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This set of supplementary notes include further details that are discussed

in the manuscript. In particular, it covers the algorithm for Step 2 of our

proposal for the transformation model, further discussion and illustration

of the computation time needed as well as performance of SIS on Cox’s

proportional hazards model. Proofs for theorems presented in Section 2.3

will also be presented.

A1. Algorithm for Step 2 of PVM for the general trans-

formation models.

Choose a positive integer λ, m, κ2 and a sequence νk ↓ 0. We repeat (a) and (b)

for κ2 times:

(a) For a fixed k, set U
(k)
0 = U

(k−1)
m . For i = 1, . . . ,m, generate U

(k)
i from the

transition probability ΠY (k−1){U (k)
i−1}.
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(b) Update the estimate Ŷ iteratively via

Y(k) = Y(k−1) + νk∆Y(k),

where

Γ(k) = Γ(k−1) + νk[Ī0{Y(k−1), U (k)}+ aλ{Y(k−1)} − Γ(k−1)]








∆Y(k)

ω(k)+









=









−Γ(k) (I −HZ)
⊤

I−HZ 0









−1

×









−H̄{Ŷ(k−1), U (k)}+ bλ{Y(k−1)}

−(I−HZ)Ŷ
(k−1)









with

aλ{Y (k)} = T⊤
Z
ΣZ(TZY)TZ, bλ{Y (k)} = aλ{Y (k)}Y,

TZ = (ZZ⊤)+Z, Σλ(β) = diag{p′λ(|β1|)/|β1|, . . . , p′λ(|βp|)/|βp|}.

At the end of this stage, we can obtain Ŷ as the average of the last 10% of the

sequence {Ŷ(k)}k=1,...,κ2 .

A2. Additional details on Computing time

In this subsection, we present more details regarding the computation burden

of PVM, especially for models that requires MCMC-SA procedure needed in

the maximum likelihood step. The following table considers only the computing

times needed for various steps in order to perform variable selection under the

PVM framework. Note that final estimation under low-dimensional setting is not
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included as the time needed is negligible.

To illustrate, we provide the following three examples:

1. AFT model with n = 300, p = 100: If 200 iterations are performed for

stage 1, 800 times for stage 2, the whole algorithm will need about 0.02 +

200× 10−3 + 800 × 0.009 + 0.11 = 7.53 seconds.

2. Cox model with n = 200, p = 1000: If 500 iterations are performed for stage

1, 1,000 times for stage 2 with m = 50, the whole algorithm will need about

0.35+1500×50×200×5.1×10−5+500×10−3+1000×0.017+1.06 = 783.91

seconds.

3. Probit model with n = 400, p = 5000: If 500 iterations are performed for

stage 1, 1,500 times for stage 2 with m = 100, the whole algorithm will

need about 54.68+2000×100×400×10−4+500×10−3+1500×0.42+10.4 =

8, 695.6 seconds which is about 145 minutes.

A3. Additional results on SIS for Cox’s proportional

hazards model

We summarise our results here for Fan et al. (2010) SIS on Cox’s model. Readers

may compare the results here with Panel (a) of Table 1 to see the edge that PVM
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offers.

In summary, Fan et al. (2010)’s SIS method tends to over-select variables; in

some cases, about 30% of cases select more than 10 irrelevant variables. PVM,

on the contrary, offers a more reasonable choice of the active set.

A4. Technical proofs for Theorems 1 and 2

Proof of Theorem 1 To begin, we first introduce the following lemmas:

Lemma 1. Under [C1] to [C6], λ satisfies

P (‖β̃ − β‖1 > λ) = o(1)

with λ = O(
√

log pn
n ), then we have for some constant C > 0,

P

(

max
j=1,...,pn

|
n
∑

t=1

εtztj | ≥ C(n log pn)
1/2

)

= o(1). (S0.1)

And for any C > 0,

P

(

max
j=1,...,pn

(
1

n

n
∑

t=1

εtztj)
2 ≥ Cn−γ

)

= o(1) (S0.2)

and

P

( n
∑

t=1

ε2t ≥ nC

)

= o(1) (S0.3)

if n is large enough.

Proof. Through [C3], equation (1) holds since

P

(

max
j=1,...,pn

|
n
∑

t=1

εtztj | ≥ C(n log pn)
1/2

)

≤ P

(

n‖β̃ − β‖1C2
max ≥ C(n log pn)

1/2

)

,
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therefore such a C > 0 exists. For equation (S0.2), by [C5], it is automatically

satisfied. For equation (S0.3), using Markov inequality, we can get

P

( n
∑

t=1

ε2t ≥ nC

)

≤ P (‖β̃ − β‖21C2
max ≥ C) = o(1)

since λ = O

(

√

log pn
n

)

= o(1).

Remark 1. The original proof of Ing and Lai (2011) uses the independent prop-

erty of the noise ǫ. Hence under some mild conditions, the results in Lemma 1 can

be achieved. In our framework, we need to consider the error on the estimated

parameters so as to bound Lemma 1 through bounding
∑n

t=1 ε
2
t or maxi,j zij,

since no simple bound of
∑n

t=1 εt is available.

Lemma 2 (Modified result of (3.8) in Ing and Lai (2011)). Under [C1] to [C4],

there exists a positive constant s, independent of 1 ≤ m ≤ Kn and n, such that

lim
n→∞

P (Ac
n(Kn)) = 0,

where

An(m) =

{

max
(J,i):#(J)≤m−1,i/∈J

|µ̂J,i − µJ,i| ≤ s(log pn/n)
1/2

}

with

µJ,i =
∑

j /∈J

βjE[(zj − z
(J)
j )zi], µ̂J,i =

1

n

∑n
t=1(yt − ŷt,J)xti

(n−1
∑n

t=1 x
2
ti)

1/2
.
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Proof. It follows by the definition of µ̂ and µ that

µ̂J,i − µJ,i =

∑n
t=1 ǫtẑ

⊥
ti;J√

n(
∑n

t=1 z
2
ti)

1/2
+

∑

j /∈J

βj

{

n−1
∑n

t=1 ztj ẑ
⊥
ti;J

(n−1
∑n

t=1 z
2
ti)

1/2
− E(zjz

⊥
i:j)

}

(S0.4)

where ẑ⊥ti;J represents the attribute after regression on the attributes in J . The

parts which are independent to ǫ follows the proof of Ing and Lai (2011), and it

suffices to show that for some d > 0,

P

(

max
#(J)≤Kn−1,i/∈J

| 1
n

n
∑

t=1

εtẑ
⊥
ti;J | > d(log pn/n)

1/2

)

= o(1).

Follow the idea of Ing and Lai (2011), we split max
#(J)≤Kn−1,i/∈J

| 1n
∑n

t=1 εtẑ
⊥
ti;J | into

three parts:

max
#(J)≤Kn−1,i/∈J

∣

∣

∣

∣

1

n

n
∑

t=1

εtẑ
⊥
ti;J

∣

∣

∣

∣

≤ max
1≤i≤pn

∣

∣

∣

∣

1

n

n
∑

t=1

εtzti

∣

∣

∣

∣

+ max
#(J)≤Kn−1,i/∈J

∣

∣

∣

∣

(
1

n

n
∑

t=1

z⊥ti;Jzt(J))
T Γ̂−1(J)(

1

n

n
∑

t=1

εtzt(J))

∣

∣

∣

∣

+ max
#(J)≤Kn−1,i/∈J

∣

∣

∣

∣

gTi (J)Γ
−1(J)(

1

n

n
∑

t=1

εtzt(J))

∣

∣

∣

∣

:= S1,n + S2,n + S3,n.

Note that

S3,n ≤ max
1≤i≤pn

∣

∣

∣

∣

1

n

n
∑

t=1

εtzti

∣

∣

∣

∣

max
1≤#(J)≤Kn−1,i/∈J

‖Γ−1(J)gi(J)‖1 ≤ M max
1≤i≤pn

∣

∣

∣

∣

1

n

n
∑

t=1

εtzti

∣

∣

∣

∣

with probability converging to 1.

Using [C6] and the inequalities in Lemma 1, for some d > 0, if n is large
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enough, we have

P (S1,n + S3,n > d

(

log pn
n

)1/2
)

≤ P

(

(M + 1) max
1≤i≤pn

∣

∣

∣

∣

1

n

n
∑

t=1

εtzti

∣

∣

∣

∣

> d(
log pn
n

)1/2
)

= o(1).

Then follow the idea of Ing and Lai (2011), we have P (S2,n > d′(log pn/n)
1/2) =

o(1) similarly.

Proof. Based on Lemma 2, we can get the result through following the proof of

Ing and Lai (2011) directly.

Proof of Theorem 2

Proof. Follow the idea of Ing and Lai (2011), we will show that P (k̂ < k̃) = o(1).

Define

Ân =
1

n
ZT
ĵ
k̃

(I−Hĵ
k̃
)Zĵ

k̃
,

B̂n =
1

n
ZT
ĵ
k̃

(I−Hĵ
k̃
)ε,

Ĉn =
1

n
εT (I−Hĵ

k̃
)ε,

and vn = min
1≤#(J)≤Kn

λmin(Γ(J)). In the case that k̂ < k̃n, we have

β2
ĵ
k̃

Ân + 2βĵ
k̃
B̂n + Â−1

n B̂2
n ≤ 1

n
wn(log pn)(k̃ − k̂)(

1

n

n
∑

t=1

(yt − ŷt;Ĵ
k̃
)2) (S0.5)

which implies that

β2
ĵ
k̃

Ân + 2βĵ
k̃
B̂n ≤ 1

n
wn log pn⌊anγ⌋|Ĉn|.
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In the next lemma, we show that for any θ > 0,

P (Â ≤ vn/2,Dn) + P (|B̂n| ≥ θn−γ/2,Dn) + P (wn(log pn)|Ĉn| ≥ θn1−2γ ,Dn) = o(1)

where Dn = {Nn ⊂ Ĵ⌊anγ⌋} = {k̃ ≤ anγ} for sufficiently large a. Combining

together with [C5] and Theorem 1, we have that the order of LHS of (S0.5) is

larger than RHS while both are positive, hence P (k̂ < k̃) = o(1). Follow the

proof of Ing and Lai (2011), we finally get P (Nn ⊂ N̂n) = 1.

Lemma 3 (Modifies result of (4.15) in Ing and Lai (2011)). Under [C1] to [C6],

P (Â ≤ vn/2,Dn) + P (|B̂n| ≥ θn−γ/2,Dn) + P (wn(log pn)|Ĉn| ≥ θn1−2γ ,Dn) = o(1).

Proof. Following the proof of Ing and Lai (2011), we can directly get P (Â ≤

vn/2,Dn) = o(1). Denote m0 = ⌊anγ⌋. For B̂n, we have

P (|B̂n| ≥ θn−γ/2,Dn) ≤ P

(

max
#(J)≤m0−1,i/∈J

∣

∣

∣

∣

1

n

n
∑

t=1

εtẑ
⊥
t;J

∣

∣

∣

∣

≥ θn−γ/2

)

= o(1)

using a procedure similar with Lemma 2.

The proof of Ĉn is similar with B̂n:

P

(

wn(log pn)

∣

∣

∣

∣

Ĉn

∣

∣

∣

∣

≥ θn1−2γ ,Dn

)

≤ P

(
∣

∣

∣

∣

1

n

n
∑

t=1

ε2t

∣

∣

∣

∣

≥ θ/2

)

+P

{

max
1≤#(J)≤m0

‖Γ̂−1(J)‖m0 max
1≤j≤pn

(

1

n

n
∑

t=1

εtztj

)2

≥ θ/2

}

,
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where

P

(∣

∣

∣

∣

1

n

n
∑

t=1

ε2t

∣

∣

∣

∣

≥ θ/2

)

= o(1)

and

P

{

max
1≤#(J)≤m0

‖Γ̂−1(J)‖m0 max
1≤j≤pn

(

1

n

n
∑

t=1

εtztj

)2

≥ θ/2− o(1)

}

= o(1).

Therefore for large enough n, P (wn(log pn)|Ĉn| ≥ θn1−2γ,Dn) = o(1).

Remark 2. The convergence rate for step one and two depends on the specific

penalty term and model. On the other hand, in large sample case, most of them

will converge. Therefore we introduce a new set of conditions:

(C1*) pn = o(n1/2/ log n) and is small enough to satisfy
√

pn/n-consistency.

(C2*) β̃ is
√

pn/n-consistent.

(C5*) There exists 0 ≤ γ < 1− logn pn such that nγ = o(pn∧(n/ log pn)
1/2)

and

lim inf
n→∞

nγ min
1≤j≤pn;βj 6=0

β2
j σ

2
j > 0.

Condition (C5) is stronger than (C5*) since it takes effort in bounding the error

terms. Under
√

pn/n-consistency, we have faster bounds for error than high-

dimensional case, which also enables us to consider some parameters which may

converge to 0 with a slower rate than ε. Under these conditions, Theorem 2 still

holds as long as (C1) to (C6) are satisfied. In Ing and Lai (2011), it also holds

that P (k̂ > k̃) = o(1).
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Table 1: Summary of the computation time needed for different steps need

in the PVM procedure. The notation K,m and n denotes respectively, the

number of iterations, the number of samplings carried out for estimating

the expectation and the sample size, respectively; see also the algorithm

presented on Page 15 in Section 2.1.

Stage Step Main time-consuming Model Time(s)

0 Initialization Get Matrix TZ All CT0

1 or 2 Generate U MCMC estimation Cox K ×m× n× 5.1× 10−5

1 or 2 Generate U MCMC estimation Probit K ×m× n× 1.0× 10−4

1 or 2 Generate U MCMC estimation PO K ×m× n× 4.8× 10−5

1 Update pseudo value All K × 10−3

2 Update pseudo value Second derivative calculation All K × CT1

3 Variable selection OGA algorithm All CT2

where

CT0 n p Time(s) CT1 n p Time(s) CT2 n p Time(s)

200 100 < 0.01 200 100 0.007 200 100 0.1

300 100 0.02 300 100 0.009 300 100 0.11

400 100 0.03 400 100 0.010 400 100 0.11

200 1000 0.35 200 1000 0.017 200 1000 1.06

300 1000 0.36 300 1000 0.026 300 1000 1.08

400 1000 0.37 400 1000 0.036 400 1000 1.11

200 5000 53.8 200 5000 0.260 200 5000 10.2

300 5000 54.2 300 5000 0.360 300 5000 10.2

400 5000 54.68 400 5000 0.420 400 5000 10.4
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Table 2: Performance of SIS on Cox proportional hazards model under ultra

high-dimensional settings, i.e. n ≪ p. Frequency, in 100 simulations, of

including all relevant variables (Correct), of selecting exactly the relevant

variable (E), of selecting all relevant variables and i irrelevant variables

(E+i), and of selecting some relevant variables with i relevant ones omitted

(E − i). The column “Correct” specifies the number of cases where all the

relevant variables are selected.
n 150 200 400 200 200

p 1000 1000 1000 5000 10000

E 18 12 0 47 45

E + 1 32 21 1 33 26

E + 2 25 26 3 11 9

E + 3 13 17 6 3 1

E + 4 5 14 9 1 0

E + 5 0 5 8 0 0

E + 6 1 5 13 0 0

E + 7 0 0 8 0 0

E + 8 1 0 11 0 0

E + 9 0 0 10 0 0

E + 10+ 0 0 31 1 3

Correct 95 100 100 96 84

E − 1 0 0 0 0 0

E − 2 2 0 0 0 1

E − 3 0 0 0 0 1

E − 4 0 0 0 0 4

E − 5 0 0 0 4 6

E − 3 + 1 0 0 0 0 1

E − 3 + 2 1 0 0 0 1

E − 3 + 6 1 0 0 0 0

E − 4 + 1 1 0 0 0 1

E − 5 + 2 0 0 0 0 1
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