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S1. Detailed Derivation of Probability for a DSP with 
Siblings

In the main text, the probability for a discordant sibpair with an arbitrary number of sib-
lings is factored into three components (expressions (2)-(4) in main text). In the following, 
we provide the detailed derivation for the formula.

P (M = m,F = f, C1 = c1, C2 = c2, Ci = ci, Di = di, i = 3, · · · | D1 = 1, D2 = 0)

= P (M = m,F = f, C1 = c1, C2 = c2 | D1 = 1, D2 = 0)

× P (Ci = ci, Di = di, i = 3, · · · |M = m,F = f, C1 = c1, C2 = c2, D1 = 1, D2 = 0)

= P (M = m,F = f, C1 = c1, C2 = c2 | D1 = 1, D2 = 0) (1)

×
∏
i≥3

P (Ci = ci|M = m,F = f)P (Di = di|M = m,F = f, Ci = ci). (2)

The above expression holds because given parents’ genotypes, different children’s genotypes
and disease status are independent. In particular, we note that expression (2) is the same
as expression (3) in the main text. We then take a further look at expression (1).

P (M = m,F = f, C1 = c1, C2 = c2 | D1 = 1, D2 = 0)

= P (M = m,F = f, C1 = c1 | D1 = 1, D2 = 0)P (C2 = c2 |M = m,F = f, C1 = c1, D1 = 1, D2 = 0)

= P (M = m,F = f, C1 = c1 | D1 = 1, D2 = 0)P (C2 = c2 |M = m,F = f,D2 = 0) (3)

= P (M = m,F = f, C1 = c1 | D1 = 1, D2 = 0)P (M = m,F = f, C2 = c2 | D1 = 1, D2 = 0) (4)

× P (C2 = c2 |M = m,F = f,D2 = 0)

P (M = m,F = f, C2 = c2 | D1 = 1, D2 = 0)
. (5)
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Now note that (3) holds because of conditional independence again, and expresion (4) is
the same as (2) in the main text. We then further check expression (5):

P (C2 = c2 |M = m,F = f,D2 = 0)

P (M = m,F = f, C2 = c2 | D1 = 1, D2 = 0)

=
P (C2 = c2 |M = m,F = f,D2 = 0)P (D1 = 1, D2 = 0)

P (M = m,F = f, C2 = c2, D1 = 1, D2 = 0)

=
P (C2 = c2 |M = m,F = f,D2 = 0)P (D1 = 1, D2 = 0)

P (M = m,F = f,D2 = 0)P (C2 = c2 |M = m,F = f,D2 = 0)P (D1 = 1 | C2 = c2,M = m,F = f,D2 = 0)

=
P (D1 = 1, D2 = 0)

P (M = m,F = f,D2 = 0)P (D1 = 1 |M = m,F = f)
(6)

=
P (D1 = 1, D2 = 0)

P (M = m,F = f)P (D2 = 0 |M = m,F = f)P (D1 = 1 |M = m,F = f)
. (7)

Again, expression (6) holds because of conditional independence, and expression (7) is the
same as (4) in the main text (4). Therefore, the probability of interest is factored into the
products of expressions (4), (2) and (7), which correspond to expressions (2), (3), and (4),
respectively, in the main text, completing the deviation of the probability.

S2. Calculation of Probabilities in Table 1.

Consider a candidate genetic marker with two alleles A and B, where A is the allele of
interest, the variant allele, which may code for disease susceptibility or epigenetic effect.
In a nuclear family, let F and M be the random variables denoting the number of A alleles
carried by father and mother respectively, which can take values 0, 1, or 2, corresponding to
genotypeBB, AB or AA, respectively. Similarly, let Ci be the random variable denoting the
number of A alleles, that is, the genotype of child i, i = 1, 2, · · · . Specifically, C1 and C2 are
designated for the affected and unaffected probands, respectively, through which the family
is recruited, whereas Ci, i = 3, · · · , are for the additional siblings, if any. Di, i = 1, 2, · · · ,
denote disease status of children (1 - affected; 0 - normal). Thus, D1 = 1 and D2 = 0.

In table 1, the formulas to calculate the joint probabilities are as follows:

P (M = m,F = f, C1 = c,D1 = 1, D2 = 0)

= P (M = m,F = f)P (C1 = c|M = m,F = f)

× P (D1 = 1|M = m,F = f, C1 = c)P (D2 = 0|M = m,F = f), and

P (M = m,F = f, C2 = c,D1 = 1, D2 = 0)

= P (M = m,F = f)P (C2 = c|M = m,F = f)

× P (D2 = 0|M = m,F = f, C2 = c)P (D1 = 1|M = m,F = f).

For all types other than type 8 (Table 1), if a child has one copy of the variant allele, the
parental origin can be unambiguously identified, and hence the joint probability can be
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easily obtained by extracting the relevant factors from the relative risk model for disease
prevalence.

P (D = 1|M = m,F = f, C = c) = δr
I(c=1)
1 r

I(c=2)
2 r

I(c=1m)
im s

I(m=1)
1 s

I(m=2)
2 , (8)

where the parameters: r1 and r2 denote the effect of one or two copies of an individual’s
own variant allele, rim denotes imprinting effect, s1 and s2 denote the effect of one or two
copies of the mother’s variant allele, and δ is the phenocopy rate. The notation c = 1m

denotes that the child’s genotype is heterozygous, where the variant allele is from mother.
The indicator variable D denotes the disease status of a child (1 - affected; 0 - normal).We
use µmf ’s (m = 0, 1, 2, f = 0, 1, 2) to denote the mating type probabilities.

For example, in the familial genotype combination (m, f, c) = (2, 0, 1),

P (M = 2, F = 0, C1 = 1, D1 = 1, D2 = 0)

= P (M = 2, F = 0)P (C1 = 1|M = 2, F = 0)

× P (D1 = 1|M = 2, F = 0, C1 = 1)P (D2 = 0|M = 2, F = 0)

= µ20δr1s2rim(1− δr1s2rim),

and

P (M = 2, F = 0, C2 = 1, D1 = 1, D2 = 0)

= P (M = 2, F = 0)P (C2 = 1|M = 2, F = 0)

× P (D2 = 0|M = 2, F = 0, C2 = 1)P (D1 = 1|M = 2, F = 0)

= µ20(1− δr1s2rim)δr1s2rim.

For type 8, in which (m, f, c) = (1, 1, 1), the variant allele carried by the child can be
inherited either from the mother or the father with equal probabilities and, as such, the
joint probability ends up being the summation of two probabilities weighted equally. We
show the calculation of P (M = 1, F = 1, C1 = 1, D1 = 1, D2 = 0) as an example:

P (M = 1, F = 1, C1 = 1, D1 = 1, D2 = 0)

= P (M = 1, F = 1)P (C1 = 1m|M = 1, F = 1)

× P (D1 = 1|M = 1, F = 1, C1 = 1m)P (D2 = 0|M = 1, F = 1)

+ P (M = 1, F = 1)P (C1 = 1f |M = 1, F = 1)

× P (D1 = 1|M = 1, F = 1, C1 = 1f )P (D2 = 0|M = 1, F = 1)

= 1/4µ11δr1s1(1 + rim)1/4(4− δs1 − δr1s1 − δr1s1rim − δr2s1).

S3. Regularity Conditions and Proof of Theorem 1

The LIMEDSP uses a multiplicative relative risk model for the disease prevalence are as
given in (1) above. The vector of parameters of interest is denoted by

θ = (δ, r1, r2, rim, s1, s2).
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Let n1
mfc and n0

mfc denote the count of affected proband-parent triads and unaffected
proband-parent triads with genotype M = m, F = f , and C = c, respectively. Simi-
larly, let sn1

mfc and sn0
mfc denote the counts of affected additional sibling-parent triads and

unaffected additional sibling-parent triads with genotype combination M = m, F = f and
C = c, respectively.

To make inference about θ, we use the partial log-likelihood

lpar(θ) =
∑
m,f,c

{
n1
mfc × log[pmfc(θ)] + n0

mfc × log[1− pmfc(θ)]

}
+
∑
m,f,c

{
sn1

mfc × log[qmfc(θ)] + sn0
mfc × log[1− qmfc(θ)]

}
= lt1(θ) + lt2(θ).

The effective total sample size, called n, in the partial log-likelihood lpar(θ), is computed
as

n =
∑
m,f,c

[n0
mfc + n1

mfc] +
∑
m,f,c

[sn0
mfc + sn1

mfc]

= (N +N) + (sN0
t + sN1

t )

= nt + snt

where N denotes the total number of independent families, and (sN0
t , sN

1
t ) are the total

number of unaffected and affected siblings in all complete families, respectively. Hence nt

is the total number of probands children, and snt is the total number of additional siblings
besides discordant sibpair.

The maximum partial likelihood estimator (mple) of θ is denoted by

θ̂n = argmaxθ lpar(θ)

which is assumed to be obtained by solving the score-type equation

∂lpar(θ)

∂θ
= l′par(θ) = l′t1(θ) + l′t2(θ) = 0.

We study the theoretical properties of θ̂n, as the effective sample size n = nt + snt tends
to infinity. We should note that here when n→∞, each of the sample sizes (nt, snt) also
tend to infinity, at the same rate, such that

nt

n
−→ 1 ,

snt

n
−→ 1.

Clearly, this is under the assumption that both sums
∑

are present in the partial log-
likelihood lpar(θ) defined above. If, however, there are no additional siblings, the theorem
still holds and the proof is analogous.
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Regularity Conditions

Let θ0 be the true value of the parameter of interest. In what follows we denote

Crn(θ0) = {θ ∈ Θ ⊂ R6 : ‖θ − θ0‖ ≤ rn}

as some neighborhood of θ0, with radius rn, where rn → 0, as n tends to infinity. Later
on, we will see that this rate is n−1/2. The regularity conditions are:

R1. The true value θ0 of the parameter vector θ is an interior point of the compact
parameter space Θ.

R2. The cell probabilities pmfc(θ) and qmfc(θ) admit up to their third-order partial deriva-
tives with respect to the elements of the parameter vector θ = (δ, r1, r2, rim, s1, s2),
for any θ ∈ Crn(θ0).

R3. The cell probabilities pmfc(θ) and qmfc(θ) are bounded away from the boundaries zero
and one, at least for those θ ∈ Crn(θ0). Further, the partial derivatives of the cell
probabilities, up to third order, are bounded by some constants, for any θ ∈ Crn(θ0).

R4. Identifiability: for any θ1,θ2 ∈ Θ, pmfc(θ1) = pmfc(θ2), qmfc(θ1) = qmfc(θ2), for all
(m, f, c) combinations, imply that θ1 = θ2.

R5. The information matrix

I(θ) = −E{l′′par(θ)} = −E{∂
2lpar(θ)

∂θ∂θT
}

is positive definite for any θ ∈ Crn(θ0).

We adopt the line of proof provided in Chanda (1954) and Lindsay (1980) to our partial
likelihood context.

Proof of Theorem 1

Proof of Part (i) of Theorem 1. For simplicity in notation, we denote the vector of
parameters of interest as θ = (δ, r1, r2, rim, s1, s2) = (θ1, θ2, θ3, θ4, θ5, θ6). By the regularity
Condition R2, for the first part of the partial log-likelihood, lt1(θ), representing proband
triads, we have that

∂lt1(θ)

∂θj
= l′t1,j(θ) = l′t1,j(θ0) +

6∑
k=1

l′′t1,jk(θ0)(θk − θ0k) +
1

2

6∑
l,k

l′′′t1,jkl(θ̃)(θk − θ0k)(θl − θ0l ) (9)

for j = 1, 2, . . . , 6, where θ̃ is between θ0 and θ ∈ Crn(θ0); l
′′
t1,jk(·) and l′′′t1,jkl(·) are the

second and third-order partial derivatives of the function lt1(·), respectively. For j, k, l =
1, 2, 3, 4, 5, 6, we have
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l′t1,j(θ) =
∑
m,f,c

∂pmfc(θ)

∂θj
×
{

n1mfc

pmfc(θ)
−
nmfc − n1mfc

1− pmfc(θ)

}

l′′t1,jk(θ) =
∑
m,f,c

∂2pmfc(θ)

∂θj∂θk
×
{

n1mfc

pmfc(θ)
−
nmfc − n1mfc

1− pmfc(θ)

}

−
∑
m,f,c

∂pmfc(θ)

∂θj
× ∂pmfc(θ)

∂θk
×
{

n1mfc

[pmfc(θ)]2
+

nmfc − n1mfc

[1− pmfc(θ)]2

}

l′′′t1,jkl(θ) =
∑
m,f,c

∂3pmfc(θ)

∂θj∂θk∂θl
×
{

n1mfc

pmfc(θ)
−
nmfc − n1mfc

1− pmfc(θ)

}

−
∑
m,f,c

∂2pmfc(θ)

∂θj∂θk
× ∂pmfc(θ)

∂θl
×
{

n1mfc

[pmfc(θ)]2
+

nmfc − n1mfc

[1− pmfc(θ)]2

}

−
∑
m,f,c

[
∂2pmfc(θ)

∂θj∂θl
× ∂pmfc(θ)

∂θk
+
∂pmfc(θ)

∂θj
× ∂2pmfc(θ)

∂θk∂θl

]
×
{

n1mfc

[pmfc(θ)]2
+

nmfc − n1mfc

[1− pmfc(θ)]2

}

−
∑
m,f,c

∂pmfc(θ)

∂θj
× ∂pmfc(θ)

∂θk
× ∂pmfc(θ)

∂θl

{ −2n1mfc

[pmfc(θ)]3
+

2(nmfc − n1mfc)

[1− pmfc(θ)]3

}
for any θ ∈ Crn(θ0).

For every triad type (m, f, c), denote the ratio

r1mfc =
n1
mfc

nmfc

where nmfc = n0
mfc + n1

mfc. The form of the partial log-likelihood lpar(θ) suggests that, for
each triad type (m, f, c) and conditional on nmfc, we have n1

mfc|nmfc ∼ Binomial(nmfc, pmfc(θ)).
By using a double conditional expectation technique, it is thus easy to see that E(r1mfc) =
pmfc(θ). Now, we have that

n−1E{l′t1,j(θ)} = 0

−n−1E{l′′t1,jk(θ)} =
∑
m,f,c

∂pmfc(θ)

∂θj
× ∂pmfc(θ)

∂θk
×
{

E(nmfc/n)

[pmfc(θ)][1− pmfc(θ)]

}
= It1,jk(θ)

for any θ ∈ Crn(θ0), where E(·) is the expected value under the model with the parameter
θ.

Further, by the regularity condition R3, for any θ ∈ Crn(θ0),

n−1|l′′′t1,jkl(θ)| ≤
∑
m,f,c

2

∣∣∣∣∂3pmfc(θ)

∂θj∂θk∂θl

∣∣∣∣+ ∑
m,f,c

∣∣∣∣∂2pmfc(θ)

∂θj∂θk
×
∂pmfc(θ)

∂θl

∣∣∣∣×{ (nmfc/n)

[pmfc(θ)][1− pmfc(θ)]

}

+
∑
m,f,c

∣∣∣∣∂2pmfc(θ)

∂θj∂θl
×
∂pmfc(θ)

∂θk
+
∂pmfc(θ)

∂θj
×
∂2pmfc(θ)

∂θk∂θl

∣∣∣∣×{ (nmfc/n)

[pmfc(θ)][1− pmfc(θ)]

}

+ 2
∑
m,f,c

∣∣∣∣∂pmfc(θ)

∂θj
×
∂pmfc(θ)

∂θk
×
∂pmfc(θ)

∂θl

∣∣∣∣{ (nmfc/n)

[pmfc(θ)]2
+

(nmfc/n)

[1− pmfc(θ)]2

}
= Op(1),
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which implies that l′′′t1,jkl(θ) = Op(n), for any θ ∈ Crn(θ0).
On the other hand, by the law of large numbers, we have that

r1mfc =
n1
mfc

nmfc

w.p.o−−−→ pmfc(θ0) ,
nmfc

n

w.p.o−−−→ E

(
nmfc

n

)
= Bmfc (10)

for some constant 0 < Bmfc < 1, as n → ∞, where w.p.o stands for with probability
tending to one. Thus, using (10), as n→∞, we have

l′t1,j(θ0)/n
w.p.o−−−→ 0 , l′′t1,jk(θ0)/n

w.p.o−−−→ It1,jk(θ0) , l
′′′
t1,jkl(θ0)/n = Op(1). (11)

for j, k, l = 1, 2, . . . , 6.
By similar argument,s and under the regularity conditions R1-R5, for the remaining

three terms of the partial log-likelihood, we have that

n−1E{l′t2,j(θ)} = 0

−n−1E{l′′t2,jk(θ)} =
∑

(m,f,c)

∂qmfc(θ)

∂θj
× ∂qmfc(θ)

∂θk
×
{

E(snmfc/n)

[qmfc(θ)][1− qmfc(θ)]

}
= It2,jk(θ)

n−1{l′′′t2,jkl(θ)} = Op(1) as n→∞.

Thus, similar to (11), as n→∞, we have that

l′t2,j(θ0)/n
w.p.o−−−→ 0 , l′′t2,jk(θ0)/n

w.p.o−−−→ It2jk(θ0) , l
′′′
t2,jkl(θ0)/n = Op(1),

for j, k, l = 1, 2, . . . , 6.
Using the above results, we have that

l′par(θ0)/n
w.p.o−−−→ 0 , l′′par(θ0)/n

w.p.o−−−→ I(θ0) , l
′′′
par(θ0)/n = Op(1) (12)

as n→∞. Here I(θ0) is a 6×6 information matrix constructed based on the {It1,jk(θ), It2,jk(θ)},
for j, k = 1, 2, . . . , 6.

Thus consider the score-type equation divided by the total sample size n, which leads
to the equations

n−1
6∑

k=1

l′′par,jk(θ0)(θk − θ0k) = −n−1l′par,j(θ0)−
1

2
n−1

6∑
l,k=1

l′′′par,jkl(θ̃)(θk − θ0k)(θl − θ0l )

for j = 1, . . . , 6. By expanding the summation on the left hand side and re-writing with
respect to each θk − θ0k, we have that

θk−θ0k =
6∑

j=1

[
−1

n
l′par,j(θ0)]×l∗par,jk(θ0)−

1

2

6∑
l,r=1

[
(θr−θ0r)(θl−θ0l )

( 6∑
j=1

[
1

n
l′′′par,jrl(θ̃)]×l∗par,jk(θ0)

)]
(13)
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for k = 1, . . . , 6, where l∗par,jk(θ0) are the elements of the inverse matrix

(
l′′par,jk(θ0)/n; j, k =

1, . . . , 6

)−1
. By (12), the first term on the right hand side of the above equations tends

to zero, as n → ∞. This implies that the equations in (13) have at least one solution, in
terms of θk − θ0k, that satisfies

θ̂k − θ0k −→p 0 ; k = 1, . . . , 6,

as n → ∞. Thus, there exists a solution, say, θ̂n of the score-type equation l′par(θ) = 0

such that θ̂n −→p θ0, as n→∞.
Now we prove the uniqueness of such consistent estimator. Under the regularity condi-

tions R1-R5, and consistency of θ̂n, we have that

1

n
l′′par(θ̂n) + I(θ0) = op(1) (14)

as n tends to ∞, where I(θ0) is the positive definite information matrix. Let us assume
that there exist two such consistent estimators, say, θ̂1n and θ̂2n of θ0 that are the solutions
of the score-type equation

l′par(θ) = 0.

By the extension of Rolle’s theorem to multivariate case, there exists a point θ̃n laying
inside a hyper-cell with the vector θ̂1n − θ̂2n as its diagonal, such that

l′′par(θ̃n) = 0. (15)

On the other hand, since θ̂1n and θ̂2n are consistent estimators, so is θ̃n and it must
satisfy (14). But clearly (14) and (15) contradict. This implies that the consistent estimator
θ̂n is unique. This completes the proof of Part(i). ♠

The result of Lemma 1 below is used for proving Part (ii) of Theorem 1.

Lemma 1 Under the regularity conditions R1-R5, we have that

l′par(θ0)√
n
−→d N(0, I(θ0))

as n→∞.

Proof of Lemma 1. Consider the partial-score function

∂lpar(θ)

∂θ

∣∣∣∣
θ=θ0

= l′par(θ0) = l′t1(θ0) + l′t2(θ0)

=
∑
m,f,c

nmfc × p′mfc(θ0)

pmfc(θ0)[1− pmfc(θ0)]
× [r1mfc − pmfc(θ0)]

+
∑
m,f,c

snmfc × q′mfc(θ0)

qmfc(θ0)[1− qmfc(θ0)]
× [s1mfc − qmfc(θ0)],
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where p′mfc(θ0) and q′mfc(θ0) are the 6-dimensional vectors of the partial derivatives of the
cell probabilities pmfc(θ) and qmfc(θ), with respect to θ, which are evaluated at the true
θ0. Also,

r1mfc =
n1
mfc

nmfc

, s1mfc =
sn1

mfc

snmfc

,

are the ratios of the number of cases among: proband (m, f, c) triads and additional (m, f, c)
sibling triads respectively.

We first try to find the limiting distribution of l′t1(θ0)/
√
n, as n→∞. We have that

l′t1(θ0)√
n

=
∑
m,f,c

p′mfc(θ0)

pmfc(θ0)[1− pmfc(θ0)]
×
√
nmfc

n
×√nmfc [r1mfc − pmfc(θ0)]

In what follows we use the Wald device. For any non-zero vector v ∈ R6,

wn(θ0) =
v>l′t1(θ0)√

n
=
∑
m,f,c

umfc(θ0)

pmfc(θ0)[1− pmfc(θ0)]
×
√
nmfc

n
×√nmfc [r1mfc − pmfc(θ0)]

where umfc(θ0) = v>p′mfc(θ0) is a scalar. Note that conditional on the nmfc’s, the ratios
r1mfc’s are independent, each having the conditional asymptotic distribution

√
nmfc [r1mfc − pmfc(θ0)] −→d N(0, pmfc(θ0)(1− pmfc(θ0))

as n → ∞. Note that since nmfc’s are following a multinomial distribution, say, with the
joint probability mass function g(nmfc;m, f, c), then

Fn(w) = P (wn(θ0) ≤ w) =
nt∑

{m,f,c:nmfc=0}

P (wn(θ0) ≤ w|nmfc,m, f, c) g(nmfc;m, f, c).

On the other hand, as n → ∞, since nmfc/n
p→ E(nmfc/n) = Bmfc, for some constant

0 < Bmfc < 1, then
(wn(θ0)|nmfc,m, f, c) −→d N(0, σ2(θ0))

where

σ2(θ0) =
∑
m,f,c

u2mfc(θ0)×Bmfc

pmfc(θ0)(1− pmfc(θ0))
.

Therefore, for w ∈ R, as n→∞,

Fn(w) −→ 1

σ(θ0)
Φ

(
w

σ(θ0)

)
where Φ(·) is the distribution function of the standard normal. This implies that

wn(θ0) −→d N(0, σ2(θ0))
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as n→∞. Hence,

l′t1(θ0)√
n
−→d N

(
0,
∑
m,f,c

[p′mfc(θ0)][p
′
mfc(θ0)]

> ×Bmfc

pmfc(θ0)(1− pmfc(θ0))

)
, n→∞.

Similarly, we have

l′t2(θ0)√
n

−→d N

(
0,
∑
m,f,c

[q′mfc(θ0)][q
′
mfc(θ0)]

> × Cmfc

qmfc(θ0)(1− qmfc(θ0))

)
,

for some constants 0 < Cmfc < 1, such that, as n→∞,

snmfc

n
−→p Cmfc.

Thus, by the independence of the ratios r1mfc and s1mfc, as the effective sample size
n = nt + snt tends to infinity, we have

l′par(θ0)√
n

=
l′t1(θ0)√

n
+
l′t2(θ0)√

n
−→d N (0, I(θ0))

where I(θ0) = I t1(θ0) + I t2(θ0), and

I t1(θ0) =
∑
m,f,c

[p′mfc(θ0)][p
′
mfc(θ0)]

> ×Bmfc

pmfc(θ0)(1− pmfc(θ0)
,

I t2(θ0) =
∑
m,f,c

[q′mfc(θ0)][q
′
mfc(θ0)]

> × Cmfc

qmfc(θ0)(1− qmfc(θ0)
,

are 6× 6-dimensional positive definite information matrices.
Hence, as n→∞, we have that

l′par(θ0)√
n
−→d N(0, I(θ0)). (16)

This completes the proof of Lemma 1. ♠
Proof of Part (ii) of Theorem 1. Let θ̂n be the MPLE, which satisfies the score-type
equation

l′par(θ̂n) = 0.

By the regularity conditions R1-R5, we have that

0 =
1

n
l′par(θ0) +

1

n
l′′par(θ0)(1 + op(1))× (θ̂n − θ0)

=
1

n
l′par(θ0) +

[
1

n
l′′par(θ0) + I(θ0)− I(θ0)

]
(1 + op(1))× (θ̂n − θ0)

where by (12) l′′par(θ0)/n+ I(θ0) = op(1). Therefore, by the result of Lemma 1,

√
n (θ̂n − θ0) = I−1(θ0)×

l′par(θ0)√
n
−→d N(0, I−1(θ0)),

as n→∞. This completes the proof of Part(ii) of Theorem 1. ♠
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S4. Estimation of Maternal Effect with the DSP Design

without Additional Siblings

To analyze the information for detecting parent-of-origin effects, especially maternal effect,
we take a closer look at pmfc in the partial likelihood:

pmfc =
P (D = 1|m, f, c)P (D = 0|m, f)

P (D = 1|m, f, c)P (D = 0|m, f) + P (D = 0|m, f, c)P (D = 1|m, f)

= 1/

(
1 +

P (D = 0|m, f, c)
P (D = 0|m, f)

/
P (D = 1|m, f, c)
P (D = 1|m, f)

)
.

P (D = 1|m, f, c)
P (D = 1|m, f)

=
δr

I(C=1)
1 r

I(C=2)
2 r

I(C=1m)
im s

I(M=1)
1 s

I(M=2)
2∑

c∗ p(c ∗ |m, f)δr
I(C∗=1)
1 r

I(C∗=2)
2 r

I(C∗=1m)
im s

I(M=1)
1 s

I(M=2)
2

=
r
I(C=1)
1 r

I(C=2)
2 r

I(C=1m)
im∑

c∗ p(c ∗ |m, f)r
I(C∗=1)
1 r

I(C∗=2)
2 r

I(C∗=1m)
im

. (17)

P (D = 0|m, f, c)
P (D = 0|m, f)

=
1− δrI(c=1)

1 r
I(c=2)
2 r

I(c=1m)
im s

I(m=1)
1 s

I(m=2)
2

1−
∑

c∗ p(c ∗ |m, f)δr
I(c∗=1)
1 r

I(c∗=2)
2 r

I(c∗=1m)
im s

I(m=1)
1 s

I(m=2)
2

. (18)

We can see that for maternal effect, (17) is totally independent of parameters s1 and
s2. Though (18) includes maternal effect parameters, when there is only maternal effect,
i.e. r1 = r2 = rim = 1, maternal effect parameters will be canceled out again. Fur-
thermore, when there are other effects besides maternal effect, only (F,M) belonging to
{(1, 2), (2, 1), (1, 0), (0, 1), (1, 1)} is informative for (18), and if disease penetrance for these
combinations with different offspring genotype are similar, for example, P (D = 1|M =
1, F = 2, C = 1) is similar as P (D = 1|M = 1, F = 2, C = 2), then the combination
is again almost non-informative. On the other hand, most of child-parent genotype com-
binations are informative for detecting imprinting effect for both (17) and (18). This is
consistent with the result from the simulation that the power to detect maternal effect
is very low when only such discordant sibpairs without additional siblings are recruited,
whereas when additional siblings are also recruited, the power will increase, as no term can
be canceled.

S5. DSP design with missing father genotypes

In LIME proposed by Yang and Lin (2013), nuclear families with father’s genotype missing
can still contribute to the estimation of the parameters. However, as we elaborate in the
following, LIMEDSP cannot be generalized to the discordant sibpairs design with father’s
genotype missing. Following the same idea as in complete data, denote n1

mc as the count
of affected proband-mother pairs with genotype M = m and C1 = c, and n0

mc as the

11



count of unaffected proband-mother pairs with genotype M = m and C2 = c. Let np

denote the count of independent families. To keep it focused, we assume there are no
additional siblings. Thus, the likelihood can be written as follows, where θ and φ denote
the parameters of interest and the nuisance parameters, respectively. That is,

L(θ,φ)p =
∏
m,c

[p
n1
mc

mc (1− pmc)
n0
mc ]
∏
m,c

S
n1
mc+n0

mc
mc (19)

×
np∏
j=1

P (Mj = mj , Cj1 = cj1, Cj2 = cj2)

P (Mj = mj , Cj1 = cj1)P (Mj = mj , Cj2 = cj2)

P (D1 = 1, D2 = 0)

P (D1 = 1|mj , cj2)P (D2 = 0|mj , cj1)
,

where the j represents the jth DSP in the data, and

pmc =
P (M = m,C1 = c|D1 = 1, D2 = 0)

P (M = m,C1 = c|D1 = 1, D2 = 0) + P (M = m,C2 = c|D1 = 1, D2 = 0)
,

and the denominator is denoted as Smc. However, we can rewrite the probability as

pmc =
1

1 + P (M=m,C1=c,D1=1,D2=0)
P (M=m,C2=c,D1=1,D2=0)

.

Then, as we can see from Supplementary Table S7, pmc still involves nuisance parameters,
thus we cannot extract out a partial likelihood component to estimate parameters.

S6. Relative Efficiency of LIMEDSP vs. LIME

To compare the relative efficiency of the LIME and LIMEDSP study designs, we compare
the “per individual” information when LIMEDSP is applied to a D+2 design, with LIME to
a T+3 study design, where a T+3 design refers to a case-parent/control-parent study design
in which each family (either a case family or a control family) has 3 additional siblings. We
chose to compare these two designs as the total number of individuals per family is equal
to 6 in both designs. We vary the proportion of case families for the T+3 design from
0.025 to 0.975 by 0.025. Figures S18-25 are for disease model 1-8 under scenario 8, where
the horizontal line is the information per individual for the D+2 design, while the circles
represent that for the T+3 data. We can see that, as expected, a balanced setting, the
proportion of case families being 0.5, is generally the most informative, in which case the
D+2 design is not as efficient as the T+3 design. However, when such a balanced setting
is not available, the D+2 design can be more efficient. This is especially true for making
inference about association and imprinting effects. However, the T+3 design typically has
more power than D+2 for inference about maternal effect, as we discussed earlier.

We further conducted a simulation study to illustrate empirically that LIMEDSP can
indeed be more powerful than LIME in settings in which there are very few control families.
Specifically, for model 6 under scenario 8 (Table 2 in main text), we first applied LIME
to 300 simulated T+3 families with the proportion of case families being 96.7% (i.e. 290
case families and 10 control families), and then applied LIMEDSP to 300 simulated D+2
families. Note that both designs use the same number of families and each family contains

12



the same numbers of children and parents. In this case, LIMEDSP achieves a higher power
than LIME: 0.957 versus 0.856. This result is consistent with our theoretical calculation in
this section. When balanced case-control family data are not available, using LIMEDSP to
analyze discordant sibpair data can be more efficient, and in fact necessary in the extreme
situation when no control families are available at all.
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SupplementaryTable S1. Top-20 SNPs having the smallest p-values for association with
club foot using LIMEDSP

Rank SNP Chr Position(BP) Gene -log10(P-value)
1 rs1023913 9 23003004 TOX3 4.7633
2 rs6040798 20 11602357 4.7631
3 rs1870488 6 63933078 WDR55 4.2773
4 rs292202 5 73582314 FAM53A 4.137
5 rs12523740 6 32897704 3.8777
6 rs10484209 4 37074039 3.8774
7 rs2953299 2 51852092 3.8746
8 rs1327992 6 4310124 CTB-32H22.1 3.7614
9 rs11594622 10 72580602 3.6976
10 rs17712426 10 83563646 3.6968
11 rs17035675 4 106457953 3.6754
12 rs6933121 6 79856243 3.6512
13 rs17141297 10 17580107 3.6244
14 rs12512863 4 24134430 3.6105
15 rs2650703 10 63236710 LOC101928781 3.5965
16 rs3115763 2 138763552 HNMT 3.5646
17 rs11980754 7 4408130 3.5394
18 rs1568717 15 61362446 RORA 3.5223
19 rs915895 6 32190216 KCND3 3.5093
20 rs2384549 12 115349867 4.9359
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Supplementary Table S2. Top-20 SNPs having the smallest p-values for imprinting effect
on club foot using LIMEDSP

Rank SNP Chr Position(BP) Gene -log10(P-value)
1 rs1079295 5 5165951 MT1A 13.4218
2 rs2405941 18 73740843 13.2871
3 rs2320214 18 4420249 DLGAP1 12.4824
4 rs13384546 2 185616127 ZNF804A 12.2454
5 rs2145214 20 42237066 IFT52 11.9946
6 rs213134 17 32823258 11.7425
7 rs7162435 15 56121333 NEDD4 11.5518
8 rs6151826 5 80080680 MSH3 11.4768
9 rs2520121 16 26577301 11.4644
10 rs1224524 6 67250007 11.3491
11 rs10413941 19 49347707 PLEKHA4 11.1828
12 rs11610123 12 47500730 PCED1B 11.1069
13 rs11048527 12 26604100 ITPR2 11.1035
14 rs6785520 3 170991646 TNIK 10.9721
15 rs17117977 11 115130709 10.7654
16 rs13228877 7 34199973 10.6878
17 rs3743308 15 69563185 DRAIC 10.6850
18 rs11789529 9 130164412 10.5804
19 rs908296 2 9814639 10.4491
20 rs12223323 11 26298810 ANO3 10.3638
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Supplementary Table S3. Top-20 SNPs having the smallest p-values for maternal effect on
club foot using method LIMEDSP

Rank SNP Chr Position(BP) Gene -log10(P-value)
1 rs2384549 12 115349867 4.9359
2 rs3781503 10 121571506 INPP5F 4.9039
3 rs9446305 6 71598570 B3GAT2 4.5466
4 rs10224932 7 31035681 4.515
5 rs11766624 7 69887084 AUTS2 4.4982
6 rs585157 13 99045319 FARP1 4.467
7 rs9540648 13 34951551 4.3431
8 rs10499527 7 21243187 4.3245
9 rs1005391 4 16386448 4.2718
10 rs6711382 2 152531076 NEB 4.2556
11 rs7801891 7 17133513 4.2536
12 rs9818949 3 197683750 IQCG 4.2419
13 rs723636 6 160580493 SLC22A1 4.2334
14 rs2018193 1 153079071 4.215
15 rs10066164 5 13945188 DNAH5 4.2147
16 rs7546648 1 152931206 4.2143
17 rs17559561 4 132367852 4.1886
18 rs1529557 2 37898991 4.1799
19 rs12550249 8 13140608 DLC1 4.1429
20 rs17712426 10 83563646 3.6968
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Supplementary Table S4. Top-20 SNPs having the smallest p-values for association with
hypertension using LIMED+

Rank SNP Chr Position(BP) Gene -log10(P-value)
1 rs16892095 4 15518356 CC2D2A 15.65
2 rs11128437 3 75447270 15.48
3 rs4125931 4 49489497 15.35
4 rs2405219 18 731439945 SMIM21 15.26
5 rs2229188 7 92134309 CYP51A1 15.11
6 rs4702048 5 14750799 ANKH 14.44
7 rs12626631 21 45001813 HSF2BP 14.22
8 rs3734815 6 29694680 HLA-F 14.08
9 rs13202088 6 163174689 PACRG 13.64
10 rs52828135 15 unknown 13.50
11 rs6485742 11 12454075 PARVA 12.82
12 rs11843435 13 69479766 11.17
13 rs4707557 6 90362782 MDN1 11.16
14 rs7032988 9 91837409 9.93
15 rs2013347 17 22171189 8.73
16 rs11672918 19 8943393 ZNF558 8.62
17 rs13255458 8 41636070 ANK1 8.61
18 rs2272487 3 126733094 CHCHD6 8.41
19 rs2947658 3 125607009 8.07
20 rs12256916 10 38344894 ZNF33A 7.99
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Supplementary Table S5. Top-20 SNPs having the smallest p-values for imprinting effect
on hypertension using LIMED+

Rank SNP Chr Position(BP) Gene -log10(P-value)
1 rs16892095 4 15518356 CC2D2A 15.65
2 rs11128437 3 75447270 15.48
3 rs4125931 4 49489497 15.35
4 rs2405219 18 731439945 SMIM21 15.26
5 rs2229188 7 92134309 CYP51A1 15.11
6 rs4702048 5 14750799 ANKH 14.44
7 rs12626631 21 45001813 HSF2BP 14.22
8 rs3734815 6 29694680 HLA-F 14.08
9 rs13202088 6 163174689 PACRG 13.64
10 rs52828135 15 unknown 13.50
11 rs6485742 11 12454075 PARVA 12.82
12 rs11843435 13 69479766 11.17
13 rs4707557 6 90362782 MDN1 11.16
14 rs7032988 9 91837409 9.93
15 rs2013347 17 22171189 8.73
16 rs11672918 19 8943393 ZNF558 8.62
17 rs13255458 8 41636070 ANK1 8.61
18 rs2272487 3 126733094 CHCHD6 8.41
19 rs2947658 3 125607009 8.07
20 rs12256916 10 38344894 ZNF33A 7.99
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Supplementary Table S6. Top-20 SNPs having the smallest p-values for maternal effect on
hypertension using LIMED+

Rank SNP Chr Position(BP) Gene -log10(P-value)
1 rs2272487 3 126451936 CHCHD6 8.44
2 rs9852584 3 126445456 CHCHD6 6.26
3 rs13230531 7 6114558 CHCHD6 5.52
4 rs17631957 14 81755544 STON2 5.49
5 rs820866 5 73978700 5.43
6 rs6086342 20 8096104 5.23
7 rs7741727 6 132069916 ENPP3 5.19
8 rs1370656 2 178607997 PDE11A 5.18
9 rs7133914 12 40702910 LRRK2 5.16
10 rs17601580 6 132061419 ENPP3 5.07
11 rs3856154 1 225565014 DNAH14 5.03
12 rs2165661 11 100142833 CNTN5 4.99
13 rs12368599 12 12908793 GPRC5A 4.92
14 rs17158657 15 84405464 ADAMTSL3 4.90
15 rs16832191 3 120944943 STXBP5L 4.88
16 rs3205144 3 172349215 NCEH1 4.82
17 rs4813864 20 8515840 PLCB1 4.78
18 rs17460330 4 36338943 DTHD1 4.76
19 rs10209069 2 153384254 FMNL2 4.71
20 rs390878 4 103213241 SLC39A8 4.67
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Supplementary Table S7. Joint probabilities of P (M = m,C1 = c,D1 = 1, D2 = 0) and
P (M = m,C2 = c,D1 = 1, D2 = 0)

Type m c P (M = m,C1 = c,D1 = 1, D2 = 0)
1 0 0 µ00(1− δ)δ + 1

4
µ01δ(2− δ − δr1)a

2 0 1 1
4
µ01δr1(2− δr1 − δ) + µ02(1− δr1)δr1

3 1 0 1
4
µ10δs1(2− δs1 − δs1r1rim)

+ 1
16
µ11δs1(4− δs1 − δs1r1(1 + rim)− δs1r2)

4 1 1 1
4
µ10δs1r1rim(2− δs1 − δs1r1rim)

+ 1
16
µ11δs1r1(1 + rim)(4− δs1 − δs1r1 − δs1r1rim− δr2s1)

+1
4
µ12δr1s1(2− δr1s1 − δr2s1)

5 1 2 1
16
µ11δs1r2(4− δs1 − δs1r1(1 + rim)− δs1r2)

+1
4
µ12δs1r2(2− δs1r1 − δs1r2)

6 2 1 µ20(1− δs2r1rim)δs2r1rim
+1

4
µ21δs2r1rim(2− δs2r1rim − δs2r2)

7 2 2 1
4
µ21δs2r2(2− δs2r1rim − δs2r2) + µ22(1− δs2r2)δr2s2

Type m c P (M = m,C2 = c,D1 = 1, D2 = 0)
1 0 0 µ00(1− δ)δ + 1

4
µ01(1− δ)δ(1 + r1)

2 0 1 1
4
µ01(1− δr1)δ(1 + r1) + µ02(1− δr1)δr1

3 1 0 1
4
µ10(1− δs1)δs1(1 + r1rim)

+ 1
16
µ11(1− δs1)δs1(1 + r2 + r1(1 + rim))

4 1 1 1
4
µ10(1− δs1r1rim)δs1(1 + r1rim)

+ 1
16
µ11[2− δr1s1(1− rim)]δs1(1 + r1(1 + rim) + r2)

+1
4
µ12(1− δr1s1)δs1(r1 + r2)

5 1 2 1
16
µ11(1− δs1r2)δs1(1 + r2 + r1(1 + rim))

+1
4
µ12(1− δs1r2)δs1(r1 + r2)

6 2 1 µ20(1− δs2r1rim)δs2r1rim
+1

4
µ21(1− δs2r1rim)δs2(r2 + r1rim)

7 2 2 1
4
µ21(1− δs2r2)δs2(r1rim + r2) + µ22(1− δs2r2)δr2s2

Note: ar1: relative risk of carrying one variant allele; r2: relative risk of carry ing two
variant alleles; rim: imprinting effect parameter with a single variant allele from mother;
s1: maternal effect with mother carrying one variant allele; s2: maternal effect with mother
carrying two variant allele. In addition, mating type probability of (M,F ) = (m, f) is
denoted by µij.
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Supplementary Figure S1. Information content per family for 8 disease models and two
PREVs when HWE holds and MAF is 0.3. Each curve provides the information for esti-
mating one of the 5 parameters, for data types D, D + 1 and D + 2.
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Supplementary Figure S2. Information content per individual for 8 disease models and
two PREVs when HWE holds and MAF is 0.1. Each curve provides the information for
estimating one of the 5 parameters, for data types D, D + 1 and D + 2.
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Supplementary Figure S3. Information content per individual for 8 disease models and two
PREVs when HWE does not hold and MAF is 0.3. Each curve provides the information
for estimating one of the 5 parameters, for data types D, D + 1 and D + 2.
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Supplementary Figure S4. Information content per individual for 8 disease models and two
PREVs when HWE does not hold and MAF is 0.1. Each curve provides the information
for estimating one of the 5 parameters, for data types D, D + 1 and D + 2.
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Supplementary Figure S5. Type I error rate and power of LIMEDSP under 8 disease models
and scenario 2 as given in Table 2. Three rows represent three data types: D, D + 1 and
D + 2. The bars of color white, red and green refer to association, imprinting effect and
maternal effect. The horizontal line marks the nominal a level of 0.05.
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Supplementary Figure S6. Type I error rate and power of LIMEDSP under 8 disease models
and scenario 3 as given in Table 2. Three rows represent three data types: D, D + 1 and
D + 2. The bars of color white, red and green refer to association, imprinting effect and
maternal effect. The horizontal line marks the nominal a level of 0.05.
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Supplementary Figure S7. Type I error rate and power of LIMEDSP under 8 disease models
and scenario 4 as given in Table 2. Three rows represent three data types: D, D + 1 and
D + 2. The bars of color white, red and green refer to association, imprinting effect and
maternal effect. The horizontal line marks the nominal a level of 0.05.
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Supplementary Figure S8. Type I error rate and power of LIMEDSP under 8 disease models
and scenario 5 as given in Table 2. Three rows represent three data types: D, D + 1 and
D + 2. The bars of color white, red and green refer to association, imprinting effect and
maternal effect. The horizontal line marks the nominal a level of 0.05.
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Supplementary Figure S9. Type I error rate and power of LIMEDSP under 8 disease models
and scenario 6 as given in Table 2. Three rows represent three data types: D, D + 1 and
D + 2. The bars of color white, red and green refer to association, imprinting effect and
maternal effect. The horizontal line marks the nominal a level of 0.05.
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Supplementary Figure S10. Type I error rate and power of LIMEDSP under 8 disease
models and scenario 7 as given in Table 2. Three rows represent three data types: D,
D + 1 and D + 2. The bars of color white, red and green refer to association, imprinting
effect and maternal effect. The horizontal line marks the nominal a level of 0.05.
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Supplementary Figure S11. Type I error rate and power of LIMEDSP under 8 disease
models and scenario 8 as given in Table 2. Three rows represent three data types: D,
D + 1 and D + 2. The bars of color white, red and green refer to association, imprinting
effect and maternal effect. The horizontal line marks the nominal a level of 0.05.
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Supplementary Figure S12. Manhattan plot of -log10(p-value) for tests of association effect
on club foot.
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Supplementary Figure S13. Manhattan plot of -log10(p-value) for tests of imprinting effect
on club foot.
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Supplementary Figure S14. Manhattan plot of -log10(p-value) for tests of maternal effect
on club foot.
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Supplementary Figure S15. Manhattan plot of -log10(p-value) for tests of association effect
on FHS.
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Supplementary Figure S16. Manhattan plot of -log10(p-value) for tests of imprinting effect
on FHS.
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Supplementary Figure S17. Manhattan plot of -log10(p-value) for tests of maternal effect
on FHS.
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Supplementary Figure S18. Plot of the −log10(p-values) for the imprinting effect of SNP
rs1562705 versus replication index for proband designations from the FHS data.
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Supplementary Figure S19. Information content per individual for inference of parameters
under disease model 1 and scenario 8. The horizontal line refers the information content
per individual for LIMEDSP applying to the D+2 design. The small circles represent
information content per individual for LIME when applied to the T+3 design, with the
proportion of case families varying from 0.025 to 0.975 by 0.025.
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Supplementary Figure S20. Information content per individual for inference of parameters
under disease model 2 and scenario 8. The horizontal line refers the information content
per individual for LIMEDSP applying to the D+2 design. The small circles represent
information content per individual for LIME when applied to the T+3 design, with the
proportion of case families varying from 0.025 to 0.975 by 0.025.
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Supplementary Figure S21. Information content per individual for inference of parameters
under disease model 3 and scenario 8. The horizontal line refers the information content
per individual for LIMEDSP applying to the D+2 design. The small circles represent
information content per individual for LIME when applied to the T+3 design, with the
proportion of case families varying from 0.025 to 0.975 by 0.025.
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Supplementary Figure S22. Information content per individual for inference of parameters
under disease model 4 and scenario 8. The horizontal line refers the information content
per individual for LIMEDSP applying to the D+2 design. The small circles represent
information content per individual for LIME when applied to the T+3 design, with the
proportion of case families varying from 0.025 to 0.975 by 0.025.
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Supplementary Figure S23. Information content per individual for inference of parameters
under disease model 5 and scenario 8. The horizontal line refers the information content
per individual for LIMEDSP applying to the D+2 design. The small circles represent
information content per individual for LIME when applied to the T+3 design, with the
proportion of case families varying from 0.025 to 0.975 by 0.025.
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Supplementary Figure S24. Information content per individual for inference of parameters
under disease model 6 and scenario 8. The horizontal line refers the information content
per individual for LIMEDSP applying to the D+2 design. The small circles represent
information content per individual for LIME when applied to the T+3 design, with the
proportion of case families varying from 0.025 to 0.975 by 0.025.
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Supplementary Figure S25. Information content per individual for inference of parameters
under disease model 7 and scenario 8. The horizontal line refers the information content
per individual for LIMEDSP applying to the D+2 design. The small circles represent
information content per individual for LIME when applied to the T+3 design, with the
proportion of case families varying from 0.025 to 0.975 by 0.025.
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Supplementary Figure S26. Information content per individual for inference of parameters
under disease model 8 and scenario 8. The horizontal line refers the information content
per individual for LIMEDSP applying to the D+2 design. The small circles represent
information content per individual for LIME when applied to the T+3 design, with the
proportion of case families varying from 0.025 to 0.975 by 0.025.
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