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Abstract: Longitudinal neuroimaging studies are becoming increasingly prevalent,

where brain images are collected on multiple subjects at multiple time points. Anal-

yses of such data are scientifically important, but also challenging. Brain images are

in the form of multidimensional arrays, or tensors, which are characterized by both

ultrahigh dimensionality and a complex structure. Longitudinally repeated images

and induced temporal correlations add a further layer of complexity. Despite some

recent efforts, there exist very few solutions for longitudinal imaging analyses. In

response to the increasing need to analyze longitudinal imaging data, we propose

several tensor generalized estimating equations (GEEs). The proposed GEE ap-

proach accounts for intra-subject correlation, and an imposed low-rank structure

on the coefficient tensor effectively reduces the dimensionality. We also propose

a scalable estimation algorithm, establish the asymptotic properties of the solu-

tion to the tensor GEEs, and investigate sparsity regularization for the purpose of

region selection. We demonstrate the proposed method using simulations and by

analyzing a real data set from the Alzheimer’s Disease Neuroimaging Initiative.

Key words and phrases: Generalized estimating equations, longitudinal imaging,

low rank tensor decomposition, magnetic resonance imaging, multidimensional ar-
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1. Introduction

Longitudinal neuroimaging studies are becoming increasingly prevalent, in

which brain images are collected for multiple subjects, each at multiple time

points (Zhang, Shen and Alzheimer’s Disease Neuroimaging Initiative (2012)).

Analyses of such images help us to understand the progression of a disease,

predict the onset of disorders, and identify those regions of the brain relevant
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to a disease. Our motivating example is a study from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI). Alzheimer’s disease (AD) is a progressive and

irreversible neurodegenerative disorder and the leading form of dementia in el-

derly subjects. The data set contains data on 88 subjects with mild cognitive

impairment (MCI), a prodromal stage of AD. Each subject underwent a mag-

netic resonance imaging (MRI) scan at the following five time points: baseline,

6-month, 12-month, 18-month, and 24-month. After preprocessing, each MRI

image is represented by a 32× 32× 32 three-dimensional array. For each subject

at each visit, researchers also recorded a cognitive score based on a mini-mental

state examination (MMSE), which measures the disease progression. Here, re-

searchers are interested in the association between MCI/AD and structural brain

atrophy, as reflected by MRI. MRI images are equally important in terms of pre-

dicting AD/MCI, because an accurate diagnosis is critical for timely therapy and

potentially delaying the disease (Zhang et al. (2011)).

Longitudinal imaging analyses are particularly challenging. Each image is in

the form of a multidimensional array, or tensor, which is characterized by both

ultrahigh dimensionality and a complex structure. For instance, a 32 × 32 × 32

MRI image involves 323 = 32, 768 parameters, and there are rarely more than

a few hundred subjects. A single image includes complex spatial correlations

between its voxels. Thus, naively converting an array into a vector results in ex-

tremely high dimensionality and destroys all inherent spatial information. More-

over, repeated images of the same subject are temporally correlated. Despite the

increasing availability of longitudinal imaging data, there is a relative paucity of

effective solutions, and thus, a substantial demand for the systematic develop-

ment of new longitudinal imaging analysis methods.

Therefore, we propose tensor generalized estimating equations (GEEs) for

the analysis of longitudinal imaging data. Our proposed approach consists of

two key components: a low-rank tensor decomposition and the GEEs. We im-

pose a low-rank structure on the coefficient array in a GEE that implicitly utilizes

the spatial structure of the image predictor. At the same time, it substantially

reduces the number of free parameters, making subsequent estimations and in-

ferences feasible. We incorporate this structure into the estimating equations

to accommodate the longitudinal correlations in the data. Within this frame-

work, we develop a scalable algorithm for solving the complicated tensor GEEs.

We also examine the L1 and smoothly clipped absolute deviation (SCAD) type

penalized tensor GEEs to identify brain subregions that are highly relevant to

the clinical outcome. This region-selection process is itself of vital scientific in-
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terest, and corresponds to the extensively studied variable-selection problem in

classical regressions with vector-valued predictors. Furthermore, we establish the

asymptotic properties of the solution to the tensor GEEs. In particular, we show

that the tensor GEE estimator inherits the robustness feature of the classical

GEE estimator in the sense that the estimate is consistent, even if the working

correlation structure is misspecified.

Our proposed approach is related to, but also clearly distinct from existing

works on longitudinal data and tensor data analyses. We briefly review the lit-

erature here, and point out the differences and our contributions. First, there

is a long list of studies on longitudinal data analyses (Liang and Zeger (1986);

Prentice and Zhao (1991); Li (1997); Qu, Lindsay and Li (2000); Xie and Yang

(2003); Balan and Schiopu-Kratina (2005); Song et al. (2009); Wang (2011)) and

variable selection for longitudinal models (Pan (2001); Fu (2003); Fan and Li

(2004); Ni, Zhang and Zhang (2010); Xue, Qu and Zhou (2010); Wang, Zhou

and Qu (2012)). However, these methods employ a vector of covariates, whereas

in our problem, covariates take the form of a multidimensional array. Second,

most existing neuroimaging studies utilize only baseline imaging data, ignoring

information from the follow-up time points. However, recent studies have begun

using longitudinal images for individual-based classification (Misra, Fan and Da-

vatzikos (2009); Davatzikos et al. (2009); McEvoy et al. (2011); Hinrichs et al.

(2011)) and cognitive score predictions (Zhang, Shen and Alzheimer’s Disease

Neuroimaging Initiative (2012)). These solutions extract a vector of summary

features from the longitudinal images. In contrast, we jointly model all voxels

of an image and include a tensor predictor. Other studies regress longitudinal

images on a vector of predictors (Skup, Zhu and Zhang (2012); Li et al. (2013)).

However, these works differ from ours in that they treat an image as a response

rather than as a predictor. Third, tensor decompositions have been applied in

statistical models (Zhou, Li and Zhu (2013); Zhou and Li (2014); Aston, Pigoli

and Tavakoli (2017); Sun et al. (2017); Raskutti and Yuan (2016)). Our proposed

approach is similar in that we impose a low-rank structure on the tensor GEE co-

efficient for effective dimension reduction. In that sense, our work generalizes the

classical GEE from a vector to a tensor predictor. Furthermore, we generalize the

tensor predictor regression (Zhou, Li and Zhu (2013); Raskutti and Yuan (2016))

from independent imaging data to longitudinal image data. Such a generaliza-

tion may seem straightforward conceptually, but is far from trivial technically.

To the best of our knowledge, our work is the first to systematically address a

longitudinal imaging predictor in a regression context. As such, it offers both a
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timely response to the increasing demand for longitudinal neuroimaging, as well

as a useful addition to the methodologies used in longitudinal data analyses.

The rest of the article is organized as follows. Section 2 proposes the ten-

sor GEE, along with its estimation and regularization. Section 3 discusses the

asymptotic properties of the solution to the tensor GEEs. Sections 4 and 5

present the simulations and real-data analysis, respectively. Section 6 concludes

with a discussion. The Supplementary Material contains all the technical proofs.

2. Methodology

2.1. Tensor GEEs

Suppose there are n training subjects, and for the i-th subject, there are

observations over mi time points. For simplicity, we assume mi = m and that

the time points are the same for all subjects. The observed data consist of

{(Yij ,Xij), i = 1, . . . , n, j = 1, . . . ,m}, where Yij denotes the target response and

Xij ∈ IRp1×···×pD is a D-dimensional array representing the image. Note that our

model naturally incorporates an additional vector of covariates, Z. However, we

choose to drop this term to simplify the presentation. Write Yi = (Yi1, . . . , Yim)T.

A key attribute of longitudinal data is that the observations from different sub-

jects are commonly viewed as independent, whereas those from the same subject

are correlated. That is, the intra-subject covariance matrix Var(Yi) ∈ IRm×m is

not diagonal, but does have some structure.

The GEE method has been widely employed for analyzing correlated longi-

tudinal data since the pioneering work of Liang and Zeger (1986). The method

requires the specification of the first two moments of the conditional distribution

of the response, given the covariates µij = E(Yij |Xij) and σ2ij = Var(Yij |Xij).

Following Liang and Zeger (1986), we assume Yij is from an exponential fam-

ily with a canonical link. Then, µij(B) = µ(θij) and σ2ij(B) = φµ(1)(θij), for

i = 1, . . . , n, j = 1, . . . ,m, where µ(·) is a differentiable canonical link function,

µ(1)(·) is its first derivative, θij is the linear systematic part, and φ is an over-

dispersion parameter. Here, we simply set φ = 1. The extension to a general φ

is straightforward. The systematic part θij is associated with the covariates via

the equation,

θij = 〈B,Xij〉, (2.1)

where B is the coefficient tensor of the same size as X that captures the effects of

every array element of X on Y . The inner product 〈B,Xij〉 = 〈vecB, vecXij〉,
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where the vec(B) operator stacks the entries of a tensor B into a column vector.

The GEE estimator of B is then defined as the solution to
n∑
i=1

∂µi(B)

∂vec(B)
V −1i

{
Yi − µi(B)

}
= 0, (2.2)

where Yi = (Yi1, . . . , Yim)T, µi(B) = [µi1(B), . . . , µim(B)]T, and Vi = cov(Yi) is

the response covariance matrix of the i-th subject. The first component in (2.2)

is the derivative of µi(B) with respect to the vector vec(B) ∈ IR
∏

d pd . As such, in

total, there are
∏
d pd estimating equations to solve in (2.2). For a regression with

image covariates, this dimension is prohibitively high, and usually far exceeds the

sample size. For instance, a 32× 32× 32 MRI image predictor requires that we

solve 323 = 327, 68 equations, resulting in no unique solution when the sample

comprises only tens or hundreds of observations. Thus, it becomes crucial that

we reduce the number of estimating equations.

Therefore, we impose a low-rank structure on the coefficient array B. More

specifically, we assume B in model (2.1) follows a canonical polyadic (CP) de-

composition structure (Kolda and Bader (2009)),

B =

R∑
r=1

β
(r)
1 ◦ · · · ◦ β

(r)
D , (2.3)

where β
(r)
d ∈ IRpd , for d = 1, . . . , D, r = 1, . . . , R, are column vectors, ◦ denotes

the outer product, and B cannot be written as a sum of less than R outer

products. The decomposition (2.3) is often represented by the shorthand B =

JB1, . . . ,BDK, where Bd = [β
(1)
d , . . . ,β

(R)
d ] ∈ IRpd×R. Under this structure, the

systematic part in (2.1) becomes

θij =

〈
R∑
r=1

β
(r)
1 ◦ · · · ◦ β

(r)
D ,Xij

〉
= 〈(BD � · · · �B1)1R, vecXij〉.

We then propose the tensor GEE estimator of B, which is defined as the

solution to
n∑
i=1

∂µi(B)

∂βB

V −1i

{
Yi − µi(B)

}
= 0, (2.4)

where βB = vec(B1, . . . ,BD), and the subscript B indicates that β is constructed

from the CP decomposition of a given coefficient tensor B = JB1, . . . ,BDK.
Introducing the CP structure into the GEE has two important implications.

First, compared with the classical GEE (2.2), the derivative in (2.4) is now with

respect to βB ∈ IRR
∑

d pd . Consequently, the number of estimating equations
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is reduced from the exponential order
∏
d pd to the linear order R

∑
d pd. This

substantial reduction in dimensionality is the key to enabling effective estimations

and inferences under a limited sample size. Second, under this structure, any

two elements βi1...id and βj1...jd in B share common parameters if id = jd for any

d = 1, . . . , D. As a result, the coefficients are correlated if they share the same

spatial locations along any one of the tensor modes. This implicitly incorporates

the spatial structure of the tensor coefficient.

In (2.4), the true intra-subject covariance structure Vi is usually unknown,

in practice. The classical GEE adopts a working covariance matrix, specified

through a working correlation matrix R. That is, Vi = A
1/2
i (B)RA

1/2
i (B),

where Ai(B) is an m×m diagonal matrix, with σ2ij(B) on the diagonal, and R

is the m×m working intra-subject correlation matrix. Commonly used correla-

tion structures include independence, autocorrelation (AR), compound symme-

try, and unstructured correlation, among others. The correlation matrix R may

involve additional parameters, which can be estimated using a residual-based

moment method.

By adopting this working correlation idea and explicitly evaluating the deriva-

tive in (2.4), we arrive at a formal definition of the tensor GEE estimator, which

is the solution to (B̂) of the following estimating equations:
n∑
i=1

[J1, J2, . . . ,JD]Tvec(Xi)A
1/2
i (B)R̂−1A

−1/2
i (B)

{
Yi − µi(B)

}
= 0, (2.5)

where R̂ is an estimated correlation matrix, vec(Xi) = (vec(Xi1), . . . , vec(Xim))

is a
∏D
d=1 pd ×m matrix, and Jd is the

∏D
d=1 pd × Rpd Jacobian matrix of the

form Πd× [(BD�· · ·�Bd+1�Bd−1�· · ·�B1)⊗Ipd ], where Πd is the (
∏D
d=1 pd)-

by-(
∏D
d=1 pd) permutation matrix that reorders vecB(d) to obtain vecB; that is,

vecB = Πd×vecB(d). Note that µ(1)(θij) is canceled out by the diagonals on the

matrix A−1i owing to the property of the canonical link. For ease of presentation,

we denote the left-hand side of equation (2.5) as s(B), and write the tensor GEE

(2.5) as s(B) = 0.

2.2. Estimation and rank selection

Solving the tensor GEE (2.5) with respect to B directly can be computation-

ally intensive, because the mean of the response given the covariates is nonlinear

in the parameters and the Jacobian matrices J1, . . . ,JD depend on the unknown

parameters. Thus, we propose a block-relaxation algorithm to solve the sub-GEE

for each B1, . . . ,BD iteratively, keeping all other components fixed. Specifically,
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when updating Bd ∈ IRpd×R, the systematic part θij(B) can be rewritten as

θij(B) = 〈B,Xij〉 = 〈Bd,Xij(d)(BD � · · · �Bd+1 �Bd−1 � · · · �B1)〉,

where Xij(d) is the mode-d matricization of the tensor Xij , which flattens Xij

into a pd×
∏
d′ 6=d pd′ matrix, such that the (k1, . . . , kD) element ofXij maps to the

(kd, l) element of the matrix Xij(d), where l = 1+
∑

d′ 6=d(kd′−1)
∏
d′′<d′,d′′ 6=d pd′′ ,

and � denotes the Khatri–Rao product (Rao and Mitra (1971)). Consequently,

the systematic part θij(B) becomes linear in Bd. The Jacobian matrix Jd is free

of Bd and depends on the covariates and the fixed parameters only. Then, each

step reduces to a standard GEE problem with Rpd parameters, which can be

solved using standard statistical software. As in the case of the classical GEE,

our tensor GEE potentially has multiple roots. Our numerical simulations show

that different starting values often lead to the same solution.

A problem of practical importance is choosing the rank R for the coefficient

array B in its CP decomposition. This can be viewed as a model selection

problem. Pan (2001) proposed a quasi-likelihood independence model criterion

for the classical GEE model selection, which evaluates the likelihood under the

independent working correlation assumption. In our tensor GEE setup, we adopt

a similar criterion,

BIC(R) = −2`(B̂(R); Im) + log(n)pe, (2.6)

where `(B̂(R); Im) is the log-likelihood evaluated at the tensor GEE estimator

B̂(R), with a working rank R and the independent working correlation structure

Im. For simplicity, we call this criterion the Bayesian information criterion (BIC),

because the term log(n) is used. Because the CP decomposition itself is not

unique, but can be made so under some minor conditions (Zhou, Li and Zhu

(2013)), the actual number of estimating equations, or the effective number of

parameters, is of the form pe = R(p1 + p2)−R2 for D = 2, and pe = R(
∑

d pd −
D + 1) for D > 2. We choose R that minimizes this criterion among a series of

working ranks.

2.3. Regularization for region selection

Selecting brain subregions that are highly relevant to the disease outcome

is of vital scientific interest. This allows researchers to concentrate on brain

subregions, thus improving their understanding of the disease pathology, and is

useful for hypothesis generation and validation. In our setup, region selection

translates to a sparse estimation of the elements of the coefficient tensor B, and

is analogous to the extensively studied variable selection problem in classical
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vector-valued regressions. We adopt the L1-type regularization to achieve this

goal. Specifically, we consider the following regularized tensor GEE:

n−1s(B)−



∂β(1)
11
Pλ(|β(1)11 |, ρn)

...

∂β(r)
di
Pλ(|β(r)di |, ρn)

...

∂β(R)
DpD

Pλ(|β(R)
DpD
|, ρn)


= 0, (2.7)

where Pλ(|β|, ρn) is a scalar penalty function, ρn is the penalty tuning parameter,

λ is an index for the penalty family, and ∂βPλ(|β|, ρn) is the subgradient with

respect to the argument β. We consider two specific penalty functions: the lasso

(Tibshirani (1996)), in which Pλ(|β|, ρn) = ρn|β| with λ = 1, and the SCAD (Fan

and Li (2001)), in which ∂/∂|β|Pλ(|β|, ρn) = ρn{1{|β|≤ρn} + (λρn − |β|)+/(λ− 1)

1{|β|>ρn}}, for λ > 2.

Owing to the separability of the parameters in the regularization term, the

alternating updating strategy still applies. When updating Bd, we solve the

penalized sub-GEE

n−1sd(Bd)−



∂β(1)
d1
Pλ(|β(1)d1 |, ρn)

...

∂β(r)
di
Pλ(|β(r)di |, ρn)

...

∂β(R)
dpd

Pλ(|β(R)
dpD
|, ρn)


= 0, (2.8)

where sd is the sub-estimation equation for block Bd. There are Rpd equations

to solve in this step. The anti-derivative of sd is recognized as the loss of an

Aitken linear model with a block-diagonal covariance matrix. Thus, after a lin-

ear transformation of Yi and using the working design matrix, the solution to

(2.8) is the same as the minimizer of a regular penalized weighted least squares

problem, for which many software packages exist. The fitting procedure reduces

to alternating the penalized weighted least squares.

Note that, in addition to the region selection, regularization is useful for sta-

bilizing the estimates, handling small-n-large-p, and incorporating prior subject

knowledge. The above regularization paradigm can be extended to incorporate

other forms of regularization, such as the L2-type ridge regularization, or different

penalties along different modes of the tensor coefficient.
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3. Theory

Next, we study the asymptotic properties of the tensor GEE estimator. We

first note that there are two specifications, or potential misspecifications, in the

tensor GEE. The first is the working correlation structure. We show that the ten-

sor GEE estimator remains consistent, even if the working correlation structure

is misspecified. This is an analogous result to that of the classical GEE. Thus, we

extend the work of Xie and Yang (2003), Balan and Schiopu-Kratina (2005), and

Wang (2011). We achieve this by assuming the rank is fixed and known. This is

similar in spirit to the classical GEE setup, where a linear model is imposed and

the rank is, in effect, set to one. The second specification is the working rank of

the CP decomposition in the tensor GEE. We show that for the normal linear

model, the rank selected by the BIC under an independent correlation structure

is consistent, even if this structure might have been misspecified. This justifies

the BIC criterion (2.6) and, to some extent, the asymptotic investigation under

a known rank. Note that the assumption of a known rank is common in the-

oretical analyses of estimators based on low-rank structures (Zhou, Li and Zhu

(2013); Sun and Li (2017)). Furthermore, our asymptotic study is carried out in

the classical sense that the number of parameters (dimension) is fixed and the

sample size goes to infinity. We believe such a fixed-dimension asymptotic study

is useful because it reveals the basic properties and offers a statistical guarantee

for our tensor GEE estimator. More importantly, it establishes that both our

tensor estimator and the rank estimator remain consistent under a potentially

incorrect working correlation structure. In principle, we can also consider the

scenario where the dimension diverges to infinity along with the sample size. In

this regard, we have obtained preliminary asymptotic results, but leave a com-

prehensive treatment of the tensor GEE under a diverging dimension for future

research.

3.1. Regularity conditions

We begin with a list of regularity conditions for the asymptotics of the tensor

GEE with a fixed number of parameters. Let ||x|| denote the Euclidean norm of

a vector x and let ||X||F be the Frobenius norm of a matrix X. Denote Nn as

the neighborhood of the true tensor coefficient {B : ||βB −βB0
|| ≤ 4n−1/2} for

some constant 4 > 0.

(A1) For some constant c1 > 0, ||Xij ||F ≤ c1, for i = 1, . . . , n, j = 1, . . . ,m.

(A2) The true valueB0 of the unknown parameter lies in the interior of a compact
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parameter space B and follows the rank-R CP structure defined in (2.3).

(A3) Let I(B) = n−1
∑n

i=1[J1, J2, . . . ,JD]TvecXivecTXi[J1, J2, . . . ,JD]. There

exist two constants 0 < c2 < c3, such that c2 ≤ λmin(I(B)) ≤ λmax(I(B)) ≤
c3 over the set Nn, where λmin and λmax are the smallest and largest eigen-

values, respectively. In addition, I(B) has a constant rank on the same

set.

(A4) The true intra-subject correlation matrix R0 has eigenvalues bounded by

zero and infinity. There exists a positive definite matrix R̃ with eigenvalues

bounded away from zero and infinity, such that ‖R̂−1−R̃−1‖F = Op(n
−1/2),

where R̂ is an estimator of the correlation matrix.

(A5) For δ > 0 and c4 > 0, E(‖A−1/2i (B0)(Yi − µi(B0))‖)2+δ ≤ c4, for all

1 ≤ i ≤ n.

(A6) For some constant c5 > 0, ||∂θij(βB)/∂βB|| ≤ c5, for i = 1, . . . , n, j =

1, . . . ,m.

(A7) Denote by µ(k)(θij), for i = 1, . . . , n, j = 1, . . . ,m, and k = 2, 3, the k-th

derivative of µ(θij). For some positive constants c6 < c7 and c8, we have

c6 < |µ(1)(θij)| < c7 and |µ(k)(θij)| < c8 over the set Nn.

(A8) Denote by Hij(B) = (∂2θij(βB))/(∂βB∂β
T

B). That is, Hij(B) is the

Hessian matrix of the linear systematic part θij . There exist two pos-

itive constants c9 < c10, such that, for i = 1, . . . , n and j = 1, . . . ,m,

c9 ≤ λmin(Hij(B)) ≤ λmax(Hij(B)) ≤ c10 over the set Nn.

A few remarks are in order. Conditions (A2) and (A3) are required for

the model identifiability of the tensor GEE (Zhou, Li and Zhu (2013)). Note

that the matrix I(B) in (A3) is an R
∑D

d=1 pd × R
∑D

d=1 pd matrix. Thus, (A3)

is much weaker than the nonsingularity condition on the design matrix if we

directly vectorize the tensor covariate. Condition (A4) is commonly imposed in

the GEE literature. It requires only that R̂ be a consistent estimator of some

R̃, in the sense that ‖R̂−1 − R̃−1‖F = Op(n
−1/2). Here, R̃ needs to be well

behaved in that it is positive definite with eigenvalues bounded by zero and

infinity, but R̃ does not have to be the true intra-subject correlation R0. This

condition essentially leads to the robust feature in Theorem 1 that the tensor GEE

estimate is consistent, even if the working correlation structure is misspecified.

Condition (A5) regulates the tail behavior of the residuals so that the noise
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does not accumulate too fast, and we employ the Lindeberg–Feller central limit

theorem to control the asymptotic behavior of the residuals. Condition (A6)

states that the gradients of the systematic part are well defined. Condition

(A7) concerns the canonical link and holds, in general, for common exponential

families, such as the binomial and Poisson distributions. Condition (A8) ensures

that the Hessian matrix H(B) of the linear systematic part, which is highly

sparse, is well behaved in the neighborhood of the true value.

3.2. Consistency and asymptotic normality

Before we turn to the asymptotics of the tensor GEE estimator, we address

two components involved in the estimating equations: the initial estimator and

the correlation estimator. Recall that the tensor GEE estimator B̂ is obtained

by solving the equations
n∑
i=1

[J1, . . . ,JD]TvecXiA
1/2
i (B)R̂−1A

−1/2
i (B)

{
Yi − µi(B)

}
= 0,

where R̂ is any estimator of the intra-subject correlation matrix satisfying con-

dition (A4). Note that R̂ is often obtained using the residual-based moment

method, which in turn requires an initial estimator of B0. Next, we examine

several frequently used estimators of B̂ and R̂.

A customary initial estimator of B̂ in the GEE literature assumes an inde-

pendent working correlation. That is, we ignore potential intra-subject correla-

tion, in which case, the corresponding tensor GEE becomes
n∑
i=1

[J1, . . . ,JD]TvecXi

{
Yi − µi(B)

}
= 0.

Denoting the equations as sinit(B) = 0 and the solution as B̂init, the following

lemma shows that this is a consistent estimator of the true B0.

Lemma 1. Under conditions (A1)–(A3) and (A5)–(A8), there exists a root B̂init

of the equations sinit(B) = 0 satisfying

‖βB̂init
− βB0

‖ = Op(n
−1/2).

Here, βB = vec(B1, . . . ,BD), which is constructed based on the CP decom-

position of a given tensor B = JB1, . . . ,BDK, as defined previously. Given a

consistent initial estimator of B0, there exist multiple choices for the working

correlation structure, such as autocorrelation, compound symmetry, and the non-

parametric structure (Balan and Schiopu-Kratina (2005)). We investigate these

choices in Sections 4 and 5.
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Next, we establish the consistency and asymptotic normality of the tensor

GEE estimator defined in (2.5).

Theorem 1. Under conditions (A1)–(A8), there exists a root B̂ of the equations

s(B) = 0 satisfying

‖βB̂ − βB0
‖ = Op(n

−1/2).

The key point in Theorem 1, as implied by condition (A4), is that the consistency

of the tensor coefficient estimator B̂ does not require the estimated working

correlation R̂ to be a consistent estimator of the true correlation R0. As a result,

we are protected from a potential misspecification of the intra-subject correlation

structure. This robustness feature is well known for GEE estimators with vector-

valued covariates. Theorem 1 confirms and extends this result to the tensor GEE

case with image covariates. Note that although the asymptotics of the classical

GEE can, in principle, be generalized to tensor data by directly vectorizing the

coefficient array, the ultrahigh dimensionality of the parameters would make the

regularity conditions, such as (A3), unrealistic. In contrast, Theorem 1 ensures

the consistency and robustness properties by taking into account the structural

information of the tensor coefficient under the GEE framework. Under condition

(A4), we define

M̃n(B)=

n∑
i=1

[J1, . . . ,JD]TvecXiA
1/2
i (B)R̃−1R0R̃

−1A
1/2
i (B)vecTXi[J1, . . . ,JD],

D̃n1(B)=

n∑
i=1

[J1, . . . ,JD]TvecXiA
1/2
i (B)R̃−1A

1/2
i (B)vecTXi[J1, . . . ,JD].

As we show in the appendix, M̃n(B) approximates the covariance matrix of s(B)

in (2.5), whereas D̃n1(B) approximates the leading term of the negative gradient

of s(B) with respect to βB. The following theorem establishes the asymptotic

normality of the tensor GEE estimator.

Theorem 2. Under conditions (A1)–(A8), for any vector b ∈ IRR
∑D

d=1 pd , such

that ‖b‖ = 1, we have

bTM̃n
−1/2

(B0)D̃n1(B0)
(
βB̂ − βB0

)
→ Normal(0, 1) in distribution.

3.3. Rank selection consistency

Next, we establish that the rank selected by the BIC in (2.6) under the inde-

pendent working correlation is a consistent estimator of the true rank. This result

is useful in two ways. First, it justifies, to some extent, the asymptotic study in
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the previous section under a known rank. Second, it improves our understanding

of the interaction between the working correlation and the rank specification.

That is, the rank selected under a potentially misspecified correlation structure

remains consistent. Note that this rank selection consistency result is not es-

tablished in Zhou, Li and Zhu (2013). Therefore, to the best of our knowledge,

this study is the first to find such a result. For simplicity, we only consider the

Gaussian linear model case, and leave the GLM case for future research.

We employ the same regularity conditions (A1)–(A8) in Section 3.2, except

that we replace (A3) with the following condition:

(A3*) There exist two positive constants c∗1 < c∗2, such that c∗1 ≤ λmin(I(B)) ≤
λmax(I(B)) ≤ c∗2 for all parameter points B in the interior of the parameter

space. In addition, the rank is constant over the set {B : ||βB − βB0
|| ≤

4n−1/2}, for some 4 > 0.

The reason for requiring (A3*) is that we need to characterize the behavior

of some underfitted estimators with rank smaller than the true rank. These

underfitted estimators may not reside in the neighborhood of the true parameters.

However, note that (A3*) is a fairly mild condition, and the difference between

(A3*) and (A3) is small. This is because, when the dimension is fixed, I(B) has

fixed dimensions. Then, the condition on the bounded eigenvalues essentially

requires that the matrix be nonsingular. The following theorem establishes the

rank selection consistency.

Theorem 3. Let R̂ = arg minBIC(R) and R0 = rank(B0). For the Gaussian

linear model, under conditions (A1)–(A8) and the modified condition (A3*), we

have

Pr(R̂ = R0)→ 1, as n→∞.

That is, with high probability, the rank selected by the BIC recovers the true

rank. From a model selection perspective, this rank selection consistency implies

that neither the overfitted model with a higher rank nor the underfitted model

with an insufficient rank is favored by the BIC.

3.4. Region selection consistency

Recall that under the CP structure, the element in the coefficient tensor B

can be written as βi1...iD =
∑R

r=1 β
(r)
1i1
× · · · × β(r)

DiD
. In the imaging application,

where D = 3, for example, the region at (i1, i2, i3) is nonactive if βi1,i2,i3 = 0.

This can be induced if one of
{
β
(r)
1i1
,β

(r)
2i2
,β

(r)
3i3

}
is zero for each r = 1, . . . , R.
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Therefore, correctly recovering the sparsity pattern of βB results in the selection

of active regions of B. Next, we establish that this selection is consistent for the

SCAD regularized tensor GEE in (2.7).

Theorem 4. Under conditions (A1)–(A8), ρn = o(1), and n−1/2 log n = o(ρn),

there exists one solution, βB̂, to the SCAD regularized tensor GEE, such that

Pr(supp(βB̂) = supp(βB0
))→ 1, as n→∞,

where supp(β) denotes the support of the vector β.

This theorem states that the support of the true tensor coefficient, supp(βB0
),

can be recovered with high probability using the SCAD regularized tensor GEE.

As such, it establishes the region selection consistency in the context of the tensor

GEE.

4. Simulations

We carried out extensive simulations to investigate the finite-sample perfor-

mance of our proposed tensor GEE approach. We adopt the following simulation

setup. We generate the responses according to the normal linear model

Yi ∼ MVN(µi, σ
2R0), i = 1, . . . , n,

where Yi = (Yi1, . . . , Yim)T, µi = (µi1, . . . , µim)T, σ2 is a scale parameter, and

R0 is the true m×m intra-subject correlation matrix. We choose R0 such that

it has an exchangeable (compound symmetric) structure with the off-diagonal

coefficient ρn = 0.8. The mean function is of the form µij = γTZij+〈B,Xij〉, for

i = 1, . . . , n and j = 1, . . . ,m, where Zij ∈ IR5 denotes the additional covariates,

with all elements generated from a standard normal distribution. In addition,

γ ∈ IR5 is the corresponding coefficient vector, with all elements equal to one,

Xij ∈ IR64×64 denotes the 2D matrix covariate, again with all elements from a

standard normal distribution, and B ∈ IR64×64 is the matrix coefficient. The

entries ofB take the value zero or one, andB contains a series of shapes, as shown

in Figure 1, including a “square,” “T-shape,” “disk,” “triangle,” and “butterfly.”

Our goal is to recover these shapes in B by inferring the association between Yij
and Xij .

4.1. Signal recovery

In reality, the true signal rarely has an exact low-rank structure. Therefore,

the tensor GEE model essentially provides a low-rank approximation to the true

signal. Thus, our first task is to verify whether this approximation is adequate
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in the sense that it can recover the true signal area and shape to a reasonable

degree. We set n = 500 and m = 4 and show the tensor GEE estimates and

the corresponding BIC values under three working ranks of R = 1, 2, and 3 in

Figure 1. We first assume that the correlation structure is correctly specified.

We examine a potential misspecification in the next section. In this setup, the

“square” has a true rank equal to one, “T-shape” has rank two, and the remaining

shapes have ranks much larger than three. It is clear from Figure 1 that the tensor

GEE produces a reasonable recovery of the true signal, even for signals with a

high rank (e.g., “disk” and “butterfly”). All shapes can be clearly recognized,

even though the surrounding area is gray and noisy. Moreover, the BIC criterion

(2.6) successfully identifies the correct, or best approximate rank for all of the

signals.

4.2. Effect of correlation specification

We have shown that the tensor GEE estimator remains asymptotically con-

sistent, even when the working correlation structure is misspecified. However,

this describes only the large-sample behavior. In this section, we investigate the

potential effect of a correlation misspecification when the sample size is small or

moderate.

We choose the “butterfly” signal and fit the tensor GEE model using three

working correlation structures: exchangeable, autoregressive of order one (AR-1),

and independent. Table 1 reports the averages and standard errors (in paren-

theses) for 100 simulation replicates of the squared bias, variance, and mean

squared error (MSE) of the tensor GEE estimate. We observe that the estimator

based on the correct working correlation structure (i.e., the exchangeable struc-

ture) outperforms those based on misspecified correlation structures. When the

sample size is moderate (n = 100), the estimators have comparable bias and

the variation in the MSE is mostly from the variance part of the estimator. This

agrees with the theory that the choice of working correlation structure affects the

asymptotic variance of the estimator. When the sample size becomes relatively

large (n = 150), the estimators perform similarly using the scaling term of n−1/2

on the variance. When the sample size is small (n = 50), the estimators have

relatively large bias and the independent working structure yields similar results

to those of the exchangeable structure. This suggests that when the sample size

is limited, using a simple independent working structure is preferable to using a

more complex correlation structure.

Nevertheless, we should bear in mind that the above observations reflect the
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Figure 1. True and recovered image signals by the tensor GEE with varying ranks.
n = 500,m = 4. The correlation structure is correctly specified. TR(R) is the estimate
from the rank-R tensor model.
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Table 1. Bias, variance, and MSE of the tensor GEE estimates under various working
correlation structures. The result is based on 100 simulation replicates. The true intra-
subject correlation is exchangeable with ρn = 0.8.

n m Working Correlation Bias2 Variance MSE
50 10 Exchangeable 122.0 383.6 505.6 (7.9)

AR-1 139.1 530.0 669.1(15.8)
Independence 119.1 393.9 513.0(11.0)

100 10 Exchangeable 85.8 128.9 214.7 (2.2)
AR-1 88.0 159.1 247.1 (3.0)

Independence 93.0 141.2 234.2 (2.8)
150 10 Exchangeable 86.1 51.3 137.2 (0.6)

AR-1 85.6 56.0 141.6 (0.6)
Independence 84.9 62.3 147.2 (0.9)

Figure 2. Snapshots of tensor GEE estimations with different working correlation struc-
tures. The true correlation is an equicorrelated structure. The comparison is row-wise.
The first row shows a replicate where the estimates are “close” to the average behavior,
and thus, the visual quality of the estimates under different correlations structures are
similar. The second row shows a replicate where the estimates are “far away” from the
average. Here, the estimate under the correct correlation structure (panel 1) is superior
to those under the incorrect structures.

average behavior of the estimate. Figure 2 shows two snapshots of the estimated

signals under the three working correlations with n = 100. In top top panel, the

estimates are “close” to the average in the sense that the bias, variance, and MSE
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values for this single data realization are similar to the averages reported in Table

1. Consequently, the visual qualities of the three recovered signals are similar.

However, in the bottom panel, the estimates are “far away” from the average.

Here, the quality of the estimated signal under the correct working correlation

structure is superior to those under the incorrect specifications. Thus, as long

as the sample size of the longitudinal imaging study is moderate to large, a

longitudinal model should be favored over a model that ignores potential intra-

subject correlation.

4.3. Regularized estimation and comparison

We next study the empirical performance of the regularized tensor GEE

(denoted as “regularization”), comparing it with that of several alternative so-

lutions: the tensor GEE without regularization (“no regularization”), the lasso

regularized vector GEE applied to the vectorized image predictor (Fu (2003)

“Fu-Lasso”), the SCAD regularized vector GEE (Wang, Zhou and Qu (2012)

“Wang-SCAD”), and the sandwich estimator (Guillaume et al. (2014) “SwE”).

We adopt the same simulation setup as in Section 4.1, vary the sample size n,

and fix m = 4. For our regularized tensor GEE, we implemented both the lasso

and SCAD penalty, and found their performance to be visually very similar. As

such, we only report the results based on the SCAD here. The penalty parameter

is tuned based on an independent validation data set. Note that the sandwich

estimator of Guillaume et al. (2014) treats the image as a response, whereas we

treat the image as a predictor. We used the software provided by Guillaume

et al. (2014) for the calculation. We experimented with various shapes and ob-

tained similar results. To conserve space, we report only the results of “T-shape”

and “butterfly” in Figures 3 and 4. In both cases, our regularized tensor GEE

outperforms the alternative solutions, especially when the sample size is limited.

4.4. Computation time

In this section, we investigate the computation time of our proposed tensor

GEE. We consider the same simulation setup as in Section 4.1, but vary the

sample size and the image dimension. First, we set m = 10 and the matrix

covariate dimension to 64×64, and increase n from 50 to 500 by an increment of

50. Second, we set n = 200, m = 4, and increase the matrix covariate dimension

from 32× 32 to 128× 128 by an increment of 16. All simulations are carried out

on a laptop computer with an Intel Xeon 2.60 GHz processor. Figure 5 reports

the average computation time, in seconds, along with its confidence interval,
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Figure 3. Comparison of the tensor GEE with and without regularization, the lasso reg-
ularized vector GEE (Fu (2003) “Fu-Lasso”), the SCAD regularized vector GEE (Wang,
Zhou and Qu (2012) “Wang-SCAD”), and the sandwich estimator (Guillaume et al.
(2014) “SwE”). The sample size n varies and m = 4. The matrix covariate is of size
64× 64, and the true signal shape is “T-shape.”
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Figure 4. Comparison of the tensor GEE with and without regularization, the lasso reg-
ularized vector GEE (Fu, 2003, “Fu-Lasso”), the SCAD regularized vector GEE (Wang,
Zhou and Qu, 2012, “Wang-SCAD”), and the sandwich estimator (Guillaume et al.,
2014, “SwE”). The sample size n varies and m = 4. The matrix covariate is of size
64× 64, and the true signal shape is “butterfly.”
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Figure 5. Computation time (in seconds) of the tensor GEE with varying sample sizes
and image dimensions for various signal shapes.

based on 100 data replications for various signal shapes. Overall, we find that

the computation time of our method is reasonable.

5. Real-Data Analysis

5.1. Alzheimer’s disease

AD is a progressive and irreversible neurodegenerative disorder and the lead-

ing form of dementia in elderly subjects. It is characterized by gradual impair-

ment of cognitive and memory functions, and has been projected to quadruple

in terms of prevalence by the year 2050 (Brookmeyer et al. (2007)). Amnestic

MCI is a prodromal stage to Alzheimer’s disease, and individuals with MCI con-

vert to AD at an annual rate that can reach as high as 15% (Petersen et al.

(1999)). There is a pressing need for accurate and early diagnoses of AD and

MCI, as well as for monitoring the disease progression. The data we analyze

here are obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI).

The data set contains observations on n = 88 MCI subjects with longitudinal

MRI images of white matter at baseline, 6-month, 12-month, 18-month, and 24-

month intervals (m = 5). The data set also contains recordings of participants’

MMSE scores. This score measures the orientation to time and place, immedi-

ate and delayed recall of three words, attention and calculations, language, and

visuoconstructional functions (Folstein, Folstein and McHugh (1975)), and it is

our response variable. All MRI images have been preprocessed using the pre-
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processing protocol given in Zhang, Shen and Alzheimer’s Disease Neuroimaging

Initiative (2012). We recognize the importance of preprocessing in an imaging

analysis. Thus, we conduct our analysis after proper preprocessing, and have

two objectives. The first is to predict future clinical scores based on the data at

previous time points. Here, the goal is not to use an MRI to replace a cognitive

test, but instead to better understand the association between brain structure

and cognition as the disease progress. The second goal is to identify brain sub-

regions that are highly relevant to the disorder so as to better understand the

disease pathology. We fit the proposed tensor GEE to these data. The rank

is fixed at three, because this has been shown to provide a reasonable trade-off

between dimension reduction and model flexibility (Zhou, Li and Zhu (2013)).

5.2. Prediction and disease prognosis

By averaging consecutive time points, we first downsize the original 256-

dimensional MRI images to a smaller dimension (32, 64, and 128 dimensions).

This downsizing step sacrifices image resolution, but facilitates the computation

and reduces the dimensionality. This trade-off is the result of the limited sample

size and the very high number of unknown parameters. See Li, Zhou and Li

(2018) for an alternative method of image downsizing. Next, we consider two

ways of evaluating the prediction accuracy.

We first use the data from the early months to predict the “future” cog-

nitive outcome in the last month of scans. This evaluation scheme is useful to

understanding the progression of the disease, and is often used in longitudinal

imaging analyses; for example, see Zhang, Shen and Alzheimer’s Disease Neu-

roimaging Initiative (2012). Specifically, we fit the tensor GEE using the data

on all subjects from the baseline to the 12-month scans, and use the prediction

of the MMSE at 18 months to select the tuning parameter. With the selected

tuning parameter, we then refit the model using the data from the baseline to the

18-month scans, and then evaluate the prediction accuracy of all subjects using

the “future” MMSE score at 24 months, based on the root mean squared error

(RMSE), {
∑n

i=1 n
−1(Yim − Ŷim)2}1/2. Table 2 summarizes the results, which

show that the MRI images of three different sizes yield similar results. The best

RMSE achieved by our tensor GEE is 2.147 under an AR(1) working correlation

structure, the SCAD penalty, and the downsized image dimension 32× 32× 32.

This is only slightly worse than the best reported RMSE of 2.035 in Zhang, Shen

and Alzheimer’s Disease Neuroimaging Initiative (2012). Note that Zhang, Shen

and Alzheimer’s Disease Neuroimaging Initiative (2012) used multiple imaging
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Table 2. Prediction of the MMSE score at a “future” time for all subjects.

Working Correlation Independence Equicorrelated AR(1) Unstructured
Image dimesion 32× 32× 32

regularization (Lasso) 2.460 2.349 2.270 2.570
regularization (SCAD) 2.324 2.202 2.147 2.674
no regularization 2.526 2.427 2.429 2.628

Image dimesion 64× 64× 64
regularization (Lasso) 2.364 2.153 2.245 2.771
regularization (SCAD) 2.627 2.517 2.659 2.924
no regularization 4.490 4.154 4.776 3.749

Image dimesion 128× 128× 128
regularization (Lasso) 2.369 2.315 2.293 2.702
regularization (SCAD) 2.815 2.874 3.663 3.037
no regularization 6.805 5.008 4.036 7.979

modalities and additional biomarkers, which are supposed to improve the pre-

diction accuracy, whereas we used just one imaging modality.

We next consider a leave-one-out cross-validation evaluation, which is use-

ful to understanding the generalization capability across different individuals.

Specifically, we use all scans of a single subject as the testing set, and fit the

tensor GEE on the remaining data as the training set. We tune the regulariza-

tion parameter through five-fold cross-validation on the training set. We evaluate

the prediction accuracy using the RMSE of the predicted MMSE score, averaged

across all months for the test subject. Table 3 reports both the mean and stan-

dard deviation (in parentheses) of the RMSE, averaged across all subjects. The

best RMSE achieved by our tensor GEE is 3.172, again under an AR(1) working

correlation structure, the SCAD penalty, and the downsized image dimension

32× 32× 32. This is slightly worse than the best RMSE in Table 2, as expected.

At the same time, the two tables exhibit a consistent pattern in that the tensor

GEE with regularization outperforms that without regularization.

5.3. Region selection

Next, we investigate brain region selection using the regularized tensor GEE.

We apply both the lasso and the SCAD penalties. Owing to the graphical sim-

ilarity of the results, we report the SCAD estimate only. Figure 6 shows the

estimate (marked in red) overlaid on an image of an arbitrarily chosen subject

from three views (top, side, and bottom). The identified anatomical regions

correspond mainly to the cerebral cortex, part of the temporal lobe, the pari-

etal lobe, and the frontal lobe (Braak and Braak (1991); Desikan et al. (2009);
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Table 3. Prediction of the MMSE score of a “future” subject at all times using leave-
one-out cross-validation.

Working Correlation Independence Equicorrelated AR(1) Unstructured
Image dimesion 32× 32× 32

regularization (Lasso) 3.225 (1.851) 3.404(1.710) 3.272 (1.886) 3.982(2.557)
regularization (SCAD) 3.250 (1.928) 3.392(1.624) 3.172(1.551) 3.790(2.634)
no regularization 4.271 (2.936) 4.063(2.571) 4.415 (3.186) 4.492(3.294)

Image dimesion 64× 64× 64
regularization (Lasso) 3.381 (1.949) 3.825(1.973) 3.333 (1.877) 3.645(1.955)
regularization (SCAD) 3.282(1.761) 3.414(1.723) 3.592 (2.166) 3.873(1.937)
no regularization 4.670 (2.179) 5.025(2.851) 4.681 (1.870) 4.452(2.353)

Image dimesion 128× 128× 128
regularization (Lasso) 3.409 (1.743) 3.968(1.850) 3.296(1.983) 3.301(1.574)
regularization (SCAD) 4.123 (2.326) 3.929(1.895) 3.696 (2.065) 3.780(1.862)
no regularization 5.605 (3.716) 5.532(4.713) 5.654 (2.969) 6.037(9.493)

Figure 6. The ADNI data: regularized estimate overlaid on a randomly selected subject.

Yao et al. (2012)). With AD, patients experience significant widespread damage

over the brain, causing shrinkage of brain volume (Yao et al. (2012); Harasty

et al. (1999)) and a thinning of cortical thickness (Desikan et al. (2009); Yao

et al. (2012)). The affected brain regions include those involved in controlling

language (Broca’s area) (Harasty et al. (1999)), reasoning (superior and inferior

frontal gyri) (Harasty et al. (1999)), part of the sensory area (primary auditory

cortex, olfactory cortex, insula, and operculum) (Braak and Braak (1991); Lee

et al. (2013)), somatosensory association area (Yao et al. (2012); Tales et al.

(2005); Mapstone, Steffenella and Duffy (2003)), memory loss (hippocampus)

(den Heijer et al. (2010)), and motor function (Buchman and Bennett (2011)).

However, these regions are affected at different stages of AD, indicating the capa-
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bility of the proposed method to locate brain atrophy as the disease progresses.

For example, damage to the hippocampus, which is highly correlated with mem-

ory loss, is commonly detected at the earliest stage of the disease. Damage to

regions related to language, communication, and motor functions is normally

detected at the later stages of the disease. The fact that our findings are con-

sistent with the results reported in previous studies, particularly in longitudinal

studies, demonstrates the efficacy of our proposed method in identifying correct

biomarkers that are closely related to AD and MCI.

6. Discussion

We have proposed a tensor GEE for longitudinal imaging analyses. With

the increasing availability of longitudinal image data and the relative paucity of

effective analytical solutions, our proposed method provides a timely and useful

response. Specifically, it combines the GEE approach for handling longitudinal

correlations and a low-rank decomposition for significant dimension reduction

and tensor structure preservation. The proposed algorithm scales with the image

data size and is easy to implement using existing statistical software. Simulation

studies and a real-data analysis show the potential of our method for both signal

recovery and outcome prediction.

Our method involves two specifications: a working correlation structure and

a working rank for the tensor coefficient. We have examined how to select these

values in practice, as well as the potential consequences of their misspecifica-

tion. For the working correlation structure, we have shown that, asymptotically,

the tensor GEE estimator remains consistent, even if the correlation structure

is misspecified. In practice, our numerical investigation suggests that a sim-

ple independent working correlation is probably preferable when the sample size

is limited, whereas a data adaptive choice of a suitable working correlation is

preferable for larger samples. This is useful, because many multicenter large-

scale longitudinal imaging data sets, such as ADNI, becoming available. The

same correlation structure selection problem is also encountered in the classical

vector-valued GEE; for further discussion, see Pan and Connett (2002). For the

working rank of the tensor CP decomposition, we again show that, asymptoti-

cally, the BIC criterion under the independent correlation structure selects the

true rank with probability approaching one, even if this correlation structure is

misspecified. In practice, the rank selection reflects a bias–variance trade-off.

When the selected rank is smaller than the true rank, the resulting estimator is
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biased, but involves fewer unknown parameters, and thus is less variable. When

the selection is greater than the true rank, the estimator becomes unbiased, but

is also more variable with a larger number of parameters. In general, our findings

suggest that the reduced-rank structure provides a reasonable approximation of

the coefficient tensor.

Numerous problems remain open and warrant further research. The first is

the rank selection, including the selection consistency for a more general family

of models, its convergence rate, and its selection under a diverging dimension.

Note that this problem is not yet fully solved, even in the context of tensor pre-

dictor regression on a single image observation per subject, and is particularly

challenging. The second is to conduct an asymptotic study of our tensor GEE

with a diverging dimension. This is important to improve our understanding of

the properties of the tensor GEE. We have obtained some preliminary results,

extending those of the vector GEE (Wang (2011)) to the tensor version. How-

ever, the asymptotic properties under a diverging dimension combine with the

diverging rank selection, and therefore warrants further research.

Supplementary Material

The proofs of the main theorems and some technical lemmas are available

in the online Supplementary Material. A Matlab software package is available

upon request.
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