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Abstract: In this study, we examine two-sample functional linear regressions with a

scaling transformation of the regression functions. We estimate the intercept, slope

function, and scalar parameter using a functional principal component analysis. We

also establish the rate of convergence of the estimator of the slope function, which

is shown to be optimal in a minimax sense under certain smoothness assumptions.

In addition, we investigate the semiparametric efficiency of the estimation of the

scalar parameter and the hypothesis tests. Then, we extend the proposed method

to include sparsely and irregularly sampled functional data and establish the consis-

tency of the estimators of the scalar parameter and the slope function. We evaluate

the numerical performance of the proposed methods through simulation studies and

illustrate their utility via an analysis of an AIDS data set.
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1. Introduction

Functional data analyses (FDAs) have become increasingly important over

the past two decades. For example, see the monographs of Ramsay and Silverman

(2005), Ferraty and Vieu (2006), Horváth and Kokoszka (2012), and Hsing and

Eubank (2015), as well as the articles by Yao, Müller and Wang (2005a,b), Müller

(2005), Hall, Müller and Wang (2006), Li and Hsing (2010), Li, Wang and Carroll

(2013), Cuevas (2014), Chen et al. (2017), and Wang, Chiou and Müller (2016),

and the references therein.

This study provides a semiparametric comparison of FDA regression models.

Specifically, we consider

Y = (1− U)r(X) + Uθr(X) + ε = (1− U + Uθ)r(X) + ε, (1.1)

where U is a Bernoulli random variable with π = E(U) = P (U = 1), θ ∈ (0,∞)

is an unknown parameter, X(t) is a random function in the class L2(I) of square-

integrable functions on a compact interval I of R1, r(·) is a function from L2(I)

https://doi.org/10.5705/ss.202016.0459


1892 XU, ZHANG AND LIANG

to R1, and ε is a random error, independent of (U,X), with mean zero and finite

variance σ2. Furthermore, we assume that U and X are independent.

Model (1.1) refers to a two-sample problem. In the first sample (U = 0),

the relationship between Y and X(t) is described by r(X). In the second sample

(U = 1), this relationship changes to θr(X). For independent data, Schick

(1993) treated r(·) as a nonparametric function and established semiparametric

efficiency of estimating θ.

There are many possible choices for r(·), including the fully nonparametric

form (Ferraty and Vieu (2006)) and the single-index functional form (Chen, Hall

and Müller (2011)). In this study, we examine the following linear relationship

between r and X(t):

r(X) = a+

∫
I
X(t)b(t) dt,

with an unknown intercept a and a square integrable slope function b(t). As a

result, we formulate our two-sample functional linear regression as

E{Y |X(t), U} = (1− U + Uθ)

{
a+

∫
I
X(t)b(t)dt

}
. (1.2)

Let {(Yi, Xi, Ui), i = 1, . . . , n} be independent and identically distributed

(i.i.d.) data from model (1.1). Our goal is to estimate θ, a, and b(t) based on the

sample. Model (1.2) is also related to the functional mixture regression (FMR)

of Yao, Fu and Lee (2011), which is an extension of the classical finite-mixture

regression models (DeSarbo and Cron (1988)). However, FMRs are different

because the group label for each observation is unknown, wherea it is known in

(1.2). If θ ≡ 1, (1.2) reduces to a functional linear model: Y = a+
∫
I X(t)b(t) dt+

ε. This model has been investigated extensively in the literature, in general,

focusing is on estimates of a and b(t). See, for example, Cardot, Ferraty and

Sarda (2003), Ramsay and Silverman (2005), Cai and Hall (2006), Hall and

Horowitz (2007), Li and Hsing (2007), Crambes, Kneip and Sarda (2009), Yuan

and Cai (2010), and Cai and Yuan (2012). The most frequently used approachs

for estimating b(t) are based on functional principal component analyses (FPCAs)

or on reproducing kernel Hilbert space (RKHS) methods. Cai and Hall (2006) and

Hall and Horowitz (2007) predicted and estimated the slope function b(t) based

on the FPCA method. Yuan and Cai (2010) and Cai and Yuan (2012) estimated

the slope function and investigated adaptive predictions using the RKHS method.

Cardot, Ferraty and Sarda (2003) and Li and Hsing (2007) approximated b(t)

and X(t) using a B-spline and a Fourier approximation, respectively, and they

established the rates of convergence for the resulting estimators or predictions
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under various assumptions. More recently, Lei (2014) proposed a global test

for b(t) based on the FPCA approach, and Shang and Cheng (2015) provided a

statistical inference for (generalized) functional linear models under the RKHS

framework.

In this study, we adopt the FPCA method to estimate the unknown slope

function b(t). An FPCA is essentially a dimension–reduction procedure; it has

been well examined in the literature. See, for example, James, Hastie and Sugar

(2000), Yao, Müller and Wang (2005a), Hall, Müller and Wang (2006), and Li

and Hsing (2010). We modify the method proposed by He, Müller and Wang

(2000) and Yao, Müller and Wang (2005b) to fit our setting. First, we use the

population least squares to obtain basis representations for θ, a, and b(t). Then,

we replace the unknown quantities by their empirical versions with finite terms,

and we derive the optimal rate of convergence for the FPCA-based estimator of

the slope function b(t) under certain smoothness assumptions. Next, we establish

the consistency and asymptotic normality of the estimator of θ and show that this

naive FPCA-based estimator is not efficient in the case of Bickel et al. (1998).

We then construct an asymptotically efficient estimator for θ and propose a

test statistic for θ. In practice values of Xi may be sparsely observed at a

set of discrete points with noise (Yao, Müller and Wang (2005a); Yao, Müller

and Wang (2005b); Li and Hsing (2010); Zhang and Wang (2016)). Lastly, we

extend the FPCA-based estimation method to include sparsely and irregularly

sampled functional data and establish the asymptotic consistency properties of

the resulting estimators.

The rest of the paper is organized as follows. Section 2 discusses identifia-

bility, derives the estimators for θ, a, and b(t), and investigates the asymptotic

properties of the proposed estimators. These properties include the consistency

and asymptotic normality of the estimator of the primary parameter θ and the

rate of convergence and optimality of the estimator of the slope function b(t).

Section 3 derives an efficient influence function for estimating θ and constructs an

efficient estimator. We propose a testing procedure for θ in Section 4. Section 5

extends the proposed estimator to sparsely and irregularly sampled functional

data. Section 6 presents simulation studies for evaluating the finite-sample per-

formance of the proposed procedures. Section 7 analyzes a data set from an

AIDS study. All proofs are relegated to the Supplementary Material.



1894 XU, ZHANG AND LIANG

2. Identifiability and Estimation

In this section, we first explore the identifiability issue for model (1.2). Then,

we use the population least squares to obtain basis representations of θ, a, and

b(t) (He, Müller and Wang (2000),Yao, Müller and Wang (2005b)). The proposed

estimators are obtained by replacing the unknown quantities in the representa-

tions with their empirical versions. Henceforth, we write
∫
pq for

∫
I p(t)q(t) dt.

2.1. Model identifiability

First, we show that the functional model (1.1) is identifiable under mild con-

ditions on the distribution of X. Let the covariance function of X(·) be K(s, t) =

Cov{X(s), X(t)}. Its corresponding covariance operator, K : L2(I) → L2(I), is

defined by the mapping (Kf)(s) =
∫
I K(s, t)f(t) dt for any f ∈ L2(I). If K is

continuous and square integrable, we have the spectral decomposition from Mer-

cer’s theorem (Hsing and Eubank (2015, p. 120)): K(s, t) =
∑∞

j=1 λjφj(s)φj(t),

where λ1 ≥ λ2 ≥ · · · ≥ 0 are the eigenvalues, and φ1, φ2, . . . are the orthonormal

eigenfunctions of the operator K. The eigenfunctions φj are also known as the

functional principal components. The operator K is of full rank in L2(I) (Hall

and Hooker (2016)), i.e., λj 6= 0, for all j, and φ1, φ2, . . . are complete in L2(I).

Proposition 1. Suppose a 6= 0 or b(t) 6= 0 almost everywhere on I. If an

alternative model intercept a1, a slope function b1(t), and a scalar parameter θ1

exist, such that

P

{
(1− U + Uθ)

(
a+

∫
Xb

)
= (1− U + Uθ1)

(
a1 +

∫
Xb1

)}
= 1, (2.1)

then a = a1, θ = θ1, and b(t) = b1(t) for almost all t ∈ I.

Throughout this paper, we assume that K is of full rank, and a 6= 0 or

b(t) 6= 0 almost everywhere on I.

2.2. Population least squares

Let Ξ = (0,+∞)× R× L2(I) and

S(ϑ, ν, ξ) = E

{
Y − (1− U + Uϑ)

(
ν +

∫
I
X(t)ξ(t) dt

)}2

.

It follows from the proof of Proposition 1 that θ, a and, b(t) are the unique

minimum of S(ϑ, ν, ξ) over (ϑ, ν, ξ) ∈ Ξ; that is

(θ, a, b) = arg min
(ϑ,ν,ξ)∈Ξ

S(ϑ, ν, ξ).

Recall that U and X are independent. It is clear that
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a =
(1− π)µ0 + πθµ1

1− π + πθ2
−
∫
I
µX(t)b(t) dt, (2.2)

where µj = E(Y |U = j), for j = 0, 1, and µX(t) = E{X(t)}. It is easy to

verify that µ1 = θµ0. Consequently, finding ϑ, ν, and ξ(·) to minimize S(ϑ, ν, ξ)

is equivalent to finding ϑ and ξ(·) to minimize

E

[
Y−1−U+Uϑ

1−π+πϑ2
{(1−π)µ0+πϑµ1}−(1−U+Uϑ)

∫
I
{X(t)−µX(t)}ξ(t) dt

]2

. (2.3)

Define two cross-covariance functions:

g(t) = E{(Y − µY )(X(t)− µX(t))|U = 1},
h(t) = E{(Y − µY )(X(t)− µX(t))|U = 0},

where µY = E(Y ). Then, g(t) = θh(t) for all t ∈ I.

Moreover, if we expand b(t) =
∑∞

j=1 bjφj(t), g(t) =
∑∞

j=1 gjφj(t), and h(t) =∑∞
j=1 hjφj(t) using bj =

∫
bφj , gj =

∫
gφj , and hj =

∫
hφj , then, by minimizing

the objective function (2.3) subject to ϑ and ξ(·), we obtain

bj = λ−1
j

(1− π)hj + πθgj
1− π + πθ2

(2.4)

and

θ =

∑∞
j=1 λ

−1
j g2

j + µ2
1∑∞

j=1 λ
−1
j gjhj + µ0µ1

. (2.5)

Furthermore,
∑∞

j=1 λ
−1
j h2

j = E{
∫

(X − µX)b}2 ≤
∫
E(X − µX)2

∫
b2 from the

Cauchy–Schwarz inequality. Recall that
∫
E(X2) < ∞ and gj = θhj , and that

we assume that b(t) is square integrable. Then,
∑∞

j=1 λ
−1
j g2

j ,
∑∞

j=1 λ
−1
j gjhj , and∑∞

j=1 λ
−1
j h2

j are all convergent. Hence, the right-hand side of (2.5) is well defined.

2.3. Estimation

Next, we describe the empirical versions of the basis representations of θ, a,

and b(t). The conventional estimator K̂ of K is defined as

K̂(s, t) =
1

n

n∑
i=1

{Xi(s)− X̄(s)}{Xi(t)− X̄(t)},

where X̄ = n−1
∑n

i=1Xi. Mercer’s theorem provides the spectral decomposition

of the covariance function K̂ as K̂(s, t) =
∑∞

j=1 λ̂jφ̂j(s)φ̂j(t), where λ̂1 ≥ λ̂2 ≥
· · · ≥ 0 are eigenvalues, and φ̂1, φ̂2, . . . are the corresponding orthonormal eigen-

functions. Note that λ̂j vanish for j ≥ n+ 1. Thus, the functions φ̂n+1, φ̂n+2, . . .

may be chosen arbitrarily.

Define
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ĝ(t) =
1

nπ̂

n∑
i=1

YiUi{Xi(t)− X̄(t)},

ĥ(t) =
1

n(1− π̂)

n∑
i=1

Yi(1− Ui){Xi(t)− X̄(t)},

where π̂ = n−1
∑n

i=1 Ui. Note that E[Y U{X(t) − µX(t)}] = πg(t). Therefore,

we can treat ĝ(t) as an estimator of g(t). Similarly, ĥ(t) is an estimator of h(t).

Note that we can represent ĝ(t) =
∑∞

j=1 ĝjφ̂j(t) and ĥ(t) =
∑∞

j=1 ĥjφ̂j(t) using

ĝj =
∫
ĝφ̂j and ĥj =

∫
ĥφ̂j , respectively.

Equation (2.5) suggests the following estimator for θ:

θ̂ =

∑mn

j=1 λ̂
−1
j ĝ2

j + µ̂2
1∑mn

j=1 λ̂
−1
j ĝj ĥj + µ̂0µ̂1

, (2.6)

where µ̂0 = {n(1 − π̂)}−1
∑n

j=1 Yj(1 − Uj) and µ̂1 = (nπ̂)−1
∑n

j=1 YjUj are the

sample averages of µ0 and µ1, respectively, and mn is a positive integer less than

n. Assumptions on mn will be imposed later. In practice, mn can be chosen

using cross-validation.

Equation (2.4) suggests the following estimator for b(t):

b̂(t) =

mn∑
j=1

b̂jφ̂j(t), where b̂j =
(1− π̂)ĥj + π̂θ̂ĝj

λ̂j(1− π̂ + π̂θ̂2)
. (2.7)

Finally, equation (2.2) suggests the following estimator for a:

â =
(1− π̂)µ̂0 + π̂θ̂µ̂1

1− π̂ + π̂θ̂2
−
∫
I
X̄(t)̂b(t) dt. (2.8)

2.4. Asymptotic properties

We now derive the asymptotic normality for the estimator θ̂ and the rate of

convergence for the estimator b̂(t) under the L2-norm. Then, we show that the

rate of convergence is optimal in the minimax sense.

The Karhunen–Loève expansion of the random function X(t) is given by

X(t) = µX(t) +
∑∞

j=1 ξjφj(t), where ξj =
∫

(X−µX)φj are uncorrelated random

variables with mean zero and variance E(ξ2
j ) = λj , known as functional principal

component scores. Let C > 1 be a sufficiently large constant. We make the

assumptions.

(A1) X(t) has a finite fourth moment, i.e.,
∫
I E{X

4(t)}dt < ∞; E(ξ4
j ) ≤ Cλ2

j

for all j ≥ 1.

(A2) C−1j−α ≤ λj ≤ Cj−α and λj − λj+1 ≥ C−1j−α−1 for some α > 1 and all
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j ≥ 1.

(A3) |bj | ≤ Cj−β for some β > α/2 + 1 and all j ≥ 1.

(A4) mn →∞ and m2α+2
n /n→ 0 as n→∞.

Assumptions (A1)–(A3) are standard in the literature on functional linear

regressions when the FPCA approach is used. See, for example, Cai and Hall

(2006) and Hall and Horowitz (2007). In Assumption (A2), α measures the

smoothness of the covariance function K, and it also affects the rate of conver-

gence when estimating the slope function b(t) (Theorem 2 below). The second

part of Assumption (A2) requires that the spaces between λj are not too small,

which ensures that each individual φj is identifiable. Assumption (A3) implies

that b(t) is sufficiently smooth, given β > α/2 + 1. See Hall and Horowitz (2007)

for a detailed discussion of these assumptions. Assumption (A4) is a techni-

cal condition used in the proofs of the theorems below. The same assumption

was made by Imaizumi and Kato (2018) for functional linear regressions with

functional responses. Note that if mn � n1/(α+2β), it is easy to verify that As-

sumption (A4) holds, where, for two positive sequences rn and sn, rn � sn means

that rn/sn is bounded away from zero and ∞ as n→∞.

Theorem 1. Under Assumptions (A1)–(A4), θ̂ is a consistent estimator of θ.

Furthermore, we have

√
n(θ̂ − θ) = n−1/2

n∑
i=1

ψ(θ;Yi, Xi, Ui) + op(1)

d−−→ N

(
0,
u4θ

2 + σ2u2(1− π + πθ2)

π(1− π)u2
2

)
,

where

ψ(θ;Y,X,U) =

(
U

π
− 1− U

1− π

)(
r2(X)

u2
− 1

)
θ +

(
U

π
− θ1− U

1− π

)
r(X)

u2
ε

is the influence function of θ, u2 = E{r(X)}2 = E
(
a +

∫
Xb
)2

, and u4 =

Var{r2(X)} = Var{(a+
∫
Xb
)2}.

Remark 1. Assumption (A1) ensures that u2 and u4 are finite. Theorem 1

implies that when π gets close to zero or one, the asymptotic variance of θ̂ can

be very large. Therefore, the performance of the estimator θ̂ may be poor when

the sample size of one group is too small compared to that of the other group.

Next, we establish the asymptotic property for b̂(t). Let F = F(C,α, β)

denote the set of all distributions F of (Y,X,U) that are compatible with As-
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sumptions (A1)–(A3), for given values of C,α, and β. Then, following Theorem

1 of Hall and Horowitz (2007), we obtain the same rate of convergence of b̂(t) as

Hall and Horowitz (2007) do.

Theorem 2. Suppose Assumptions (A1)–(A3) are satisfied. Take mn � n1/(α+2β).

Then, we have

lim
M→∞

lim sup
n→∞

sup
F∈F

PF

[∫
I
{b̂(t)− b(t)}2 dt > Mn−(2β−1)/(α+2β)

]
= 0. (2.9)

Furthermore,

lim inf
n→∞

n(2β−1)/(α+2β) inf
b̄

sup
F∈F

EF

∫
I
{b̄(t)− b(t)}2 dt > 0, (2.10)

where inf b̄ is taken over all possible estimators, b̄.

The limit in (2.10) shows that the minimax lower bound of the convergence

rate for estimating b(t) is n−(2β−1)/(α+2β), and (2.9) indicates that this rate is

achieved with mn � n1/(α+2β). Therefore, b̂(t) with mn � n1/(α+2β) is a rate-

optimal estimator. Furthermore, n−(2β−1)/(α+2β) is the minimax optimal rate of

convergence under the L2-risk, which is determined by the smoothness of the

slope function and the decay rate of the eigenvalues of the covariance function.

3. Semiparametric Efficiency

The estimator θ̂ of the parameter θ proposed in Section 2 is derived from

gj = θhj and µ1 = θµ0. This suggests that there are many potential estimators

of θ, for example, ĝ1/ĥ1 or (ĝ1 + 2ĝ2)/(ĥ1 + 2ĥ2). Thus, a natural question is

whether θ̂ is optimal among all regular estimators of θ. We now investigate the

semiparametric efficiency of the semiparametric model (1.1). We demonstrate

that θ̂ is not semiparametrically efficient, even when ε is normally distributed.

Then, we derive the efficient score and propose an efficient estimator based on θ̂

when ε is normally distributed.

To achieve this goal, we first derive the efficient score and information bound.

Similar derivations for general semiparametric models for independent data are

proposed in Severini and Wong (1992), Bickel et al. (1998), and Brown and Newey

(1998).

Suppose ε ∼ N(0, σ2). In Section S5 of the Supplementary Material, we

show that for model (1.2), the efficient score for θ is
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l̇∗θ =
U(1− π)− (1− U)πθ

(1− π + πθ2)σ2
r(X)ε. (3.1)

Then, the semiparametric information bound for θ is

I(θ) = E(l̇∗2θ ) =
π(1− π)

(1− π + πθ2)σ2
u2. (3.2)

Therefore, the lower bound of the asymptotic variance of the regular estimators

of θ is (1− π+ πθ2)σ2/{π(1− π)u2}. Theorem 1 indicates that θ̂ cannot achieve

this bound, and that θ̂ is not semiparametrically efficient, even if ε is normally

distributed.

Next, we construct a more efficient estimator for θ than θ̂, using θ̂ as a

preliminary estimator. Then, we demonstrate that the resultant estimator is

semiparametrically efficient when ε follows a normal distribution. From Bickel

et al. (1998), the efficient influence function for θ is given by

ψ∗(θ;Y,X,U) = I−1(θ)l̇∗θ =

(
U

π
− θ1− U

1− π

)
r(X)

u2
ε.

Thus, we construct the following estimator for θ:

θ̂∗ = θ̂ +
1

n

n∑
i=1

(
Ui
π̂
− θ̂1− Ui

1− π̂

)
r̂(Xi)

û2
ε̂i, (3.3)

where r̂(Xi) = â+
∫
I Xi(t)̂b(t) dt, û2 = n−1

∑n
i=1 r̂

2(Xi), and ε̂i = Yi− (1−Ui +

Uiθ̂)r̂(Xi). Here, θ̂∗ is derived as a one-step Newton–Raphson approximation.

Theorem 3. Under the assumptions of Theorem 2, the estimator θ̂∗ is asymp-

totically normal, i.e.,

√
n(θ̂∗ − θ) = n−1/2

n∑
i=1

ψ∗(θ;Yi, Xi, Ui) + op(1)
d−−→ N(0, I−1(θ)).

Furthermore, when ε follows a normal distribution, θ̂∗ is semiparametrically ef-

ficient.

Remark 2. Note that when the density function of ε is known, but not normal,

or is unknown, θ̂∗ is not semiparametrically efficient. Schick (1993) constructed

an efficient estimator for θ in model (1.1) using a discretized root-n preliminary

estimator when the error density function is unknown. It is also worth deriving

such an efficient estimator for θ in model (1.2) if the error density function is

unknown. We leave this as a topic for future research.

Once the more efficient estimator θ̂∗ is available, we can update the estima-

tors of a and b(t), as follows:
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b̂∗(t) =

mn∑
j=1

b̂∗j φ̂j(t) with b̂∗j = λ̂−1
j

(1− π̂)ĥj + π̂θ̂∗ĝj

1− π̂ + π̂θ̂∗2
,

â∗ =
(1− π̂)µ̂0 + π̂θ̂∗µ̂1

1− π̂ + π̂θ̂∗2
−
∫
I
X̄(t)̂b∗(t) dt.

From the proof of Theorem 2 in the Supplementary Material, b̂∗(t) with mn �
n1/(α+2β) is also a rate-optimal estimator. Theoretically, b̂(t) and b̂∗ have the

same rate of convergence. However, in Section 6, we show that b̂∗ has better

finite-sample performance.

4. Hypothesis Testing

The scalar parameter θ is sometimes of primary interest. For example, θ = 1

means the curves of two groups are identical, indicating that the corresponding

treatments have similar effects. Thus, we may need to test whether θ = 1. In

general, we can test

H0 : θ = θ0 versus H1 : θ 6= θ0.

Theorem 2 implies that {nI(θ)}1/2(θ̂∗−θ)→ N(0, 1) in distribution. We can use

this result to derive a test statistic after we estimate the information bound I(θ)

by substituting all unknown quantities by their estimates. We estimate I(θ) by

Î(θ), as follows

Î(θ) =
π̂(1− π̂)

(1− π̂ + π̂θ̂∗2)σ̂∗2
û∗2,

where

û∗2 =
1

n

n∑
i=1

{
â∗ +

∫
I
Xi(t)̂b

∗(t) dt

}2

and σ̂∗2 =
1

n

n∑
i=1

Y 2
i − (1− π̂ + π̂θ̂∗2)û∗2.

From the proof of Lemma 5 in Section S6 of the Supplementary Material, we can

also prove that û∗2 converges to u2, in probability. From Theorem 3, it is easy to

verify that Î(θ) is a consistent estimator of I(θ). Consequently, we propose the

following test statistic:

T ∗n = {nÎ(θ)}1/2(θ̂∗ − θ0).

This statistic is asymptotically normal under H0 from the Slutsky theorem. This

suggests rejecting H0 when |T ∗n | is larger than z1−τ/2, where zτ is the τ -th quantile

of the standard normal distribution. The procedure is equivalent to that of the

Wald-type test.
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5. Extension to Sparse and Irregular Data

The methodological and theoretical development in the previous sections is

based on the assumption that the predictor trajectory X(t) is fully observed

without noise, which may not be true in practice. In this section, we assume

that Xi(t) can only be realized for some discrete set of sampling points with

additional measurement errors; that is, we observe data

Wij = Xi(Tij) + εij , j = 1, . . . , Ni, (5.1)

where εij are i.i.d. measurement errors with mean zero and finite variance σ2
ε ,

and each Ni ≥ 2. Assume that Xi, Tij , and εij are all independent.

Most existing studies classify functional data as sparse or dense, depending

on the number of observations within each curve; see Li and Hsing (2010). For

dense functional data, we can smooth each individual curve first to construct

the curve X̂i from the data Di = {(Tij ,Wij) : 1 ≤ j ≤ Ni} (Ramsay and

Silverman (2005)). It has been shown by Hall, Müller and Wang (2006) that when

the observations are sufficiently dense, the smoothing errors are asymptotically

negligible. Therefore, the methodology developed in the previous sections are

carried out as if X̂i is the true curve. However, for sparse functional data, this

pre-smoothing method is inadequate.

The proposed estimation procedure in Section 2 can be extended to the case

of sparse and irregular designs. A key step is to estimate µX(t), K(s, t), g(t),

and h(t) based on sparsely observed longitudinal data D = {(Tij ,Wij) : 1 ≤ i ≤
n, 1 ≤ j ≤ Ni}. We adapt the idea of pooling sparse longitudinal data across

subjects and apply the local linear smoother to the resulting scatter plots (Yao,

Müller and Wang (2005a,b); Hall, Müller and Wang (2006); Li and Hsing (2010);

Zhang and Wang (2016)). Let κ(·) be a univariate kernel function. Then, the

mean function µX , covariance function K, and cross-covariance functions f and

g are estimated as follows. By an abuse of notation, we use c0 and c1 to denote

local linear regressions when estimating these functions in this section.

Step 1 The local linear estimator of the mean function µX(t) is µ̃X(t) = ĉ0,

where

(ĉ0, ĉ1) = arg min
c0,c1

n∑
i=1

Ni∑
j=1

κ

(
Tij − t
dµ

)
{Wij − c0 − c1(Tij − t)}2,

with bandwidth dµ.

Step 2 Let Gi(Tij , Til) = {Wij − µ̃X(Tij)}{Wil − µ̃X(Til)} for 1 ≤ j, l ≤ Ni. The

local linear estimator of the covariance function K(s, t) is K̃(s, t) = ĉ0,
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where

(ĉ0, ĉ1, ĉ2) = arg min
c0,c1,c2

n∑
i=1

∑
1≤j 6=l≤Ni

κ

(
Tij − s
dK

)
κ

(
Til − t
dK

)
× {Gi(Tij , Til)− c0 − c1(Tij − s)− c2(Til − t)}2,

with bandwidth dK .

Step 3 Let Ci(Tij) = Yi{Wij − µ̃X(Tij)} for 1 ≤ j ≤ Ni. The local linear estima-

tors of the cross-covariance functions g(t) and h(t) are g̃(t) = ĉ0/π̂ and

h̃(t) = c̃0/(1− π̂), respectively, where

(ĉ0, ĉ1) = arg min
c0,c1

n∑
i=1

Ni∑
j=1

κ

(
Tij − t
dg

)
{Ci(Tij)Ui − c0 − c1(Tij − t)}2,

(c̃0, c̃1) = arg min
c0,c1

n∑
i=1

Ni∑
j=1

κ

(
Tij − t
dh

)
{Ci(Tij)(1− Ui)−c0−c1(Tij−t)}2,

with bandwidths dg and dh.

Bandwidths dµ, dK , dg, and dh for the above smoothing steps are selected by

leave-one-curve-out cross-validation or generalized cross-validation. We denote

the estimators of λj and φj(t) by λ̃j and φ̃j(t), respectively. These can be cal-

culated from an eigenvalue decomposition of K̃(·, ·) using discretization and a

matrix spectral decomposition (Yao, Müller and Wang (2005a)). Therefore, mo-

tivated by the population representations in Section 2, θ, a, and b(t) are estimated

as follows:

θ̃ =

∑mn

j=1 λ̃
−1
j g̃2

j + µ̂2
1∑mn

j=1 λ̃
−1
j g̃j h̃j + µ̂0µ̂1

, and b̃(t) =

mn∑
j=1

b̃jφ̃j(t),

with

b̃j = λ̃−1
j

(1− π̂)h̃j + π̂θ̃g̃j

1− π̂ + π̂θ̃2
, and ã =

(1− π̂)µ̂0 + π̂θ̃µ̂1

1− π̂ + π̂θ̃2
−
∫
I
µ̃X(t)̃b(t) dt,

where f̃j =
∫
I f̃(t)φ̃j(t) dt and g̃j =

∫
I g̃(t)φ̃j(t) dt.

Next, we establish the consistency of the proposed estimators for sparse and

irregular functional data. Let ρn1 = d2
g + (ndg)

−1/2, ρn2 = d2
h + (ndh)−1/2, and

ρn3 = d2
K + (nd2

K)−1/2. We make the following assumptions for Theorem 4.

(B1) κ(·) is a symmetric probability density function on [−1, 1] and is Lipschitz

continuous: There exists 0 < L <∞, such that |κ(s)− κ(t)| ≤ L|s− t| for

any s, t ∈ [0, 1].
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(B2) Tij are i.i.d. copies of a random variable T defined on I with density

function ϕT (·), and there exist constants mT > 0 and MT < ∞ such that

mT ≤ ϕT (t) ≤ MT for all t ∈ I. Furthermore, the second derivative of

ϕT (·) is bounded on I.

(B3) The second derivatives of µX(·), g(·), and h(·) are bounded on I. All second-

order partial derivatives of K(s, t) are bounded on I2.

(B4) dµ → 0 and log(n)/(ndµ)→ 0.

(B5) dK → 0 and log(n)/(nd2
K)→ 0; supt∈I E|X(t)−µX(t)|4 <∞ and E|εij |4 <

∞.

(B6) dg → 0 and log(n)/(ndg)→ 0; dh → 0 and log(n)/(ndh)→ 0.

(B7) mn →∞, m
α+1/2
n ρn1 → 0, m

α+1/2
n ρn2 → 0, andm

2α+3/2
n ρn3 → 0 as n→∞.

Assumptions (B1)–(B5) are adopted from Zhang and Wang (2016). As-

sumptions (B4) and (B5) are special cases of (C1b)–(C3b) and (D1b)–(D3b),

respectively, in Zhang and Wang (2016) for sparse functional data. Assumption

(B6) is similar to (B4) and is used to establish the L2 rates of convergence of

g̃(t) and h̃(t). Assumption (B7) is a technique condition used in the proof of

Theorem 4.

Theorem 4. Suppose that Assumptions (A2)–(A3) and (B1)–(B7) hold. For

sparse data: max1≤i≤nNi ≤ N0 <∞, θ̃ is consistent and∫
I
{b̃(t)− b(t)}2 dt p−→ 0.

Remark 3. It is not clear whether θ̃ maintains root-n consistency for sparse

data. The rate of convergence for b̃(t) is also not defined. In addition, the

impact of Ni on the asymptotic properties of θ̃ and b̃(t) is unknown. These

topics warrant future research.

6. Simulation Studies

We conduct three Monte Carlo simulation studies to evaluate the numerical

performance of the proposed estimation and test procedures. In Section 6.1, we

examine the finite sample performance of θ̂ and θ̂∗ and b̂(·) and b̂∗(·) for different

sample sizes, variances of the error, and smoothness of the covariance function

K. In Section 6.2, we assess the type I error rate and the power of the statistic
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T ∗n . In Section S1 of the Supplementary Material, we examine the finite sample

performance of θ̃ and b̃(·).

6.1. Estimation

For r(X) = a+
∫
I X(t)b(t) dt, we adopt a design similar to that of Hall and

Horowitz (2007) and Yuan and Cai (2010); that is, I = [0, 1], a = 0, and b(t) is

given by

b(t) = 0.3φ1(t) +

50∑
k=2

4(−1)k+1k−2φk(t),

where φ1(t) = 1 and φk+1(t) = 21/2 cos(kπt) for k ≥ 1. The random functionX(t)

is generated as X(t) =
∑50

k=1 γkZkφk(t), where Zk are independently sampled

from a uniform distribution on [−31/2, 31/2]. It is clear that the eigenvalues of

the covariance function of X(t) are γ2
k . There are two sets of γk, the “well-

spaced” and “closely spaced” eigenvalues, used in Hall and Horowitz (2007) and

Yuan and Cai (2010). However, we only consider the “well-spaced” eigenvalues,

where γk = (−1)k+1k−α/2 with α = 1.1, 1.5, 2, 2.5.

Let θ = 1.5, and let U follow a binomial distribution with a success prob-

ability of π = 0.6. The error ε follows a normal distribution N(0, σ2), where

σ = 0.5 or 1.0. In addition, X(t), U , and ε are sampled independently. We

consider n = 200, 350, 500, and 800.

We repeat each configuration Q = 1,000 times, and choose mn using 10-fold

cross-validation. Table 1 presents the averages and standard deviations of the

estimated θ̂ and θ̂∗. For each combination of α and σ, the average value of θ̂

gets closer to the true value, and the standard deviation decreases as increases

n. Comparing the results for θ̂ and θ̂∗, θ̂∗ has a smaller standard deviation than

that of θ̂. This observation confirms that θ̂∗ is more efficient than θ̂.

We use the mean integrated squared error (MISE) to evaluate the perfor-

mance of the estimator b̂(t):

MISE(̂b(t)) = Q−1
Q∑
q=1

∫ 1

0
{b̂(t)[q] − b(t)}2 dt,

where {b̂(t)[q], q = 1, . . . , Q} are estimators of b(t) obtained from the Q = 1,000

data sets. MISE(̂b∗) is defined analogously. The MISE and the associated stan-

dard deviations of the estimates b̂(t) and b̂∗(t) are displayed in Table 2. For each

combination of α and σ, the MISE and the standard deviation decrease as n

increases. The MISE of b̂∗(t) is consistently smaller than that of b̂(t), and the
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Table 1. The results of the simulation study (estimation). The average and standard

deviation (shown in parentheses) of the estimators (Est) θ̂ and θ̂∗ for θ = 1.5.

Est σ n α = 1.1 α = 1.5 α = 2.0 α = 2.5

θ̂

0.5 200 1.582(0.306) 1.582(0.317) 1.557(0.321) 1.555(0.326)
350 1.546(0.221) 1.554(0.228) 1.557(0.238) 1.558(0.254)
500 1.526(0.178) 1.531(0.186) 1.531(0.197) 1.533(0.202)
800 1.517(0.147) 1.522(0.153) 1.524(0.159) 1.527(0.162)

1.0 200 1.633(0.399) 1.649(0.464) 1.621(0.504) 1.653(0.610)
350 1.573(0.289) 1.572(0.298) 1.581(0.330) 1.600(0.393)
500 1.548(0.236) 1.561(0.264) 1.567(0.282) 1.562(0.291)
800 1.525(0.175) 1.530(0.195) 1.548(0.212) 1.542(0.229)

θ̂∗

0.5 200 1.474(0.131) 1.471(0.140) 1.471(0.162) 1.493(0.192)
350 1.482(0.095) 1.487(0.102) 1.486(0.121) 1.485(0.135)
500 1.486(0.079) 1.490(0.085) 1.497(0.104) 1.499(0.115)
800 1.492(0.064) 1.495(0.071) 1.496(0.081) 1.498(0.090)

1.0 200 1.498(0.265) 1.499(0.305) 1.543(0.397) 1.518(0.442)
350 1.508(0.196) 1.505(0.216) 1.510(0.256) 1.523(0.300)
500 1.499(0.162) 1.509(0.192) 1.510(0.207) 1.513(0.224)
800 1.496(0.117) 1.496(0.137) 1.511(0.161) 1.501(0.182)

MISE increases with σ for given n and α. The MISEs of b̂∗(t) and b̂(t) also in-

crease with α, for given n and σ. Given σ, the standard deviations of the MISEs

of b̂∗(t) and b̂(t) seem stable with α when n = 800, but increase with α when n is

less than 800. It is interesting that the standard deviation of the MISE of b̂∗(t)

is consistently larger than that of b̂(t).

We also compare the proposed method with the FMR method (Yao, Fu and

Lee (2011)) under the current simulation setting, where the number of groups

is two for the FMR. Because the FMR is a nonparametric model, we can only

compare the performance of the estimators of b(t). Let b̂FMR(t) be the FMR

estimator of b(t) proposed by Yao, Fu and Lee (2011). The MISE and associated

standard deviation of b̂FMR(t) are displayed in Table 2. For each configuration,

the MISE and the standard deviation of b̂FMR(t) are consistently larger than those

of b̂(t) and b̂∗(t). This may indicate that the proposed estimators outperform the

competitor, b̂FMR(t).

6.2. Testing

We examine the finite sample performance of the statistic T ∗n given in Sec-

tion 4. We use the same setting for r(X) and U as that in Subsection 6.1, but

let θ = 1 and α = 1.1. Consider the following hypothesis:
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Table 2. The results of the simulation study (estimation). The MISE of the estimated

slope functions b̂(t), b̂∗, and b̂FMR. The corresponding standard deviations are given in
parentheses.

σ n α = 1.1 α = 1.5 α = 2.0 α = 2.5

b̂(t)

0.5 200 0.126(0.078) 0.103(0.061) 0.161(0.059) 0.345(0.074)
350 0.095(0.058) 0.080(0.044) 0.078(0.038) 0.085(0.042)
500 0.076(0.045) 0.067(0.034) 0.136(0.034) 0.136(0.027)
800 0.065(0.035) 0.060(0.026) 0.058(0.022) 0.061(0.021)

1.0 200 0.164(0.105) 0.155(0.099) 0.221(0.111) 0.247(0.134)
350 0.184(0.084) 0.214(0.098) 0.177(0.063) 0.195(0.078)
500 0.093(0.052) 0.089(0.050) 0.099(0.053) 0.167(0.051)
800 0.074(0.039) 0.071(0.033) 0.078(0.035) 0.095(0.048)

b̂∗

0.5 200 0.115(0.076) 0.092(0.058) 0.151(0.053) 0.337(0.069)
350 0.088(0.056) 0.073(0.042) 0.071(0.035) 0.077(0.039)
500 0.072(0.044) 0.062(0.032) 0.131(0.031) 0.132(0.025)
800 0.062(0.035) 0.057(0.025) 0.055(0.020) 0.058(0.020)

1.0 200 0.157(0.103) 0.145(0.094) 0.215(0.145) 0.242(0.135)
350 0.178(0.084) 0.166(0.066) 0.173(0.062) 0.189(0.074)
500 0.088(0.049) 0.084(0.046) 0.093(0.050) 0.164(0.049)
800 0.071(0.038) 0.068(0.030) 0.076(0.032) 0.092(0.048)

b̂FMR

0.5 200 0.479(0.353) 0.531(0.424) 0.696(0.706) 0.907(0.887)
350 0.359(0.298) 0.464(0.396) 0.597(0.563) 0.760(0.821)
500 0.299(0.274) 0.399(0.377) 0.535(0.550) 0.734(0.846)
800 0.241(0.257) 0.350(0.348) 0.467(0.530) 0.608(0.648)

1.0 200 1.106(1.097) 1.369(1.415) 1.961(2.552) 2.400(3.091)
350 0.955(0.873) 1.220(1.342) 1.640(2.051) 2.117(2.728)
500 0.911(0.883) 1.068(1.087) 1.596(2.175) 2.261(3.768)
800 0.756(0.737) 1.024(1.164) 1.326(1.640) 1.852(2.726)

H0 : θ = 1 versus H1 : θ = c,

where c ranges from 1 to 1.6, with an increment of 0.01. To show the effects of

estimating I(θ) using Î(θ), we proceed with Tn = {nI(θ)}1/2(θ̂∗ − θ) as though

I(θ) were known, and then compare it with T ∗n = {nÎ(θ)}1/2(θ̂∗ − θ). The exact

value of I(θ) is calculated using (3.2), with π = 0.6, θ = 1, and σ = 0.5 or 1.0,

and u2 is calculated as u2 = E
(∫ 1

0 Xb
)2

= 0.32 + 16
∑50

j=2 j
−(4+α).

We set 0.05 as the nominal level, and generate 1,000 data sets. Each consists

of n = 500 or 800 random samples in order to calculate the type I errors and

the power of Tn and T ∗n . Figure 1 displays the power against c for four different

settings: (σ, n) = (0.5, 500), (1.0, 500), (0.5, 800), and (1.0, 800). In each plot, the

solid and dashed lines denote the power functions of Tn and T ∗n , respectively.

These two curves are close to each other. This indicates good performance of
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Figure 1. The results of the simulation study (testing). The power functions of the test
statistic T ∗

n (dashed line) and Tn (solid line) for the four settings (1)–(4), corresponding
to (σ, n) = (0.5, 500), (1.0, 500), (0.5, 800), and (1.0, 800) for (1)–(4), respectively.

Î(θ) as an estimator of I(θ) and that T ∗n performs well. The type I errors (the

power at c = 1) for the four settings are displayed in Table 3. They are close

to the nominal level of 0.05. Moreover, we observe that the empirical size of the

power increases to one as c increases. The results show that the proposed T ∗n is

a useful test.

7. Application to an AIDS Data Set

In this section, we illustrate the proposed procedures by analyzing a data

set from an AIDS study. Here, CD4+ cells are targets of HIV and decrease



1908 XU, ZHANG AND LIANG

Table 3. The results of the simulation study (testing). Type I error rates of T ∗
n and Tn

for the four settings with respect to the nominal level 0.05.

(σ, n) (0.5, 500) (1.0, 500) (0.5, 800) (1.0, 800)
T ∗
n 0.053 0.058 0.052 0.057
Tn 0.055 0.061 0.052 0.048

Figure 2. Scatter plots of the viral load (upper panel) and the CD4+ cell count (lower
panel) against the treatment times for two arms.

in number after HIV infection. Thus, when antiviral therapies suppress the

viral load, the CD4+ cell count may recover to a higher level (Lederman et al.

(1998)). It is believed that the virologic response (measured by the viral load)

and the immunologic response (measured by the CD4+ cell count) are negatively

correlated during antiviral treatments. However, this relationship may not be
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Figure 3. The results for the CD4+ data set: The estimated slope function b̂(t) and
the 95% bootstrap pointwise confidence interval (left panel), and the Q–Q plot of the
residuals (right panel).

constant throughout the treatment period. In fact, discordance between the

virologic and immunologic responses has been observed in several clinical studies

(Mellors et al. (1996); Wu, Ding and DeGruttola (1998)).

Motivated by an ACTG study (Lederman et al. (1998)), we use model (1.2)

and apply the proposed procedures to analyze a data set from this study. Here,

53 HIV-1 infected patients were divided into two arms (arms 1 and 2) and were

treated with potent antiviral drugs. In all, 361 observations of viral loads and

CD4+ cell counts were obtained on days 0, 2, 7, 10, 14, 21, and 28.

The CD4+ and viral load patterns of the two arms show similarities (See

Figure 2), and a combination of these two arms may be beneficial to evaluating

the treatment and increasing its power. Here, θ reflects how close the effects of

the viral load on the CD4+ cell count are in the two arms. In our initial analysis,

the observations from the two arms were combined for the preliminary report.

We now rigorously evaluate the difference by estimating θ, and then investigate

whether such a combination is appropriate. We average the CD4+ count over

time and divide it by 1,000. We treated this as the response variable Y , and used

the viral load as the functional predictor X(t), t ∈ I, where I = [0, 29].

The smoothing parameter mn = 2 is obtained using leave-one-out cross-

validation. The estimated θ̂∗ = 0.9591. The estimated slope function, and the

associated pointwise confidence interval are depicted in the left panel of Figure 3.
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The pattern shows that the CD4+ cell count increases as the viral load decreases

in the primary treatment period. This negative relationship lasts until day 15,

and then changes to a slight positive trend. The right panel of Figure 3 plots the

normal Q–Q plot of residuals, and suggests a reasonable fit of the data. Then, we

consider whether the two treatment arms are significantly different; i.e., we test

H0 : θ = 1. The statistic |T ∗n | = 0.1392 < 1.96. This indicates that the difference

in the two treatments between the two arms may be statistically insignificant.

8. Discussions

In this study, we developed estimation and testing procedures for two-sample

functional linear models that combine two functional curves with similar pat-

terns. The proposed methods have the following properties: (i) the estimators

of the scalar parameter are asymptotically normal, and the estimators of the

nonparametric functions have optimal rates of convergence; (ii) the proposed

methods show promising performance in finite-sample situations; and (iii) the

implemented algorithm is computationally efficient.

Our two-sample FLM can be extended as follows. In general, our model

implies that the two curves differ by a constant θ, which may not be true; i.e.,

θ could also be a function of time. Thus, it would be interesting to estimate

this function and a and b(t), identify the limiting distributions, and then discuss

the efficiency of the estimates. However, there are considerable issues related to

identifiability and efficiency when estimating θ(t).

Furthermore, we have focused on modeling the linear relationship between

r(X) and X(t). Therefore, it would be of interest to extend the methods to

nonparametric and semiparametric relationships. However, the theory and im-

plementation of such extensions are much more complicated and warrant further

research. For example, the semiparametric asymptotic efficiency of estimating θ

when ε is unknown is a far more complex problem, both technically and practi-

cally.

Supplementary Materials

The Supplementary Material presents a simulation example continued from

Section 6, the proofs of Proposition 1 and Theorems 1 to 4, and the derivation

of the efficient score given in (3.1).
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