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S.1. Proofs of the Asymptotic Properties of the Pro-

posed Estimator

In this section, we will sketch the proofs of Theorems 1 and 2 given in the

paper.

Proof of Theorem 1: We will prove the rate of convergence by using

empirical process theory. Denote Θ = {(β, φ) : β ∈ B, φ ∈ Fr}, Θn =

{θ = (β, φ) : β ∈ B, φ(·) = Bn(·)Tα}, where qn = [nv] + l. And let

yi = (xi, zi, wi, δi, vi) and fn(y1, y2, θ) = f ∗n(y1, y2, θ)− f ∗n(y1, y2, θ0), where

f ∗n(y1, y2, θ) = δ2I(v1 ≥ v2)sn(xT1 β + z1Bn(w1)Tα− xT2 β − z2Bn(w2)Tα)
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and we further denote Γn(θ) = On(θ) − On(θn0). Then by following Song

et al. (2007), we can write

Γn(θ) = Γn0(θ) + Pngn(·, θ) + Unhn(·, ·, θ), (1)

where

Γn0(θ) = Efn(·, ·, θ),

gn(y, θ) = Efn(y, ·, θ) + Efn(·, y, θ)− 2Γn0(θ),

hn(y1, y2, θ) = fn(y1, y2, θ)− Efn(y1, ·, θ)− Efn(·, y2, θ) + Γn0(θ).

Define Fn = {fn(y1, y2, θ), θ ∈ Θn}, Gn = {gn(y, θ), θ ∈ Θn}, Hn =

{hn(y1, y2, θ), θ ∈ Θn}. In the following, we use C to denote a generic

constant not depending on n which may vary at different places. Note that

the first order derivative of sn is bounded by 1, we can easily verify the

following Lipschitz conditions:

‖fn(x1, x2, θ1)− fn(x1, x2, θ2)‖2 ≤ Cρ(θ1, θ2),

‖gn(x, θ1)− gn(x, θ2)‖2 ≤ Cρ(θ1, θ2),

and Corollary 2.7.2 in van der Vaart and Wellner (1996) implies that

logN[](ε,Θn, ρ) ≤ Cqn log(1/ε).

We can combine the preceding 3 inequalities to derive∫ δ

0

√
1 + logN[](ε,Gn, ‖ · ‖2) ≤ Cq1/2

n δ. (2)
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Then by appling Lemma 3.4.3 in van der Vaart and Wellner (1996), we

obtain

E
{

supρ(θ,θn0)≤δ|Pngn(θ))|
}
≤ Cq1/2

n δ . (3)

Similarly, we can obtain the entropy bound for the class of functionsHn.

Because {Unhn(·, ·, θ), θ ∈ Θn} is a degenerated U-process. We can apply

the maximum inequality for a degenerated U-process (Section 5, Sherman

(1994)) to derive

E
{

supρ(θ,θn0)≤δ|Unhn(θ))|
}
≤ Cq1/2

n δ. (4)

Also by using a Taylor expansion argument, we can show that

E
{

supρ(θ,θn0)≤δ|Γn0(θ)|
}
≤ Cδ. (5)

In light of (1), we can combine (3), (4) and (5) to obtain that

E
{

supρ(θ,θn0)≤δ|Γn(θ)|
}
≤ Cq1/2

n δ. (6)

It can be seen from the proof (A.19) of Theorem 2.1 in Khan and Tamer

(2007) and the proof of Theorem 4.1 in Song et al. (2007) that θn0 is the

maximizer of E[On(X, θ)] and θ̂ approaches to θn0 in probability. We can

use a Taylor expansion argument to show 0 ≤ EΓn(θ) = E[On(X, θ)] −

E[On(X, θn0)] ≤ −Cρ2(θ, θn0) for θ ∈ {θ : ρ(θ, θn0) ≤ δ}. Furthermore

by applying the Theorem 3.2.5 in van der Vaart and Wellner (1996) with
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φ(w) = q
1/2
n w, we obtain ρ(θ̂, θn0) = Op((n/qn)1/2) = Op(n

−(1−v)/2). This

plus the fact that the approximation error is well known to be ρ(θn0, θ0) =

O(n−rv) (Schumaker (2007)) yields that ρ(θ̂n, θ0) = Op(n
−(1−v)/2 + n−rv).

Proof of Theorem 2: We will extend the general arguments in the Theo-

rem 6.1 of Huang (1996) to U-type Z-estimation to show asymptotic normal-

ity. First define Θn0 = {θ : ρ(θ, θ0) < δ}, and denote the following (Gâteau)

derivatives f1(y1, y2, θ) = ∂
∂β
f(y1, y2, θ), f2(y1, y2, θ)[φ] = ∂

∂φ
f(y1, y2, θ)[φ],

F11(θ) = ∂2

∂β2E[f(Y1, Y2, θ)], F12(θ)[φ1] = ∂2

∂β∂φ
E[f(Y1, Y2, θ)][φ1], F22(θ)[φ1, φ2]

= ∂2

∂φ2
E[f(Y1, Y2, θ)][φ1, φ2], and the U-operator

Unf =
2

n(n− 1)

∑
i 6=j

f(Yi, Yj) .

By the definition of β̂ and φ̂, we have

Unf1(β̂, φ̂) = 0, Unf2(β̂, φ̂)[φ] = 0 for all φ. (7)

It then follows from the identification condition that

Pf1(β0, φ0) = 0, Pf2(β0, φ0)[φ] = 0 for all φ. (8)

By the geometry of Hilbert spaces, there exists a φ∗ satisfying F12[φ] −

F22[φ∗, φ] = 0 for all φ. Using the calculation of the bracketing number

and similar decomposition in (1), we can obtain the following asymptotic
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equicontinuties (Arcones and Gin (1993))

supθ∈Θ0n
|(Un − P )f1(β, φ)− (Un − P )f1(β0, φ0)| = op(n

−1/2),

supθ∈Θ0n
|(Un − P )f2(β, φ)[φ∗]− (Un − P )f2(β0, φ0)[φ∗]| = op(n

−1/2).

The combination of (7) and (8) with the foregoing uniform bounds leads

to

Unf1(β0, φ0)− Pf1(β̂, φ̂) = op(n
−1/2),

Unf2(β0, φ0)[φ∗]− Pf2(β̂, φ̂)[φ∗] = op(n
−1/2).

Furthermore, by Taylor expansion and noting that ρ(θ̂n, θ0) = op(n
−1/4),

we have

Unf1(β0, φ0)− (F11(θ0)(β̂ − β0) + F12(θ0)[φ̂− φ0]) = op(n
−1/2),

Unf2(β0, φ0)[φ∗]− (F21(θ0)[φ∗](β̂ − β0) + F22(θ0)[φ∗, φ̂− φ0]) = op(n
−1/2).

Since F12[φ] − F22[φ∗, φ] = 0 for all φ, it follows from the preceding two

equations that

n1/2(β̂ − β0)

=n1/2(F11(θ0)− F21(θ0)[φ∗])−1Un(f1(β0, φ0)− f2(β0, φ0)[φ∗]) + op(1).

Denote Σ1 = F11(θ0) − F21(θ0)[φ∗] and f ∗ = f1(β0, φ0) − f2(β0, φ0)[φ∗]. It

follows from the classic degenerated U-statistic theory (see, e.g., Theorem
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12.3 in van der Vaart (2000) that

n1/2(β̂ − β0)→ N(0,Σ)

in distribution, which completes the proof. In the above,

Σ = 4Σ−1
1 Cov(f ∗(Y1, Y2), f ∗(Y1, Y

′
2))Σ−1

1 (9)

with Y1, Y2, Y
′

2 being i.i.d copies of Y .

S.2. Additional Simulation Results

In this part, we present some additional simulation results obtained sim-

ilarly as those given in the paper but for different purposes. One is that

for all of the error distributions considered in the paper, they have rela-

tively light-tails and it is apparent that it would be useful to assess the

performance of the proposed method with heavy-tail error distributions.

Corresponding to this, we considered the t-distribution with the degree of

freedoms being 1 or 5, which will be denoted by t(1) or t(5), respectively.

Note that both have heavy-tails than the error distribution considered in

the paper and t(1) corresponds to the Cauchy distribution, well-known for

its fat tails. Table S.1 presents some results on estimation of regression pa-

rameter β0 given by the proposed method under the two error distributions

with β0 = 1, σ2 = 0.5 and the other set-ups being the same as with Table
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1 of the paper. In particular, the censoring times were generated from the

exponential distribution that yielded around 20% censoring rates.

The results in Table S.1 suggest that as with the situations considered

in the paper, the proposed method seems to perform well for the cases con-

sidered here. On the other hand, as expected, we can see some differences

as the empirical bias and variance seem to be slightly larger than those ob-

tained under the light-tail error distributions. However, it is clear that both

bias and variance became smaller when the error distribution changed from

t(1) to t(5) or became less flat. To further see the performance of the pro-

posed method, Figure S.1 displays the estimated varying-coefficient curve

obtained with n = 200 and c = 1 and again indicates that the proposed

method can well identify the varying-coefficient function and perform well.

As discussed in the paper, Chen and Tong (2010), Li and Zhang (2012)

and Lu and Zhang (2010) discussed the same problem as that considered

in the paper but their estimation procedures need some restrictive assump-

tions or only apply to some limited situations in comparison to that given

here. Also Khan and Tamer (2007) investigated a special case of the model

discussed in the paper and gave a complex implementation algorithm. Sug-

gested by a reviewer, for the comparison of the proposed method to these

methods, we repeated the study that gave the results in Table S.1 but with
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the error distribution being the t-distribution with the degree of freedoms of

3 and c = 1 and presented the results in Table S.2. Note that here we only

calculated the estimated bias (Bias) and the sample standard error (SE)

for each case and compared the proposed method (Prop) to those given

by Khan and Tamer (2007) and Lu and Zhang (2010), which are referred

to as PRE and GLE, respectively. This is because some discussion on the

comparison between the proposed method and that given in Chen and Tong

(2010) has been given in Section 3 of the paper and the method given in Li

and Zhang (2012) is similar to that given in Lu and Zhang (2010). In ad-

dition to Table S.2, we also obtained the the estimated varying- coefficient

curves given by the three methods for the case of n = 400 and present them

in Figure S.2. One can see from Table S.2 and Figure S.2 that all three

methods gave similar performance in general. On the other hand, it is clear

that as expected, the proposed method is more robust than the other two

and also the proposed method was about four times faster than that given

Khan and Tamer (2007) on average.
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S.1 Simulation results with heavy-tail error distributions

Error Bootstrap I Bootstrap II

Dis. n c Bias SE MAD SEE CP MAD SEE CP

t(1) 200 0.5 0.078 0.262 0.271 0.288 93.4 0.270 0.280 93.2

1 -0.067 0.265 0.269 0.307 94.2 0.269 0.289 93.6

400 0.5 0.052 0.196 0.202 0.218 95.2 0.200 0.207 94.5

1 -0.053 0.198 0.203 0.217 95.6 0.201 0.207 95.2

t(5) 200 0.5 -0.063 0.197 0.190 0.208 94.3 0.194 0.206 92.9

1 -0.056 0.190 0.189 0.204 93.6 0.192 0.204 93.0

400 0.5 -0.047 0.138 0.142 0.145 94.5 0.135 0.141 94.2

1 -0.035 0.136 0.138 0.144 94.3 0.135 0.137 93.9

S.2 Simulation results on the comparison of three estimation procedures.

n = 200 n = 400

Method Bias SE Bias SE

Prop -0.055 0.196 -0.041 0.138

PRE 0.039 0.303 0.006 0.187

GLE 0.031 0.285 0.022 0.205
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Figure S.1 The estimated varying-coefficient function φ(·) with heavy-tail error distri-

butions t(1) and t(5).
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Figure S.2 The estimated varying-coefficient function φ(·) given by three different

methods.


