22.772) (258.081) (0.205)

Scenario 2
0.193 589.850 327.251 0.976

(0.003) (89.233) (35.156) (0.002)

we construct the averaging matrix Ft, each of order 12800× 764, such that

Ftψt provides the vector of average of state values at the original 0.5o×0.5o

spatial resolution. This scenario is particularly useful if we want to obtain

spatial interpolation at a finer resolution. Furthermore, finer resolution

allows us to achieve approximate inference from the limiting continuum

geostatistical model; see, e.g., Besag and Mondal (2005), and Dutta and

Mondal (2015, 2016) for examples of such inferences in spatial statistics. At

spatial resolution 0.125o×0.125o, computations are particularly challenging

as we have a 153600× 153600 non-sparse block triangular matrix A, where

each block of A is of order 12800× 12800.

Table S1 summarizes the REML estimates for standardized monthly



8 DEBASHIS1 MONDAL AND CHUNXIAO2 WANG

Figure S2: The top panel shows image plots of y9, . . . , y12. The bottom panel displays

ψ̂9, . . . , ψ̂12 at 0.125o×0.125o spatial resolution. The horizontal bar gives the gray scale.

soil moisture values. In Scenario 2, the estimate of λ0 decreases, and the

estimate of β = λ1/(4λ1 + 2λ2) increases. This explains that ψts are spa-

tially and temporally more dependent at spatial resolution 0.125o× 0.125o.

Finally, Figure S2 displays the actual observations, and the prediction for la-

tent variables for the last four months. We see that the model performs rea-

sonably well in predicting soil moisture at spatial resolution 0.125o×0.125o.

In particular, in Scenario 2, about 76% percentage of total variation is ex-

plained by spatial-temporal state-space model. The algorithms detailed in

Section 4 made these computations possible without dimension reduction

or ensembles of stochastic simulations.
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S4 Further discussion

Within the framework of the paper, we can consider further possible exten-

sions of the spate-space dynamical model in (2.4) and (2.5). For example,

we can consider higher neighborhood-order conditional autoregressions, or

fractional spatial random fields. In the former, we replace the precision

matrix C in equation (2.5) with C = J(W ) where J is a suitable positive

polynomial; see Mondal (2017) for details. In the latter, C in equation

(2.5) is replaced with Cκ, κ > 0, which corresponds to the fractional Lapla-

cian differenced random fields and approximate spatial Matérn processes.

For both the higher neighborhood-order conditional autoregressions and the

fractional Laplacian differenced random fields, M still provides the eigen-

vectors of the precision matrix of the state variables. We can thus calculate

fast matrix-vector products without storing any matrices and pursue com-

putations as presented in Section 4. If needed, we can also include covariate

information and consider mixed effect models. Furthermore, various com-

plex spatial-temporal autoregressions arise from small time-step discretiza-

tion of a wide variety of SDPEs. Sections 5 and 6 demonstrate how we

can implement these elaborate models. The computations proposed here

are better than those presented in Rue et al. (2009) and Lindgren et al.

(2011). The method presented here will have further applications in data
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assimilation and computer simulations involving discrete linearizations of

complex non-linear stochastic particle differential equations. These appli-

cations typically involve a small or moderate value of s and a large value of

n and are ideal for our matrix-free computations.

If in certain applications, both s and n are very large, one can also adopt

various strategies including parallel and distributive computing. The dis-

crete cosine transform, the matrix-vector product, the Lanczos algorithm,

the stochastic trace approximations are in fact all parallelizable; see e.g.,

Frigo and Johnson (2005) and Kim and Chronopoulos (1991) for details.

It is worthwhile to point out that the proposed computations do not

break down easily for long-range dependencies which may well be the case

for the circulant embedding approximation of covariance matrices. We are

working with precision matrices directly and not the covariances. The eigen-

values of a precision matrix typically correspond to the reciprocal of the

spectral density whereas the eigenvalues of a covariance matrix correspond

to the spectral density. Thus, precision matrices including sparse precision

matrices are well suited for long range dependencies. In Dutta and Mondal

(2016), we did extensive computations with intrinsic and long range depen-

dence Matérn and power variogram models. The results in Tables 1-5 of

Dutta and Mondal (2016) clearly show that the computations did not break
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down. Similarly in Section 6.2, we considered long-range dependencies, but

again the computations did not break down.

In this paper, we focused on spatial-temporal model where the time

dynamics follow an autoregressive structure of order 1 (i.e., ψt+1 given

ψ1, . . . , ψt depends only on ψt through the dependence matrix exp(−λ0C/2)).

Furthermore, equations (S2.1)–(S2.2) in the Supplement explicitly show

how both the temporal autoregressive structure and the spatial depen-

dence structure enter into the spectral factorization of the spatial-temporal

models. This was possible because the two-dimensional discrete cosine

transform of ψt breaks the spatial dependence structure and convert ψt

into independent components. This can be extended further to construct

spatial-temporal models where the temporal dynamics have an autoregres-

sive structure of order p or have a fractional dependence structure. The

construction of general spatial-temporal lattice systems will be pursued in

a future work.

For applications in Sections 6 and the Supplement, there might be ben-

efit in assuming that the precision parameters are random variables and

obey some probability distributions. Such ideas can be incorporated in

a Bayesian hierarchical model and one can then pursue a matrix-free sam-

pling based-method for inference. The advantage of this approach is that we
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can even allow precision parameters to vary with time. Some penalization

may also be possible. However, obtaining frequentist penalized estimation

of precision parameters presents challenges, especially when these will be

treated as random effects and are high-dimensional; see e.g., the discussion

of Firth (2006).

Next, spatial-temporal non-Gaussian state-space models and Bayesian

computations are also of interest. Examples include binomial or Poisson

models and for application see Brix and Diggle (2001). They often arise in

generalized linear model when data yt is a response to a linear predictor χt

that can be represented as

χt = Ttδ + Ftψt + εt. (S4.1)

In the above δ is covariate effect, Tt provides covariate information at time

t, ψt, Ft and εt are the same as those defined in Section 2. The model (S4.1)

generalizes the Gaussian state-space model in (2.3)–(2.5). REML analysis

does not extend to the non-Gaussian model in (S4.1) and statistical infer-

ence typically requires (Bayesian) Markov chain Monte Carlo (MCMC) and

other simulation-based computations. The best linear unbiased prediction

calculations and the method of conditional simulations presented in this pa-

per is however relevant in this context. These computations can be used to

develop various matrix-free scalable block Gibbs-Metropolis-Hastings and
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Hamiltonian MCMC computations.

Finally, there are some challenges to routinely implement the described

algorithms in R. This is because some key functions such as computing

sparse incomplete Cholesky decomposition and efficient implementation of

the two dimensional discrete cosine transformation are still missing in its

current library of sparse matrices. Nevertheless, we implemented the algo-

rithms in Matlab by modifying the prototype codes provided in the supple-

ments of the papers by Dutta and Mondal (2015, 2016). However, there is

still some way to go towards engineering implementation. Currently, work

is in progress to develop an R package by converting these prototype codes

into a set of near optimized codes in C and R so that the methods can be

applied in a robust way to various data sets.

Bibliography

Besag, J. and D. Mondal (2005). First-order intrinsic autoregressions and

the de Wijs process. Biometrika 92 (4), 909–920.

Brix, A. and P. J. Diggle (2001). Spatiotemporal prediction for log-Gaussian

Cox processes. Journal of the Royal Statistical Society: Series B (Sta-

tistical Methodology) 63 (4), 823–841.

Dutta, S. and D. Mondal (2015). An h-likelihood method for spatial mixed



14 DEBASHIS1 MONDAL AND CHUNXIAO2 WANG

linear models based on intrinsic auto-regressions. Journal of the Royal

Statistical Society: Series B (Statistical Methodology) 77 (3), 699–726.

Dutta, S. and D. Mondal (2016). REML estimation with intrinsic Matérn

dependence in the spatial linear mixed model. Electronic Journal of

Statistics 10 (2), 2856–2893.

Fan, Y. and H. van den Dool (2004). Climate prediction center global

monthly soil moisture data set at 0.5 resolution for 1948 to present.

Journal of Geophysical Research: Atmospheres 109, D10102.

Firth, D. (2006). Contribution to the discussion of “Double hierarchical

generalized linear models” by Y. Lee and J. A. Nelder. Journal of the

Royal Statistical Society Series C (Applied Statistics) 55 (2), 168–170.

Frigo, M. and S. G. Johnson (2005). The design and implementation of

FFTW3. Proceedings of the IEEE 93 (2), 216–231.

Kim, S. K. and A. T. Chronopoulos (1991). A class of lanczos-like al-

gorithms implemented on parallel computers. Parallel Computing 17,

763–778.

Lindgren, F., H. Rue, and J. Lindström (2011). An explicit link between

gaussian fields and gaussian markov random fields: the stochastic par-

tial differential equation approach. Journal of the Royal Statistical So-

ciety: Series B (Statistical Methodology) 73 (4), 423–498.



BIBLIOGRAPHY15

Mondal, D. (2017). On edge correction of conditional and intrinsic autore-

gressions. To appear in Biometrika.

Rue, H., S. Martino, and N. Chopin (2009). Approximate bayesian inference

for latent gaussian models by using integrated nested laplace approx-

imations. Journal of the royal statistical society: Series b (statistical

methodology) 71 (2), 319–392.


	Effect of Preconditioning
	Non-convexity in REML estimation
	Analysis of soil moisture data
	Further discussion

