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A Outline of the proofs

To facilitate the proof, we introduce the following notations. Denote Bn = Bp the
estimator from tensor GEE and By = Bp, the true values. Recall that the CP decom-
position ensures that B is uniquely determined by 3, € IR Yi-174, Denote J (B) =
[J1, Jo,---,Jp], and note that under tensor structure 96;;/08 = J(8) " vecX;;. Recall

the generalized estimating equations can be written as
$2(Ba) = Y T (Bu)vecXi AP (B R A (B,)(Yi — pa(Bn)).
i=1

The proof of Lemmal[l]is similar to that of Theorem 1] by dropping the terms involving
the working correlation matrix and thus is omitted here.

The main technique to prove Theorem [1|is the sufficient condition for existence and
consistency of a root of equations proposed in |Ortega and Rheinboldt| (2000)), which also
has been used in [Portnoy| (1984)) for M-estimator and in Wang] (2011) for GEE estimator
with vector covariates. To check this condition, Lemmas are proposed. Lemma
B.1| provides a useful approximation to the generalized estimating equations s, (8p)
based on the condition (A4) of the working correlation matrix. This facilitates the
later evaluations of the moments of the generalized estimating equations by treating the
intra-subject correlation as known. Lemma further establishes the approximation of
the negative gradients of the generalized estimating equations. Lemma [B.3| refines this
approximation of the negative gradients at one more step, providing the foundations for

the Talyor expansion of generalized estimating equations at the true value.
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Based on Theorem 1], the proof of Theorem [2]is obtained by evaluating the covariance
matrix of the generalized estimating equations and applying the Lindeberg-Feller central
limit theorem.

The proof of Theorem [3] follows two steps. We show that BIC neither overestimates
nor underestimates the true rank. By combing these results, the rank selection consis-
tency is established.

Theorem [4] is proved by construction. We show that the oracle estimator is an

approximated solution to the SCAD regularized tensor GEE.

B Technical lemmas

Lemma B.1. Under conditions (A1)-(A8), ||8.(Bo) — $.(Bo)|| = O,(1), where 5,(Bo)
is 8n(Bo) with R replaced by R.

Proof of Lemma[B.1. Consider
ZJT BavecX; A (B.)RA; V2 (B,)(Y: — pilBn))-
=1

Denote by {r;;}1<ij<m the (i,j)-th element of R~* — R'. By condition (A4), r;; =
O,(n~1/2). By direct calculation,

$n(Bo) — $n(Bo)

= Z Z Z 7”] mgz] BO €ik /60) (/BO)VeCXij
i=1 j=1 k=1

=303 [ o (Bo)ean(B0) T (Bo)vee Xy
j=1 k=1 i=1

where €.(80) = ;' (Bo) (Yir — 1ix(Bo)). By condition (A5), (A6) and (A7),

E (|1 0 (Bo)ein(B0) " (Bo)vee X, | = O(n).

[

Therefore, || 327, 04 (Bo)ein(Bo) I (Bo)veeXij|| = O,(v/n). Since r;; = O,(n~?), the
proof is complete. O]

Consider D,(8,) = —05,(8n)/0Bn, Dn(Bn) = —05,(8,)/98,. Lemma [B.2] estab-

lishes the approximation of the negative gradients of the estimating equations.
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Lemma B.2. Under conditions (A1)-(A8), for some constant 2\ > 0,

sup | maX[ n(Bn) — Du(Bn)]] = Op(nl/z)v
[|1Bn—Bol|<An—1/2
sup ‘ mln[ 2 (Bn) — Da(Bn)l] = Op<nl/2)'

1Bn—Bol|<An=1/2

Proof of Lemma[B.4 Similar to Lemma C.1. of Wang (2011)), it can be shown by direct

calculation that

D,.(8.) = Du1(Bn) + Dya(Br) + Dys(Bn) + Dra(Bn),

where

D, Z J(B,)vecX; A (8, R A2 (8,)vec" X, T (By),

=1

Z T (Bu)vec X, Al (B,)R A *(8,)Ci(B.) Fi(B)vec X, T (B,).
D,s(8.) = — Z T (B.)vecX; A (B,) Fi(B,) K (B,)vec X (B,),

D,u(B,) = ZZ&A” (Bu) R AT (B,)(Y; — pa(B) H(B,),

=1 j5=1

with

Ci(Ba) = diag (Vi = pa(Bo). Yoo = 1im(B)).
Fi(8,) = diag (7 (B.), ... u2)(8,))
K(8,) = ding (R A7 (8, (Y, — m(8,))).

e; the length m vector with j-th element 1 and 0 everywhere else, and H(83,) is defined
in condition (AS).
Let D,;(8,) be defined the same as ﬁm(ﬁn), but with R replaced by }Al, for i =

1,...,4. It is sufficient to prove

sup sup [ [Dyi(B1) — Dui(Ba)]ul = Op(n'/?)

1Bn—Bol|<An=1/2 u

for any w € IR®Xi=1 74 guch that |[u||=1,i=1,...,4.
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For i = 1, we have

4" [Dy1(81) — Do (Ba)]ul

n

<nllul 2R = Bl Ama(Ai(82) - A (071 D0 T (B)vee Xivee Xi (8,) ).

=1

By condition (A3), (A4) and (A7), [u"[D,1(8,) — D1 (8,)]u| = O,(n'/?) on the set N,

For i = 2, we have
[u'[Dy2(Bn) — bn2(ﬁn)]u’

<5l S T (B X, AV (B, (Bt — Bt AL (B,)Ca (B,)F(B, e X, (B,

+ %W Z T (Ba)vecX; A% (By) (R — R7) AT (8,)Cia(Bo) Fi(Bn) vec X J (B )ul
£ + Jn?
where we decompose C;(8,) as Ci1(8,) + Cia(Bo),
Cir(Bn) = ding (11 (Bo) = ia(Bu), - im (Bo) = piim (Bn) )
Cia(Bo) = diag (¥ — 1 (Bo). - Vi = p1in(B0) ).

By the Cauchy-Schwarz inequality,

2/ <3 [T (B)vee X, A (B,) (R — R A;*(8,)Ca (B,) Fi(By)|
=1
X ||vec" X J (B ul|
. T 2 1/2 —3/2 -1 »—1
<3 lvee XaT (Bl x Amax (A2(82)) % Awax (A72(8,)) % IR = R[5
=1
Or-1 @3 _
x max |; (Bn)| x max | (Bn)| < |18, — Boll
< f: Ilvec™ X, T (B)ul]? x || R~ — R7Y||r x M‘;(ﬁn)
i=1 min; ; 05 (Bn)
xmax | (Bn)| % max 117 (Bo)] % (18, — Boll

§||UH2 X Amax(ZJT(,Bn)VeCXiVGCTXiJ(/Bn)> X ||1/%_1 _ R_IHF X w
=1

1), 7 2) /3
x max|aiy) (B,)| % max |3 (B,)] % (18, = Bl



Tensor GEE Supplement

where 3, is between 3, and By. Under conditions (A3), (A4) and (A7), it can be easily
seen now J,; < CnO,(n~Y2)0,(n"Y2) = 0,(1).

For Jng, recall that 6ij(;80) = O'igl(,ﬂo)(}/;j - Mz](ﬂO)) By condition (A5),

sup E[J2%] = sup Tr[E(J)yJn2)]

n m

= sup > Y > EleenTr [JT(an)vecXiAi/Q(ﬁn)(R—l —~ R YA;”?(B.)e;el Fi(B,)

Bre€Nn 21 =1 k=1

-vec" X, J (Bo)J " (By)vec Xierel A, (B, (R — R AY*(8,)vec" X, J (8,)

< sup O3S (el F(Bu)ve X T (B,)]| - 1T (B.)vec X Fy (B, e

Bn€Nn 2y j21 k=1
[ef A2 (B,) (R — R A2 (B,)vec X J (B,
[T (B vee Xi AP (B,) (R — R A;Y2(B,)ey .
By conditions (A4), (A6) and (A7), supg cn, E[J32,] < Cn||[R"'=R7'||2 = O(1). Using

similar decompositions, we can verify the results for D,3 and D,4, which completes the

proof. O]

Based on Lemma we can further approximate f)n(ﬁn) by f)nl(ﬁn), which are
easier to evaluate. Lemma provides this approximation.

Lemma B.3. Under conditions (A1)-(A8), for some constant A\ > 0 and w € IRF =i Pa
such that ||ul| = 1,

sup  sup|u'[Dy(B,) — Dua(Bu)]ul = Op(n'/?), (S1)
1Ba—Boll=an=1/2 u
sup  sup [u"[Du1(Bo) — Dua(Ba)]ul = O,(n"?). (52)

1Bn—Boll=An=1/2 w

Proof of Lemma[B.5. To prove , it is sufficient to show, for i = 2, 3,4,

sup sup [u" Dy (B )u| = 0, (n'/?).
1Bn—Boll=An=1/2 w

For D,5(3,), if suffices to show

sup |u' Z JT(,Bn)vecXiAil/Q(,Bn)R_lAi_S/Q(,Bn)Ci(/6’,1)Fi(ﬂn)vecTXiJ(,3n)u| = 0,(n'"?).
i=1

BrnEN,



Tensor GEE Supplement

By using the decomposition C;(8,) as C;1(3,)+Ci2(Bo), the proof is similar to the proof
for |u"[D2(8,) — Dng(,ﬁn)]u| in Lemma We can prove the results for D3 (Bo) and
D,..(Bo) in the same way, which completes the proof of .
To prove , note that
" [D1(Bo) = D (Bn)]u|
<[uT[T7(Bo) = TT(Ba)lvec X, A]*(B,) R A (B,)vee X, (B,)ul

+ [uT T (Bo)vec XA} (Bo) — AL (B.)| R AL (Bu)vec X (B, )ul

o+ [u 7 (Bo)vee X AL (B0) RTA (Bo) — A (B)]vec X, (B,)ul

+ [uT T (Bo)vec X; A2 (By) R ALY (Bo)vec X[ (Bo) — T (8y)]ul.

The rest of the proof is similar to the proof of Lemma and thus is omitted here. [J

C Proof of theorems

Proof of Theorem [1. Wang (2011 gave a sufficient condition for the existence and con-

sistency of a sequence of roots 3n of 8,(B8r) = 0, namely,

P ( sup  (Bn = Bo)"sn(Bn) < 0) >1—¢ (S3)

[1Bn—Bol|=Ln~1/2
with Ve > 0 and a constant A > 0. To verify (S3)), the main idea is to approximate
Sn(Brn) by 8,(8,), whose moments are easier to evaluate.

By direct calculation,

(Bn — Bo)"8n(Bn) = (B — Bo) 8n(Bo) — (Bn — Bo) " Du(B;)(Bn — Bo) £ It + o,
where 32 is between 3, and By. Further decompose Iy into
Ii = (Bn — B0)"84(Bo) + (Bn — Bo)"[51(B0) — 3n(Bo)] = L1t + Lo
Note that I,;; < An~Y2.||5,(8y)||. By condition (A6),
E[||3.(80)| ]

:E{ S e R A (By)vec X T (B,) T (Ba)vec X, Al 2([30)1%—162-}

i=1

<Y Te(ve X, (8,77 (8,)vec X,
=1

—C Xn: f: Ty (VecTXZ-jJ(ﬁn)JT(,Bn)VecXZ-J) = O(n)

i=1 j=1
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for some constant C' > 0. This implies that I,,;; = An~Y20,(n'/?) = AO,(1). For I,
by Lemma |B.1],

Lz < 1By — Boll - [182(Bo) — 8n(Bo)[| = 0,(1).
Therefore, I,,; is dominated in probability by I,,11.

For 1,5 ,we decompose it into

A
=Ino1 + In2o.

By Lemma it can be easily checked that I,92 = 0,(1). Next, for T2,

Lot = = (Bn — Bo) Dy (Bo) (Bn — Bo)
— (Bn = B0) " [Dn1(8;) — Dna(80)1(Bn — Bo)
— (B — B0)"[Dn(8;) — Dua(B,))(Bn — Bo)
= PR A o

D,
D,

We next show that I,5; is dominated in probability by I',,. Note that by conditions
(A3), (A4) and (A7),

Lo == (B [Z T (B)vee X AL (B,) BT AL (B,)vec X T (8,)] (8. — Bo)

< —n 'A% min A (Ai(B,)) mm(ZJT (Bn)vecX;vec' X; J(,@'n)> mm(R_l)

=1

S - CAQ?

for some constant C' > 0. By Lemma [B.3] it can be checked directly that both I2,, and
I3, are o,(1).

Therefore, with high probability, the sign of (8, — Bo)"sn(3,) is determined by
I11 + Iy and is negative for sufficiently large A\, which completes the proof. O

Proof of Theorem [9. We first show that the normalized §,(3) has an asymptotic normal
distribution. That is, for any b € IREXd=1 P4 such that ||| = 1,

b M, '*(80)3.(80) — N(0,1), (S4)
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where M,,(8,) = Var(5,(8)).
Denote b" M, "/*(80)3,(80) = S, Zni, where

Zyi = b M2 (B) 7 (Bo)vec X, AL (By) R ei(Bo),

and €(80) = A;*(B0)(Y; — pi(Bo)). Note that E(Z,;) = 0, Var(X", Zn) = 1. To
prove (S4)), it suffices to check the Lyapunov condition. That is, for some ¢ > 0,

ZE(;ZM\M> -0,

i=1

as n — o0o. By Cauchy-Schwarz inequality,
272” S )\maX(R_Q))\maX(Ai(IBO)) | |€i (/60) | |2’7nia

where 7,; = bTMflﬂ(ﬁ )JT(,BO)VGCX vec" X, J(Bo) M, 1/2(ﬁ())b. To evaluate max; <<y, Vnis
we need to evaluate A_L (M, (Bo)). Note that

min (

" M,,(8y)b >Cb' ( Xn: JT(ﬂo)vecXivecTXiJ(ﬁo)) b

i=1

>C i i T (Bo)vee X vee X, (By) )
=1

which implies )\min< y (50)) > >\mm<2?:1 JT(,BO)VGCXiVeCTXZ’J(ﬁO)). By condition
(A3), Al (M, (Bo)) = O(n™!) and hence max<i<, Yni = 0(1).
It follows that, for any ¢ > 0,

SE(1Za*) < ZE(Ol*é%ﬁ/ﬂ\emomz%)
=1 ]

< C(max i) 6/2 ZbT 1/2 0)J T (Bo)vec X, vec' X J(ﬁo) 1/2(50)b

1<i<n

< C(max ;)2 max ZJ (Bo)vec X, vec' X; J(BO)) mm( ~n(BO))

1<i<n
=1

which completes the proof of (S4).



Tensor GEE Supplement

To prove Theorem , note that because s,(3,) = 0, we have s,,(3y) = Dn(ﬁ;‘;)(ﬁn -
Bo), for some B; between Bn and By. Hence,

M, 2(80)8,(Bo)
=b"M,2(B) Dus (B)(Br ~ Bo)
+b" M, *(Bo)[D.(B;) — Dnl(ﬁﬁ)](ﬁn — Bo)
+ b M, %(80)[8.(80) — 5.(B0)]
=Jn1 + Jn2(B;,) + Jn3(Bo)-

By , it is sufficient to prove that both sup g, _g,j<an-1/2 [Jn2(Bn)| and | Ju3(Bo)| are
op(1).

For J,3, recall that ||8,(80) — $.(80)|| = O,(1) from Lemma[B.1] Using the previous
result that AL (M,(By)) = O(n™), it can be easily checked that J2; = 0,(1) and hence

| Jns| = 0p(1).
For J,», we have

sup |Jn2(/6n)|

|1Brn—Bol|<An=1/2

< sup M,fl/z(ﬁo)[Dn(,@n) (Bn)](ﬁ — Bo)

1Bn—Boll<Ln=1/2

+ sup b M, *(80)[D0(B,) — D (8.))(Br — Bo)

[1Bn—Bo||<An=1/2

+ sup b" M *(80) (D1 (1) — Dt (80))(Br — Bo)

[1Bn—Bo||<An—1/2

é nl + In? + In3~

Notice that

Lt < C % Pnax(D(Br) — Du(B))] % A2 (M (Bo)) % |1B,, — Boll.

p/n
fore, I,1 = O,(y/npn)O(n~Y?)0,(v/p/n) = O,(pn~?) = 0,(1). Similarly, by Lemma
, we have I,» = 0,(1) and I,3 = 0,(1). Therefore J,; has the same asymptotic
distribution as in , which completes the proof. O

By Lemma 3, we have sup, - ﬁo\|<A\/_| Amax (Dn(Bn) — Du(Br))| = Op(/7py). There-
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Proof of Theorem[3 Denote the rank-R tensor GEE estimator by B . For Gaussian

response, the BIC can be written as

BIC(R Zn:i Vi — (Xij, Br))* + MR
=1 j:l

where \,, = O(logn).
The proof follows two steps: we need show that BIC neither overestimate nor under-
estimate the rank. By combining these two results, the consistency of BIC is established.
Step 1: To show BIC does not overestimate the rank, it suffices to show that for
any R > Ry,

Pr (BIC(R) — BIC(R,) > 0)
=Pr ({(B(g)) — {(B(gy)) + (R — Ro)A\, > 0) — 1

as n — 0o, where

n m n m

(Bu) = > (Y= (X, Bw))* = D> > (Vi — 05(Bw))*

i=1 j=1 i=1 j=1
by the identity link function.

Denote B(R) = V€C<.§(R)1, - 7E(R)D), where [[E(R)l, o ,ﬁ(R)D]] is the CP-decomposition
of B(r). That is, B is the vector of free parameters in Bg). By previous theorems,
there exists one tensor GEE estimator 3z that is a root-n consistent estimator for B g
for R > Ry, where By is simply B, with additional 0’s in ranks Ro + 1,..., R and
Bo(ry) = Bo- 1f we can show that ((Bg)) — {(B(r,)) = Op(1), the proof is completed by
the fact that R — Ry > 0 and )\, is a diverging sequence. Notice that by subtracting the

same term,

UBw) — U(Bry) = ((Br) = (By)) = ((B(ry) — L(By)).
Denote L(B) = E[¢(B)], where the expectation is taken w.r.t. Y;;. We have
(B xs)) = U(Bo)
:(L(B(RQ)> — L(By)) + (5(3(30)) —U(By)) — (L(B(Ro)) — L(By)).

Therefore, it suffices to show that

(LBry) — L(By)) = O,(1), (S5)

~

(€B(ryy) = £(Bo)) = (L(Bryy) — L(Bo)) = Op(1). (S6)
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To show 1’ by the definition of 3,, we have 0L(8)/03| B3-g, = 0. By Taylor
-0
expansion at 3, and Proposition 2.3 in Zhou et al.| (2013),

L(B(ry) — L(Bo) = Cnl|B(ry) — Bol "1 (Bo)||Bry) — Boll

where I(By) is determined by some 3, € {3 : ||8—8,|| < An~'/?} via CP-decomposition.
Under the condition (A3*), this term is O,(1).
Next we bound the term in . By direct algebra, it can be shown that

(5(3 RO)) (ﬁo)) (L (/@(Ro)) — L(By))

_ZZ Ro) 0 50 ZZE Ro - za(ﬁo))
i=1 j=1 i=1 j=1

_ZZ i = B[Yi)) (0B ) — 0:5(Bo))
=1 j5=1

by the condition that 06;;/08 are uniformly bounded, |6;; (B(RO)) — 0:;(B,)| < Cn~Y2
for some constant C'. Denote g;(u) = Y7, (Y;; —E[Y;;])Cn~'/2. Notice that {g;(u)},
are independent mean zero random variables. Under the condition that Var(Y;) has
bounded eigenvalues, it can be easily verified that Var(g;(u)) = O(n™'). Therefore,
S i) = Oy(1). i

Using similar techniques, it can be shown that £(8g)) — €(Byr)) = Op(1) for R >
Ry as well. Therefore, for R > Ry, the term BIC(R) — BIC(Ry) is asymptotically
dominated by (R — Rp)log(n), which is always positive.

Step 2: To show BIC does not underestimate the rank, it suffices to show that for
any R < Ry,

Pr (BIC(R) — BIC(Ry) > 0)
=Pr (((Br)) — {(B(ry)) + (R — Ro)A\, > 0) = 1

as n — oo. Notice that n™'(R — Rg)\, — 0 as n — oo. Therefore, if we can show that
n~{{(Br))—(Br,)} > ¢ for some constant ¢ > 0, the proof is completed. Intuitively,
we need to show that for any underestimated estimator, the increase of the population

loss function to the one with correct rank is bounded away from zero.
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Notice that

~

UBr) — UBo)
=(L(Br) — L(Bo)) + (L(Br) — €(Bo)) — (L(Bry) — L(Bo)).

Denote B(R)’RO the augmented vector of B(R) with 0’s at the those rank R+ 1,..., Ry so
that it has the same length as 3,. By similar arguments in Step 1, for R < Ry

L(B(ry) — L(By) = Cnl|Bry.my — Bol " I(Bo)1Bry.ry — Boll

Notice that there exists some positive constant ¢; such that HB( R).Ro — Boll = c1. This
is true because the elements of 3, at those locations for rank R + 1,..., Ry cannot be
all zeros. By the condition (A3*) that the smallest eigenvalue of I(B) is bounded away
from 0, it can be seen that nil{L(B(R)) — L(By)} > co for some constant ¢y > 0 that
does not depend on R.

Similar as in Step 1,
(€Br) — £(Bo)) — (L(Biry) — L(Byo))
=2 > (Y — EYy]) (05 (Bmy) — 0:5(B0))-

By the condition that the first derivative of 6;;(8) is bounded away from infinity, X,; are
uniformly bounded and p is fixed, Var[(Y;; — E[Y};]) (91‘]‘(3(3)) —0;;(By))] = O(1). There-
fore 377, 327 (Vi —EIYy]) (65 (Biy) — 015(Bo)) = Op(/) and 0= {(E(B(y) (o)) —
(L(Br)) — L(By))} = 0p(1). Combined with previous result, n='{{(Br)) — {(B(ry)}
dominates the term in n~'{{(8r)) — £(8,) }for sufficiently large n and is bounded away
from 0, which completes the proof. O

Proof of Theorem[4. Write the SCAD regularized tensor GEE as

n'80(B,) = 4. (18,]) x sign(B,,),

where q,, (18,]) = (¢,,(|Bn1l), - - 7an(|BnRZdD:1pd|>>T is a RY1, pa-dimensional vector
of the subgradients of SCAD penalty, ¢,,(3) = p», {1{|5|§pn} + (Ao — 18]+ /(N — 1)1{|5|>pn}},
sign(B3,,) = (sign(Bu1), - - - ,sign(ﬁnRzgzlpd))T, the symbol “x” denotes component-wise
product, f3,,; is the jth element of 3,,, j =1,... ,deDzl pa. Write the support of 3, as

j:{jﬁoj>0}
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We prove the theorem by showing the the oracle estimator, BS, is an approximated
solution to the regularized tensor GEE. Denote the jth element of B: as szj By the
definition of the oracle estimator, AT?J- =0 for j ¢ J. Similar as the definition in Wang
et al| (2012)), an approximated solution to the regularized tensor GEE, Bn, is defined to
satisfy

Pr (1" 50(8,) = 45, (1B )sien(B,y) = 0, j € T) > 1, (S7)
Pr (In™"501(8,) = oo (1Bui)sign(Bu)| < pu/logn, j& T) =1 (S§)

The reason for this definition of the approximated solution is that the regularized tensor
GEE involves non-smooth points, so the exact solution may not exist. It suffices to show
that BS satisfies both and .

For , note that by consistency in Theorem , ||ng — Bosll = Op(n~1/?), where
BSJ = { A,?j . j € J} and similarly for B, ;. For fixed p, there exists some constant
C' > 0 that min; Sy; > C. Therefore, Pr(min;c s B,% > (C) — 1asn — oco. By the
fact p, = o(1), Pr(minjcs B,?] > Ap,) — 1. By the definition of the oracle estimator,
Snj (,@S) = 0. Therefore holds for the oracle estimator.

For , by the definition of the oracl(e) estimator, ¢, (| B\% )sign(Agj) =0forjé¢J.
Therefore, it suffices to show Pr <|sn](Bn)| < np,/logn, j ¢ j) — 1. Note that

~0 ~0 ~0 ~0
150 (B, )] < 150(B,) — 305 (B,)| + 154(8,,)|- By Lemma |B.1| and the consistency of the

oracle estimator established in Theorem

~0.  _ =0
s Pr(ug (B) = 50y (B1)| > npa/Togn) =0,
Therefore, we only need to verify Pr (\57” (BS)| > np,/logn, j ¢ .7> — 0.
Consider the Taylor expansion
N ~0 ~0 e
50;(B,) = 3nj(By) + V;(B8y) (B, — Bo) + (B, — By) ‘p](ﬁn)(ﬁn —Bo).
where V;(8) = 05,;(8)/08, ¥;(8) = 0%5,;(8)/0B08", B;, is between BS and 3.
We first show Pr <]§nj(,60)\ > np,/logn, j ¢ j) — 0. Note that

n

n_lgnj(ﬁo) = 7’L_1 Z E-JFJT(/Bo)VeCXZ‘Ai/Z(Bo)R_lei(IBO) £ n_l Z Zz

i=1 i=1
Note that Z; are independent random variables with mean zero. By condition (A4)-
(A7), it can be directly verified that E(]Z;|') < I!C2C; for some constants C; > 0 and
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Cy > 0. Therefore, Pr <]n_1§m~(ﬁ0)] > p,/ log n) < exp[—Cnp? /(logn)?] — 0 is implied
by the Bernstein’s inequality for any j ¢ J. By the condition that np?/(logn)? — oo,
the proof of this step is completed.

We next show Pr <|Vj(ﬂ0)(,CA"LOL — Bo)| > npn/logn, j ¢ j) — 0. Similar to the
decomposition used in the proof of Lemma we write V;(8y) = Yo Dyjm(Bo),
where D, j,(8,) = e}lz)nm(,ﬁo) for m =1,...,4. By condition (A4)-(A8), the elements
of N7 D, (B,) are uniformly bounded by a positive constant for j ¢ J and m =
1,...,4. Therefore, |V; (50)(32 — By)| = 0,(n*'?) = 0,(np,/logn), which compiles the
proof.

Finally, we show Pr (|(8, — 80)"%;(8;)(B, — B)| > npu/logn, j ¢ J) — 0. It
can be directly verified that the elements of n~'4p;(8;) are uniformly bounded by a

n

~0 ~0
positive constant. Therefore, (8, — By)";(8,)(8, — By)| = Op(1), which completes

n

the proof. O
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