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In this document, we present a simulation example continued from Section B, the detailed proofs

of the Proposition M and Theorems I, and the derivation of the efficient score given in (BI3).

S1 Simulation Study for Sparse and Irregular Data

We use the same simulation setting in Section B but o = 1.1 and o = 0.5.
We generate longitudinal data from (518), in which the time points T;; are
iid. from a uniform distribution on [0, 1] and measurement errors e;; are
i.id. from a zero-mean Gaussian error with variance o2 = 0.12. We let
N; = N for all 7 and compare the estimation results for N =5 and 15, and
n = 200, 350,500, and 800. Note that the cases of N = 5 may be viewed
as representing sparse functional data. For each configuration, we repeated
1000 times.

Table M presents the average values and standard deviation of the esti-
mated 6. For each N , the average of ] gets closer to the true value and the

standard deviation decreases as n increases. For each n, the performance
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of # improves as N increases.

Table 1: The results of the simulation study (sparse data). The average and standard

deviation (SD) of 0 given 0 = 1.5.
N n = 200 n = 350 n = 500 n = 800

mean SD mean SD mean SD mean SD
5 1.777 0.702 1.626 0.453 1.570 0.323 1.547 0.243
15 1.634 0.410 1.578 0.290 1.537 0.234 1.531 0.178

The MISE and associated standard derivations of b(t) and B™R(¢) are

displayed in Table . For each N, the MISE and the standard deviation of

b(t) decrease as n increases. For each n, the performance of E(t) improves
as N increases. The MISE and the standard deviations of EFMR(t) are
consistently larger than that of b(t). This means that b(t) outperforms its

competitor ﬁMR(t).

Table 2: The results of simulation study (sparse data). The MISE and corresponding

standard deviations (SD) of the estimated slope functions b(t) and B*MR(¢).
n = 200 n = 350 n = 500 n = 800
N MISE SD MISE SD MISE SD MISE SD

b 0.552 0.544 0.344 0.305 0.273 0.248 0.199 0.162
PFMR 1196 1.986 0.769 1.221 0.760 2.323 0.487 1.360
b 0.248 0.1564 0.175 0.101 0.139 0.079 0.108 0.052
15 PFMR 0832 0985 0.737 1.270 0.633 0.773 0612 1.073
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S2 Proof of Proposition 1

Without loss of generality, assume E(X) = 0. Then (233) is equivalent to
P{1-U)4U§ =0} =1,
where 6 = (¢ —ay) + [ X(b—by) and ' = 0a — 61a1 + [ X (0b— 01b,). This

implies that E{(1—U)d 4+ Ud'}?> = (1 — 7)Eé* + 7E6? = 0. Then, we have

a = ay,0a = 0,a;, and

i%’ {/(b - bl>¢j}2 =0, iAj {/(eb — 91b1)¢j}2 —0.

These two equations hold if and only if A}/* [(b—b1)¢; = 0 and A/ [ (b —
61b1)¢; = 0 for each j. Since K is of full rank, b = b; and 6b = 6,b; almost

everywhere on Z.

S3 Proof of Theorem 1

Since 7 is estimated by 7 with a parametric rate, we shall assume that =
is known in our proofs for simple notation. Given an univariate function f,
let || fll2 = {f; f2(t) dt}'/? be the standard norm for Ly(Z).

Let A2 = ffIQ([? — K)?* and 0; = ming<;j(A\;, — Ar11). It can be shown

from the results of Bhatia, Davis, and McIntosh (T983) that

sup [Aj — Aj| <A, supd;l|o; — ¢jlla < 812A. (S3.1)
j>1 j>1
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Define the event &,,, = {3 < 27\, }; i.e., the set of all realizations such
that, for sample size n, 271\, > A. A standard moment calculation can
be used to prove that E(A2) = O(n~!) as n — oo (Hall_and Horowit,
2007). Using this result, Markov’s inequality and Assumption (A4), we
have P(&,,,) — 1. Thus, it suffices to work with bounds on &,,,. This
strategy was adapted by Hallland Horowif7 (2007) as well.

Define
Sp = /@— 9)05, Siz = /g@j — ¢5), Sjs = /@- 9)(0; — 65);
Ty = [ (=163, Ta = [ 13~ 6). T = (-1 - 0)).
Then
9i=Spn+Spp+ Sjs+ g5, hy=Tjn + Tja + Tys + hy. (53.2)
The key step in the proof of Theorem 1 relies on the bounds of Sj; and Ty
for k = 1,2, 3, which are given in the following lemma.
Lemma 1. Under Assumptions (A1)-(A4), we have
Sii = Op(n72\1%),
Sjo = Op(n_1/2j_a/2) + O,(n"'y/logn + n~tj*F*2)

(S3.3)
+0,(n715) 4+ Oy(n1/2j7o=Ft),
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where Op(-)’s in these three equations are uniform in 1 < j < m,. Note

that Sjo = 0Tj. The same results hold for Ty, for k =1,2,3, respectively.

Proof. Let &; = [(Xi — pux)¢; and & = n~1 Y, &;. Thus,

Sii :%i [Ui (a+/Xib) &ij —E{Ui (a+/Xib> gij} - U, (a—k/Xib) gj}

n

1 B
+ o Z(&;Uifzj — g Ui&;).

i=1

It can be proved that
nES?1 < const- [Var {U (a + /Xb) fj} + Var(EUﬁj)] < const-(E&}l)l/2 < const-\;,

where the constants do not depend on j nor n. The second inequality uses
the Cauchy—Schwarz inequality and the last inequality is due to Assumption
(A1). This completes the proof of the first equation of (8333).

Forany 1 < j <m, and k # j, by Assumption (A2), we have |\;—\g| >

min{\; — \ji1, A1 — A} > C7 172t > C7hm, @t Observe that,

N — D\ ~
max 1 = Al < CAmSH = 0, (n~1?moth).
1<j<man

=l ’
[Aj — Ak

(S3.4)
Then, Assumption (A4) ensures that the left-hand side (834) converges to
0 in probability. Therefore, |/):j — el = A — A[{1 4+ 0,(1)}, where 0,(1) is
uniform in 1 < j < m,. Combining the result with similar techniques as
Hall"and Horowit4 (2007, pp85-86), we complete the proof of the second

equation of (833).
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Using equation (20) in Imaizumi and Kafd (P018) and the Cauchy—
Schwarz inequality, the proof of the third equation of (8333) is completed.
O

Before presenting the proof of Theorem 1, we give two technical lemmas.

Lemma 2. Under Assumptions (A1)-(A4),

Mp 2 Mmn 2
Sarg S ep{ foc- ) aa SR o] [0 - won)
j=1 Jj=1

Proof. We only prove the first part. The proof of the second part is similar

and thus omitted. Note that 02E{ [(X — px)b}? =352, A\;'¢?. Using the

j=17"J

triangle inequality, we have

>N

j:mn+1

)\ 1A2 Z)\ 1g]2- =: B1+B>.

Mn Mn
T—1-~2 -1 2
Ao N |
j=1 Jj=1

B, converges to 0 as n — oo because Y22 A7 1g? < occ.

3 mp
B <3y Y N8 +6ZZA1!9JHSM+3ZM1 A g

k=1 j=1 k=1 j=1 (83.5)
§6ZZ/\ +12922|b\|5ﬂc’+6922|)\ b2,
k=1 j=1 k=1 j=1

where the first inequality is obtained by using the first part of (832) and
some fundamental inequalities. The second inequality is obtained by using

the first part of (83d) and is valid on &,,,.



S3. PROOF OF THEOREM 1

Using the results given in (8333) for Sjx, we have
ZA 182 = 0,(n"'my,), Z)\ 182 = 2matsy,
Z 165118511 = Op(n™"2), Z 1b[1Sj] = Op(n~"man),
j=1
Z)\ 8% = Op(n~'my) + Op(n*mot logn + n”?m—19)

+ Op(n_meLJ“s) + O,,(n_l),

Z|bj||5j2|: (n™Y2) + 0,(n""\/logn +n~'m,) + O,(n""m,,).
j=1

/

(S3.6)
Recall m,, = o(n'/?**2)) and Assumptions (A3)-(A4). It can be shown
that all of summations of (838) equal 0,(1). Using the first part of (83)

and A = O,(n~1/?), we have

ST =M< AY 12 =0,(n7).
j=1 i=1

Combining the results given in (838) with (833) yields By = 0,(1). We

complete the proof of Lemma B. n
Lemma 3. Under Assumptions (A1)-(A4),

Z 50— ) = 0 (G- 0D + 0, (n”11).
Proof. Using (832), we know that

G — 0%, = S5 — 0Ty + / G 0h)o,.
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The following inequality is due to (832), and holds on &,,,

z Aﬁf@~ﬂ%wwm@/@—%w

3;(9; — 0hy) — \/ﬁz&-lgj/@— Oh)o; | +
j=1

'y, [~ Ry,

< fz A7H(TS2) + BS2, + TS3 + 46°T5 + 40°T7) + 207/ > |by[(|Sjs] + 0|Tys))

j=mn+1

j=1
£V S AR, — MBS+ AT 0y S 18] + 61T
j:1 ]:mn+1
=: Dy + Dy + D3 + Dy.
Using the results in (8333), we have
Dy = O,(n"Y?my) 4+ 0, (n~%?m2* log n + n~3/2m3e-20+9)

+ Op(n_S/QmZ‘J“?’) + Op(n_l/Q),

and Dy = O,(n~Y?m,,). Recall m,, = o(n'/?**?)) and Assumptions (A3)-
(A4). We have Dy = 0,(1) and Dy = 0,(1). Using the first part of (S3),

and the fact A = O,(n"Y/2), we have

Dy = ( -1/2 Z]a/Q B) ( —1/2)‘

Using Assumptions (A2) and (A3), we have

D, < CH Z j*ﬁ)\;/2 — Op ( Z jﬁa/2> = Op(l)-

j=mp+1 Jj=mn+1

This completes the proof of Lemma B. m
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Proof of Theorem 1. A direct calculation shows that
0= LS W G- dh= LY X, - X) (83.7)
M1 Ho = n & I3 g - n & % ) ) :

where

_9<a+/Xb)( Ui)+ei<%—el_%>.
1—7r T 1—7

By the law of large numbers, jig — po and zi; — 1 in probability. Using
Lemma 2 and the fact pu; = 6pyg, it is ready to see that 0 is a consistent
estimator of 6. This completes the proof of the first part of Theorem 1.

We now establish the asymptotic normality of 0. Note that

= VAT, (g] eﬁ )+ m(m — Ofio)}
n(f — 0 = J

(93.8)

The numerator can be further decomposed as

{ik 9;(9; — )+u1(u1—9uo)}
—viilo [ @6+ (s — ) | + 0,00
=n /2 zn: {9 /(Xi — X)b+ ﬁl} W; + 0,(1) (S3.9)

—n_l/QZHW a—l—/Xb + 0,(1)

=1

= n_1/2u2¢9 Z '¢(97 }/ia Xi7 Ul) + Op(l)’
=1

where the first two equalities are due to Lemma B and (8372), respectively.

The third equality is proceeded by the two expressions: fi; = fpo + 0,(1)
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and n 123" W [(Xi — X)b=n"123" Wi [(X; — px)b+ 0p(1). The

first one is easy to see and the second one is derived as follows.

‘1/2ZW/X X)b ‘1/2ZW/
:n—W;m (mlk;/Xkb—E/Xb)

= 0,(1)0,(1) = o,(1).
The last equality is easy to be proved. By the law of large numbers and

Lemma B, the denominator of (83R) converges in probability to

oE {/(X — ;,,X)b}z + pop = 0E(a + /Xb)2 = uy. (S3.10)

Combining (838)—(8310), and using the central limit theorem and Slut-

sky’s theorem, we complete the proof of the second part of Theorem 1. [J
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S4 Proof of Theorem 2

Proof of (E101). Recall that Zj =AY - W)ﬁj + Wé\ﬁj}/(l — 7+ 762) and

bj = )\J_lh] We have /b\j - bj = Rl( );\\J_l(/ﬂj - hj) + RQ( )/):J_l(/g\] - g]) -

Ry(0)(0 — 0)X7hy + (A7 — A71)hy, where

R@\:—A, Ry(f) = ——— . S4.1
10) 1—7m+ 76?2 2(0) 1—m+ 762 ( )

mn

3 mp
< 48R3(H ZZA 2Tfk+48R2(A)ZZ/\ 282

k=1 j=1 k=1 j=1

+16R3(0)(0 — 02 Y A2h2+2> (A = A7hR2,

where the first inequality holds. The second inequality is due to (§32), and

the third inequality is valid on &,,, .
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Recall that m,, =< n'/(*2%) 1t is easy to show that

Z )\j—2T]21 — Op(n*(ZBfl)/(aJr?ﬁ))’
j=1
j=1
Z /\;27}23 = 0, (n~ - D/(a+20))
j=1

Similar results hold for Sj,. From Theorem 1, (6 — )2 = O,(n™!) =

0p(n~RF=D/R20)) “and Y7 AT2hE = O(1). From the proof of (Halland

Horowitz, 2007, pp82), we have » ™" (Xj_l — A7 1)2h2 = o, (n~ (A0 /(et28)),

~ ~

These results indicate that R;(f) < 1 and Ry(#) = O,(1), and so

D (6 ) = Oy V20
j=1
According to Assumption (A3), |b;| < Cj~# and D1 U2 = O(m~28=1)

and ||¢; — ;|2 = O,(n~52) uniformly on 1 < j < m,,. These results with

the fact m,, =< n/(@+28) yield

/(E—b)Q:/{i@j—bj)$j+ibj($j—¢j)— > bj¢j}

j=1 Jj=mn+1
S3{Z(bj—bj)2+mnzb§||¢j—¢j||§+ > b?}
j=1 J=1 J=mat1

<3 Z(b\g - bj)Q + Op(mnn_l) + O(m;(Qﬁ—l))
j=1

— 0, (n~ 8D/ +28))

This completes the proof of first part of Theorem 2. O
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Next, we prove (ZI2) by using Assouad’s Lemma (Assonad, 983),

whose proof can be found on pages 347-348 of Nan der Vaarfl (2000).

Lemma 4. [Assouad]| Let X ~ P, with w € Q = {0,1}", where P, is a
distribution. Let T' be an estimator of (w) based on X. Then, for all

s> 0,

dS /
max 2°E,d*(T,¥(w)) > min (W), v(w)) r min ||P, APy,
w plww’)>1 p(w, w’) 2 plww)=1

where p(w,w') =Y |w; — wj| is the Hamming distance, and |P A Q|| =

fp A qdp for two probability measure P and Q with densities p and q.

Proof of (Z12). Note that a lower bound for a specific case yields a low-
er bound for general cases. Thus, it suffices to consider the case when
e ~ N(0,0?). Let ux(t) = 0 and L, be the smallest integer greater than
C1n'/@+28) for the constant C; > 0. Foraw = (wg, 4+1,...,wsr,) € {0, 1},

let
2Ly,

bo(t)= > Cij Pwi;(t).

j:Ln+1

Denote by P, the joint distribution of {(Y;, X;,U;) : ¢ = 1,...,n} with
b(-) = b,(-). By Lemma B with s = 2 and r = L,,, we have

2Ly og N2

_ L, . w W .
SHPE/{b(t) e > o2 ln Zmhen T T
v o 8 p(w7w/) plw,w’)=

CQ
> —Lo=281-C6=D min ||P, A Py
8 plww’)=1

1HPw/\Pw’H
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For any w,w’ € {0,1},

log(P,,/P.y) QZ{ (1—U; + Usb) (a+/Xb)}(1—Ui+Ui9)/Xi(

202 {/X b } (1 U; + U™,

Therefore, the Kullback—Leibler distance between P, and P, can be bound-
ed by
KL(PuP) = 550 [ [ 10u(0) = b 0} (5.0{0u(5) = b)) s

2Ly

n .
_@01202 Z J 26/\j((x)j—w;->2

j=Lnt1
< %ccf@@n 1)~ @428) g, o)
< Cyp(w,w'),
where constant Cy = 1 — 7 4+ 762 and Cy = CCT "0y /(20%) > 0 is
independent of n. By LeCam’s inequality (['sybakov, 2009, Lemma 2.3),

we know

1 S| H2(P,,P,)\>
HPwAPw,HZQ(/\/dede,) :5(1_¥) 7

2

where H(P,, P,s) is the Hellinger distance between P,, and P,,. Since the

Hellinger distance H(P,, P,/) satisfies H*(P,, P,;) < KL(P,, P.»),

(mln | Py A Pl > co,
p(w

where ¢y = 271(1 — (C3/2)? depends on C; and C,, which is independent

bw - bw’)
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of n. We can choose C such that ¢g > 0. We complete the proof of the

second part of Theorem 2. O

S5 Semiparametrically Efficient Score

2

Without loss of generality, assume ¢“ is known and a = 0. Then, the

log-likelihood for a single sample {Y, X(-),U} is

1 1 ?
1(0,b,p) =— §log(27r02) ~ 52 {Y - (1-U+Ub) /Xb}
7 (S5.1)

+ Ulog(m) + (1 — U)log(l — ) + log p(X),
where ¢ is the density function of the functional predictor X. Thus, the

ordinary score function for 6 is given by

@:%U/Xa
o
where e =Y — (1 - U + U#) [ Xb.

Consider a parametric and smooth sub-model {¢y) : t € R} satisfying

©(0) = ¥ and

dlog o
ot

(X)],_p = n(X),
where 7 is a functional satisfied En(X) = 0 and E{n(X)}* < oo. Let
rey(X) =r(X)+t [ Xf, fort € Rand f € Ly(Z). Therefore, r)(X) =

r(X) = [ Xb and

87”@) .
ol = [ X7
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Define P, = {I(0, b, ¢) given in (S51) for a given #}. Since

ol

£
GO+t = S0 -U+U) [ X5+ nx)

then the tangent space of Py is

P, = {5(1 - U+ U@)/Xf—i—n(X) . for all f € Ly(Z) and En(X) =0, E{n(X)}* < oo} .
By Theorem 3.4.1 of Bickel ef all (T99R), the efficient score function of 6 is

the projection of [y into the orthogonal complement of the linear space Py

that is, [5 = Iy — II(Ig|Py). A direct calculation can verify (BI3).

S6 Proof of Theorem 3

Lemma 5. Under the assumptions of Theorem 3, we have
%i{m@ (X)) = Oy BV and Gy —uy = O, (n V).
Proof. Note that
@ —a= Ry(0) (7o — o) + Re(O){(in — ) — (0 = O)puo}
Jaia (e o)
where R; ((/9\) and Rg(é\) are defined in (§47). By the central limit theorem,

Theorems 1 and 2, and Cauchy—Schwarz inequality, we have (a — a)? =

O, (n=(8=D/(e+28))  Then, we have

—2{7« X)) < 2(a—a)’ ann [B—blls = O, (n~@5-D/(e29))
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Similarly, n=t 31" {7(X;) — r(Xi)}r(X;) = Op(n~3F-D/(@+28)) " Since 8 >
/241,
s — s = %il{m@) (X Z PX) - B ()
£ 2 — (X))
= 0,(n 1)

This completes the proof of Lemma B. O

Proof of Theorem 4. It suffices to show that

~ o~ 1 1 =U X. —~
0 =0+->" <% —0 U’) r Z>{Y@-—(1—Ui+Uie>r(Xi>}+0p(n—1/2).
2

n 4 T l1—m U

(S6.1)
Since if (86) holds, replacing Y; in (861) with (1 — U; + U;0)r(X;) + ¢;

and by a simple calculation, we have

~ ~

x 0 . l - *(0.\/ 7T -1/2
0 —0=(0 H)Zn—i-nizllp(@,}/;,Xz,Uz)%—op(n ),

where

n n

1 Ui 1 1-U;r(X;)
Zp=1—— X)) — —
n;m@r( ) n;l—ﬂ' U c

Theorem 1 and the law of large numbers imply that 0—0= O,(n~?) and

Z, = 0,(1). This completes the proof of Theorem 3.
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We now show (SE). A direct manipulation yields

~

Ly (% _gio Ui) r(X){Y; — (1 - U; + Uf)r(X:)}

ne=\m 1—nm
1 n 1n U 1T
=(0—-0)— Ur*(X;)+ — A ) r(Xi)e; o (56.3)
RSN >+n;(7r ) e
= IV+V

Let X* be a copy of X independent of the training data X;’s, and E* stand
for the expectation taken over X* only. Using a similar routine to that of

Schickl (T993), we can establish the following results.

LS UAR() — r(X)}r(X) = RETHR(X) — r(X)}r(X*)] + op(n~ 7).

and

%Z(l—Ui){?(Xi)—r(Xi)}r(Xi) = (1-7) E* [{F(X*)—r(X*)}r(X™)]+0,(n" /).
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From these results and Lemma H, we immediately know
~ 1 <&
(0= 0)0 D) (X} (X)

= (0 D) B R — r(X)}r(X)] + o (n™)

= Op(nil/Q)u

§ "U 1T
n

T 1—m

) (76 = (X))

1
6 & (Ui 1-U,
nz:l

T 1—m

) (X — r(X) (X))

< Bl {2 b LSRR 0P 4oyl

= 0, (n~ =D/ 4 (n~1/2)
= op(n_l/Q).

Using the Cauchy—Schwarz inequality and the central limit theorem, we

have

ZU{T Xi)}ei

(@—a) Z Use; Z Use; /I X;()(b(t) — b(t)) dt

ZU&?Z

< Op 71/2

= op(n_l/z).

Similarly, we can prove that n=! Y7 | (1—U){7(X;) —r(Xi) }e; = 0,(n~1/?).
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Therefore

II1-V = 1 Z (% _ (/9\11—_?) (F(X0) = r(X:))es = op(n_l/Q).

n < v
=1

Combining (862) and (8633), and recalling the orders of I — IV, I1] and

II —V, and Lemma B, we complete the proof of (S&T). n

S7 The Proof of Theorem 4

Let A2 = ffp([? — K)?. Then based on Assumptions (B1)-(B5), we have
A= O,(pn3) (Zhang and Wang, 2016). Using the same arguments as in the
proof of Theorem 4.1 in Zhang and Wang (2016), we have |[g—gll2 = Op(pn1)
and ||h—hl|, = O,(pn2). Then by using the Cauchy-Schwarz inequality and

(83),
195 = 91l = |/(§_9)5j +/9(5j — ¢;5)]
<13 = gll2 + llgll2llé; — &5z (S7.1)

= Op(pn1 + 5;1pn3)

uniformly in j. Similarly, h; —hj = Op(pn2+ 95 ! pn3) uniformly in j. There-

fore,
S NG =9 = 0Pl D N 2> A6,
j=1 j=1 j=1

> A5G — 9) = Oplpm + pus Y b;05).
i=1 =
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Since ; > C~'j=*~1 by Assumption (A2), then Assumptions (A3) and (B7)
imply that Y37 A7'(g; — g5)% = 0p(1) and 327 A7 g5(95 — g5) = 0p(1).
Thus, it can be shown that Lemma B with Xj,’g\j and ﬁj replaced by Xj, g;
and Ej holds, respectively. This completes the proof of consistency of 0.

Next, using Assumption (B7) and (871, we can prove
ZA = g5)" = Opm2 g2, +mi k) = o, (1).

Similarly, Z;mﬁ )‘g (hj_hj)2 = Op(l)v Z;n:n1 (X]'_I_Aj_l)th = Op(p?z:% ZTTH b§>\] ) =
op(1) and my, 7 02135513 = Oy (2amn S0 1267%) = 0,(1). From the

proof of Theorem 2, this completes the proof of the second part of Theorem

4.
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