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Supplementary Material

The supplementary material contains an extension of the methodology to cases with addi-

tional regressors, additional numerical experiments, and all the proofs.

S1 Extension to cases with additional regres-

sors

In some applications, we may want to include a finite dimensional vector

regressor Z = (Z1, . . . , Zd)
T ∈ Rd which we assume to include the constant

Z1 ≡ 1, in addition to a functional regressor X (cf. Shin, 2009; Kong et al.,

2016). Consider the model

Y = ZTγ +

∫
I

b(t)X(t)dt+ ε, (S1.1)
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where ε is independent of (Z,X) with mean zero and variance σ2 ∈ (0,∞),

and γ ∈ Rd and b ∈ L2(I) are unknown parameters. We shall discuss how to

modify our methodology to construct a confidence band for b in the model

(S1.1). In the following discussion, we will assume that E(Z2
j ) <∞ for all

j = 2, . . . , d, E(‖X‖2) <∞, and the matrix E(ZZT ) is invertible.

The idea here is to partial out the effect of Z from X. To this end, con-

sider Xc(t) = X(t)− ZTΥ(t) with Υ(t) = {E(ZZT )}−1E{ZX(t)}, and ob-

serve that Y = ZTγc+
∫
I
b(t)Xc(t)dt+ε where γc = γ+{E(ZZT )}−1E(Z〈b,X〉).

LetK denote the covariance function ofXc, namely, K(s, t) = E{Xc(s)Xc(t)}

for s, t ∈ I (note that E{Xc(t)} = 0 since Z1 ≡ 1), and assume that

the integral operator from L2(I) into itself with kernel K is injective, so

that K admits the spectral expansion K(s, t) =
∑

j κjφj(s)φj(t) where

κ1 ≥ κ2 ≥ · · · > 0 and {φj} is an orthonormal basis of L2(I). Expand-

ing b and Xc as b =
∑

j bjφj and Xc =
∑

j ξjφj with bj = 〈b, φj〉 and

ξj = 〈Xc, φj〉, we have

Y = ZTγc +
∑
j

bjξj + ε.

Importantly, each ξj and Z are uncorrelated, namely, E(ξjZ) = 0, so that

we have bj = E(ξjY )/κj as before.

To estimate b, we shall first estimateK. Let (Y1, Z1, X1), . . . , (Yn, Zn, Xn)

be independent copies of (Y, Z,X), and estimate Xc
i (t) by X̂c

i (t) = Xi(t)−
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ZT
i Υ̂(t) with

Υ̂(t) =

{
n−1

n∑
j=1

ZjZ
T
j

}−1{
n−1

n∑
j=1

ZjXj(t)

}
.

Now, we estimate K by K̂(s, t) = n−1
∑n

i=1 X̂
c
i (s)X̂

c
i (t) for s, t ∈ I, and

let K̂(s, t) =
∑

j κ̂jφ̂j(s)φ̂j(t) be the spectral expansion of K̂ where κ̂1 ≥

κ̂2 ≥ · · · ≥ 0 and {φ̂j} is an orthonormal basis of L2(I). Under this

notation, the rest of the procedure is the same as before (replace Xi −

X by X̂c
i ). Namely, estimate each bj by b̂j = n−1

∑n
i=1 Yiξ̂i,j/κ̂j with

ξ̂i,j = 〈X̂c
i , φ̂j〉, and estimate b by b̂ =

∑mn

j=1 b̂jφ̂j. In construction of

confidence bands, estimation of the error variance σ2 is needed. We pro-

pose to estimate σ2 by σ̂2 = n−1
∑n

i=1(Yi − ZT
i γ̂

c − 〈̂b, X̂c
i 〉)2, where γ̂c =

{n−1
∑n

i=1 ZiZ
T
i }−1{n−1

∑n
i=1 ZiYi}.

S2 Additional numerical experiments

In this appendix, we present additional experiments for comparison of our

band with the MS band. In the additional experiments, we assume that the

eigenfunctions φj are known to reduce the effect of estimating the eigen-

functions φj. In addition, we select m̂n according to an AIC-type criterion

suggested in Müller & Stadmüller (2005). To ensure undersmoothing, we

also examine m̂n + 1 for the cutoff level. Coverage probabilities of the ex-
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periments are plotted in Figure 1. UCPs and MCPs of both bands are

(overall) better than the previous case of unknown φj, but still our band

performs better than the MS band in terms of coverage probabilities.

S3 Proofs

S3.1 Proof of Theorem 1

We first prove the following technical lemma, which is concerned with con-

centration and anti-concentration of a weighted sum of independent χ2(1)

random variables.

Lemma 1. Let η1, . . . , ηm be independent χ2(1) random variables, and let

a1, . . . , am be nonnegative constants such that σ2
a =

∑m
j=1 a

2
j > 0.

(i) (Anti-concentration). For every z > 0 and h > 0,

P

(∣∣∣∣∣
m∑
j=1

ajηj − z

∣∣∣∣∣ ≤ h

)
≤ 2
√

2h/(σaπ),

where σa =
√
σ2
a.

(ii) (Concentration). For every c > 0 and r > 0,

P

{
m∑
j=1

ajηj ≥ (1 + c)
m∑
j=1

aj + 2(1 + c−1)amaxr

}
≤ e−r,

where amax = max1≤j≤m aj.
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Figure 1: Coverage probabilities with Gaussian noise (upper 2 rows) and χ2

noise (lower 2 rows). The black markers show coverage probabilities of our band,

and the white markers show those of the MS band with AIC. Circles correspond

to cases with cutoff level max{m̂n, 2}, triangles to those with m̂n+1. The dashed

line shows the value 1− τ1 = 0.90.
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Proof. Part (i) follows from Lemma 7.2 in Xu, Zhang & Wu (2014), and

Part (ii) is derived from the Gaussian concentration inequality. For the sake

of completeness, we provide their proofs.

Part (i). Since supz>0 P(|
∑m

j=1 ajηj−z| ≤ h) = supz>0 P(|
∑m

j=1(aj/σa)ηj−

z| ≤ h/σa) for every h > 0, it suffices to prove the desired inequality when

σa = 1. Furthermore, without loss of generality, we may assume that

a1 = max1≤j≤m aj. Let V =
∑m

j=1 ajηj. If a1 ≤ 1/2, then from the proof

of Lemma 7.2 in Xu, Zhang & Wu (2014), the density of V is bounded by

1, so that P(|V − z| ≤ h) ≤ 2h. Consider the case where a1 > 1/2, and

let V−1 =
∑m

j=2 ajηj (if m = 1, then let V−1 = 0). Since η1 and V−1 are

independent, we have for every z > 0 and h > 0,

P(|V − z| ≤ h)

= P(|η1 − (z − V−1)/a1| ≤ h/a1) ≤ P(|η1 − (z − V−1)/a1| ≤ 2h)

= E[P(|η1 − (z − V−1)/a1| ≤ 2h | V−1)] ≤ sup
z′∈R

P(|η1 − z′| ≤ 2h).

Pick any z′ ∈ R. Suppose first that z′ − 2h > 0. Since η1 ∼ χ2(1), we have

that

P(|η1 − z′| ≤ 2h)

=
√

1/(2π)

∫ z′+2h

z′−2h

w−1/2e−w/2dw ≤
√

1/(2π)

∫ z′+2h

z′−2h

w−1/2dw

=
√

2/π(
√
z′ + 2h−

√
z′ − 2h) ≤ 2

√
2h/π.
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On the other hand, if z′ − 2h ≤ 0, then P(|η1 − z′| ≤ 2h) ≤ P(η1 ≤ 4h) ≤

2
√

2h/π.

Therefore, in either case of a1 ≤ 1/2 or a1 > 1/2, we have supz>0 P(|V −

z| ≤ h) ≤ 2 max{h,
√

2h/π} for every h > 0. This inequality is meaningful

only if h ≤ 1/2 since otherwise the upper bound is larger than 1, but if

0 < h ≤ 1/2, then h ≤
√

2h/π. This completes the proof of Part (i).

Part (ii). Let Z = (Z1, . . . , Zm)T be a standard normal random vector

in Rm, and let F (Z) =
√∑m

j=1 ajZ
2
j . Then F is Lipschitz continuous with

Lipschitz constant bounded by
√
amax, and E{F (Z)} ≤

√
E{F 2(Z)} =√∑m

j=1 aj. The Gaussian concentration inequality (cf. Boucheron, Lugosi

& Massart, 2013, Theorem 5.6) then yields that

P

F (X) ≥

√√√√ m∑
j=1

aj +
√
amaxr

 ≤ e−r
2/2

for every r > 0. The desired conclusion follows from the fact that F 2(Z)

has the same distribution as
∑m

j=1 ajηj, and the simple inequality 2xy ≤

cx2 + c−1y2 for any x, y ∈ R and c > 0.

Proof of Theorem 1. We will use the following notation. Let Pε and Eε

denote the probability and expectation with respect to εi’s only. The no-

tation . signifies that the left hand side is bounded by the right-hand

side up to a constant that depends only on α, β, and C1. We first note
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that b̂ is invariant with respect to choices of signs of φ̂j’s, and so with-

out loss of generality, we may assume that
∫
I
φ̂j(t)φj(t)dt ≥ 0 for all

j = 1, 2, . . . . Lemma 4.2 in Bosq (2000) yields that supj≥1 |κ̂j −κj| ≤ ∆̂ :=

|||K̂ − K|||. Since E{‖X − E(X)‖4} = E{(
∑∞

j=1 ξ
2
j )

2} =
∑

j,k E(ξ2
j ξ

2
k) ≤∑

j,k

√
E(ξ4

j )
√

E(ξ4
k) . (

∑
j κj)

2 . 1 (which follows from the assump-

tion that E(ξ4
j ) . κ2

j), we have that ∆̂ = OP(n−1/2). Observe that for

1 ≤ j ≤ mn, |κ̂j/κj − 1| . jα|κ̂j − κj| ≤ mα
n∆̂ = oP(1), from which we

have max1≤j≤mn |κ̂j/κj − 1| = oP(1). Furthermore, observe that, whenever

1 ≤ j ≤ mn and j 6= k, |κj−κk| ≥ min{κj−1−κj, κj−κj+1} ≥ C−1
1 j−α−1 ≥

C−1
1 m−α−1

n , and since n−1/2 = o(m−α−1
n ), we have that P{|κ̂j − κk| ≥

|κj − κk|/
√

2, for all (j, k) such that 1 ≤ j ≤ mn, k 6= j} → 1. Now,

following the arguments used in Hall & Horowitz (2007, p.83-84), we have

that with probability approaching one,

(1− Cm2α+2
n ∆̂2

n)‖φ̂j − φj‖2

≤ 8
∑
k:k 6=j

(κj − κk)−2

[∫
{K̂(s, t)−K(s, t)}φj(s)φk(t)dsdt

]2

︸ ︷︷ ︸
=û2j

,

for all j such that 1 ≤ j ≤ mn. Here, C is a constant that depends only on

C1, and E(û2
j) . j2/n. Since m2α+2

n ∆̂2 = oP(1), we conclude that

‖φ̂j − φj‖2 ≤ 8{1 + oP(1)}û2
j and E(û2

j) . j2/n, (S3.2)
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where oP(1) is uniform in 1 ≤ j ≤ mn. We divide the rest of the proof into

several steps.

Step 1. In this step, we shall verify the expansion (3.5). Since {φ̂j}∞j=1

is an orthonormal basis of L2(I), expand b as b =
∑

j b̆jφ̂j with b̆j =∫
I
b(t)φ̂j(t)dt. Arguing as in the proof of Theorem 1 in Imaizumi & Kato

(2016), we have that b̂j = b̆j + n−1
∑n

i=1 εiξ̂i,j/κ̂j and
∑mn

j=1(b̆j − bj)
2 =

OP(n−1). Now, observe that

b̂− b

=
mn∑
j=1

(
n−1

n∑
i=1

εiξ̂i,j/κ̂j

)
φ̂j +

mn∑
j=1

(b̆j − bj)φ̂j +
mn∑
j=1

bj(φ̂j − φj) +
∑
j>mn

bjφj

=: In + IIn + IIIn + IVn.

Since

Eε(‖In‖2)

=
mn∑
j=1

Eε


(
n−1

n∑
i=1

εiξ̂i,j/κ̂j

)2
 = (σ2/n)

mn∑
j=1

(
n−1

n∑
i=1

ξ̂2
i,j/κ̂

2
j

)

= (σ2/n)
mn∑
j=1

κ̂−1
j = OP

(
n−1

mn∑
j=1

κ−1
j

)
= OP(mα+1

n /n),

we have that ‖In‖2 = OP(mα+1
n /n). Furthermore, observe that

‖IIn‖2 =
mn∑
j=1

(b̆j − bj)2 = OP(n−1), ‖IVn‖2 .
∑
j>mn

j−2β = O(m−2β+1
n ), and

‖IIIn‖2 . mn

mn∑
j=1

j−2β‖φ̂j − φj‖2 = OP

{
(mn/n)

mn∑
j=1

j−2β+2

}
= OP(mn/n).
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Therefore, we have

‖b̂− b‖2 = ‖In‖2 + 2〈In, IIn + IIIn + IVn〉+ ‖IIn + IIIn + IVn‖2

= ‖In‖2 +OP(mα/2+1
n /n+ n−1/2m−β+α/2+1

n +m−2β+1
n ).

This leads to the expansion (3.5).

Step 2. In this step, we shall show that for any fixed τ ∈ (0, 1),

P{n‖b̂− b‖2 ≤ σ2ĉ2
n(1− τ)} = 1− τ + o(1).

Define Rn = n(‖b̂ − b‖2 − ‖In‖2), and observe that Rn = oP(m
α+1/2
n ). So

there exists a sequence of constants δn ↓ 0 such that P(|Rn| > δnm
α+1/2
n )→

0. Now, observe that

Pε

{
n‖b̂− b‖2 ≤ σ2ĉ2

n(1− τ)
}

≤ Pε

{
n‖In‖2 ≤ σ2ĉ2

n(1− τ) + δnm
α+1/2
n

}
+ Pε(|Rn| > δnm

α+1/2
n ),

and conditionally onXn
1 , n‖In‖2 has the same distribution as σ2

∑mn

j=1 ηj/κ̂j,

where η1, . . . , ηmn are independent χ2(1) random variables independent of

Xn
1 . Lemma 1 (i) then yields that

Pε

{
n‖In‖2 ≤ σ2ĉ2

n(1− τ) + δnm
α+1/2
n

}
− (1− τ) .

{
δnm

α+1/2
n

(
∑mn

j=1 κ̂
−2
j )1/2

}1/2

.

Since
∑mn

j=1 κ̂
−2
j ≥ {1−oP(1)}

∑mn

j=1 κ
−2
j & {1−oP(1)}m2α+1

n , the right-hand

side on the above displayed equation is oP(1). This yields that Pε{n‖b̂ −
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b‖2 ≤ σ2ĉ2
n(1 − τ)} ≤ 1 − τ + oP(1). Likewise, we have Pε{n‖b̂ − b‖2 ≤

σ2ĉ2
n(1− τ)} ≥ 1− τ − oP(1), so that

Pε

{
n‖b̂− b‖2 ≤ σ2ĉ2

n(1− τ)
}

= 1− τ + oP(1).

Finally, Fubini’s theorem and the dominated convergence theorem yield

that P{n‖b̂− b‖2 ≤ σ2ĉ2
n(1− τ)} = 1− τ + o(1).

Step 3. In this step, we shall show that σ̂2 = σ2 + oP(m
−1/2
n ). Observe

that

Yi − Y −
mn∑
j=1

b̂j ξ̂i,j =

∫
I

{Xi(t)−X(t)}{b(t)− b̂(t)}dt+ εi − ε,

where ε = n−1
∑n

i=1 εi, so that

σ̂2 = n−1

n∑
i=1

(εi − ε)2 + 2

∫
I

[
n−1

n∑
i=1

(εi − ε){Xi(t)−X(t)}

]
{b(t)− b̂(t)}dt

+ n−1

n∑
i=1

[∫
I

{Xi(t)−X(t)}{b(t)− b̂(t)}dt
]2

From Step 1, it is seen that ‖b̂−b‖2 = OP(mα+1
n /n), so that by the Cauchy-

Schwarz inequality, the second and third terms on the right-hand side are

OP(m
α/2+1/2
n /n) andOP(mα+1

n /n), respectively. Furthermore, n−1
∑n

i=1(εi−

ε)2 = σ2 +OP(n−1/2). The conclusion of this step follows from the fact that

n−1/2 +mα+1
n /n = o(m

−1/2
n ).

Step 4. In this step, we shall show that for any fixed τ ∈ (0, 1),

P{n‖b̂− b‖2 ≤ σ̂2ĉ2
n(1− τ)} = 1− τ + o(1). (S3.3)
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By Lemma 1 (ii), we have ĉ2
n(1−τ) .

∑mn

j=1 κ̂
−1
j +κ̂−1

mn
log(1/τ) = OP(mα+1

n ),

so that

σ̂2ĉ2
n(1− τ) = σ2ĉ2

n(1− τ) + (σ̂2− σ2)ĉ2
n(1− τ) = σ2ĉ2

n(1− τ) + oP(mα+1/2
n ).

Hence, arguing as in Step 2, we obtain the result (S3.3).

In view of the discussion in Section 2.2, the result (2.9) follows directly

from (S3.3). Finally, the width of the band Ĉ is . σ̂ĉn(1 − τ1)/
√
n =

OP(
√
mα+1
n /n). This completes the proof.

S3.2 Proof of Theorem 2

The proof of Theorem 2theorem.2 relies on the following multi-dimensional

version of the Berry-Esseen bound, due to Bentkus (2005). Let ‖ ·‖2 denote

the standard Euclidean norm.

Theorem 1 (Bentkus (2005)). Let W1, . . . ,Wn be independent random vec-

tors in Rm with mean zero, and suppose that the covariance matrix Σ of

Sn =
∑n

i=1 Wi is invertible. Then there exists a universal constant c > 0

such that

sup
A∈C
|P(Sn ∈ A)− γΣ(A)| ≤ cm1/4

n∑
i=1

E(‖Σ−1/2Wi‖3
2),

where C is the class of all Borel measurable convex sets in Rm, and γΣ =

N(0,Σ).
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We will also use the following well-known inequality.

Lemma 2. Let ζ1, . . . , ζn be random variables such that E(|ζi|r) < ∞ for

all i = 1, . . . , n for some r ≥ 1. Then,

E

(
max
1≤i≤n

|ζi|
)
≤ n1/r max

1≤i≤n
{E(|ζi|r)}1/r.

This inequality follows from the observation that

E( max
1≤i≤n

|ζi|) ≤ {E( max
1≤i≤n

|ζi|r)}1/r ≤

{
n∑
i=1

E(|ζi|r)

}1/r

≤ n1/r max
1≤i≤n

{E(|ζi|r)}1/r.

We are now in position to prove Theorem 2theorem.2.

Proof of Theorem 2. We follow the notation used in the proof of Theorem

1theorem.1. In view of the proof of Theorem 1theorem.1, it suffices to show

that

sup
z>0

∣∣∣∣∣Pε(n‖In‖2/σ2 ≤ z)− Pη

(
mn∑
j=1

ηj/κ̂j ≤ z

)∣∣∣∣∣ P→ 0,

where Pη denotes the probability with respect to ηj’s only. To this end,

let Wi = {εiξ̂i,j/(σ
√
nκ̂j)}mn

j=1 for i = 1, . . . , n. Observe that the covariance

matrix of
∑n

i=1 Wi conditionally on Xn
1 is Λn = diag(1/κ̂1, . . . , 1/κ̂mn), and

n‖In‖2/σ2 = ‖
∑n

i=1Wi‖2
2. For z > 0, let Bz = {w ∈ Rmn : ‖w‖2

2 ≤ z},

and observe that Pη(
∑mn

j=1 ηj/κ̂j ≤ z) = γΛn(Bz). Therefore, the problem

reduces to proving that

sup
z>0

∣∣∣∣∣Pε

(
n∑
i=1

Wi ∈ Bz

)
− γΛn(Bz)

∣∣∣∣∣ P→ 0,
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but in view of Theorem 1, the left hand side is . m
1/4
n

∑n
i=1 Eε(‖Λ−1/2

n Wi‖3
2).

Observe that

n∑
i=1

Eε(‖Λ−1/2
n Wi‖3

2) = E(|ε/σ|3)n−3/2

n∑
i=1

(
mn∑
j=1

ξ̂2
i,j/κ̂j

)3/2

≤ O(mnn
−1/2) max

1≤i≤n

(
mn∑
j=1

ξ̂2
i,j/κ̂j

)1/2

≤ OP(mnn
−1/2) max

1≤i≤n

(
mn∑
j=1

ξ̂2
i,j/κj

)1/2

.

We have to bound max1≤i≤n
∑mn

j=1 ξ̂
2
i,j/κj, to which end it is without loss

of generality to assume that E{X(t)} = 0 for all t ∈ I. Let ξi,j =∫
I
Xi(t)φj(t)dt, and observe that

ξ̂i,j =

∫
I

{Xi(t)−X(t)}φ̂j(t)dt = ξi,j+

∫
I

Xi(t){φ̂j(t)−φj(t)}dt−
∫
I

X(t)φ̂j(t)dt.

From this decomposition, we have

max
1≤i≤n

mn∑
j=1

ξ̂2
i,j/κj

. max
1≤i≤n

mn∑
j=1

ξ2
i,j/κj +

(
max
1≤i≤n

‖Xi‖2

) mn∑
j=1

κ−1
j ‖φ̂j − φj‖2 + ‖X‖2

mn∑
j=1

κ−1
j

= max
1≤i≤n

mn∑
j=1

ξ2
i,j/κj +

(
max
1≤i≤n

‖Xi‖2

)
OP

(
mn∑
j=1

jα+2/n

)
+OP(mα+1

n /n)

= max
1≤i≤n

mn∑
j=1

ξ2
i,j/κj +

(
max
1≤i≤n

‖Xi‖2

)
OP(mα+3

n /n) +OP(mα+1
n /n),

where we have used (S3.2). Condition (3.13) together with Lemma 2 yield

that

E

(
max
1≤i≤n

mn∑
j=1

ξ2
i,j/κj

)
≤

mn∑
j=1

E

{
max
1≤i≤n

(ξ2
i,j/κj)

}
≤ mnn

1/qC
1/q
1 .
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Furthermore, a repeated application of Hölder’s inequality yields that

E{(ξ2
j1
/κj1) · · · (ξ2

jq/κjq)} ≤ [E{(ξ2
j1
/κj1)

q}]1/q · · · [E{(ξ2
jq/κjq)

q}]1/q ≤ C1,

from which we have

E(‖X‖2q)

= E

{(
∞∑
j=1

ξ2
j

)q}
=

∞∑
j1=1

· · ·
∞∑
jq=1

(κj1 · · ·κjq)E{(ξ2
j1
/κj1) · · · (ξ2

jq/κjq)}

≤ C1

∞∑
j1=1

· · ·
∞∑
jq=1

κj1 · · ·κjq = C1

(
∞∑
j=1

κj

)q

<∞.

This implies that E(max1≤i≤n ‖Xi‖2) = O(n1/q) by Lemma 2. Therefore,

we conclude that max1≤i≤n
∑mn

j=1 ξ̂
2
i,j/κj = OP(mnn

1/q), so that

m1/4
n

n∑
i=1

Eε(‖Λ−1/2
n Wi‖3

2) = OP{m7/4
n /n1/2−1/(2q)},

which is oP(1) under Condition (3.14). This completes the proof.
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