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Proofs of Theorem 1 and Theorem 2 and additional simulation studies mim-

icking the real data are presented in this supplementary material.

S1 Proofs of the Asymptotic Results

We define Zz] = (G”, XT) 5 52 (6, ’)/), Qlij (5, A) = {]_—f—OéA(}/U) exp(gTZij—i—
bi + 7"7;]')}71, Qgij(g, A) = exp(gTZij —I— bz —I— Tij)Qlij(ga A), and 931‘]‘(5, A) =

A(Y;;)Q0:;(0,A). We further define

V(070,47

Z Ay {log N(Yi)) 4+ 07 Zs; + by + 145} + (A + )log {Q1,5(6,A)}]

Jj=1
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2

1 b’ . 1
- {5 log(27a}) + 012 + % log(2ma?) + 5 log [3;| +

o)

+ I(Gi. = gi.) log{pi(9:.)}
if « >0, and

V(07;0,A)

—Z Ay {log A(Ysj) + 07 Zy; +b; + 145} — A(Yey) exp(8F Zij + by + 135)]

2

b;
_ {—log 2107) + — 2% log(27ra )+ —10g|2 |+ — 507 riS )

+1(Gi. = gi.) log{pi(9:)}

when o = 0. For abbreviation, we use ¥1;(6,A) = ¥(O};6,A) so the log-

likelihood function is

1,(0;0, A) :Zn:log [Z/ exp {W3,(0, A) }dbudr .
i=1 gi. Vi

In the following, we only prove the theorems for a@ > 0 as the proof is similar

when o = 0.

Proof of Theorem 1. If we can show the proposed objective function and
the proposed estimators satisfy conditions (C1)—(C5) of Theorem 1 in|Zeng
and Lin| (2010), then our Theorem 1 directly follows from their results.
Since the conditions (C1) and (C2) naturally hold under our conditions

(A.1)-(A.2), we only need to verify (C3), (C4) and (C5) in |Zeng and Lin
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(2010). To this end, we denote

‘I’m 0, A Z[ pz 91 HqIQij(§7 A)@D(bi,ri-;UQ)dbidT’m

szJ 1

where \Ilzij(g, A) = {Qgij(g, A)}Aij{Qlij(ga A)}l/aa w(bivri~302) = ‘Ei|_1/2

x (2mo?)"Y2(2n0?) /2 exp(— bzb rT?;;r) and o = (02, 02).

We first check condition (C3) in Zeng and Lin| (2010)). According to
(A.1) and (A.2), there exist constants m and M such that 0 < m <
exp{—(B8G; + 7' X;;)} < M < oo almost surely for all i = 1,...,n, j =

1,...,n;. Then, we have

al(Yij) + exp{—(BGy; + 7" Xi; + b + 135)} = {aA(Yij) + m} exp(—|b; + r45]),
al(Yij) + exp{—(8Gy; +~" X + b + 1i;)} < {aA(Yy;) + M]}exp(|b; + 735]).

(S1.1)

I | Al|yf0.7) is bounded, then \1:2@»(5, A) > [{ozA(T)—i—M} exp((bitr )],
s0 Wy, (0, A) > O(1){aA(T) + M} > 0. Thus, the second half of (C3)
holds. Furthermore, we let N;;(-) be a counting process of the jth fam-
ily member in ith family, by and the characteristic of logarithmic
transformation function H(-), there exist constants C; such that

Wyii(0, A)

<[] [ttt M1+ [ Ro(o)exn(@ 2 + bt rpan(e)}]

t<t
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<1+ a [ Ry exp(@ 2+ b+ r)an(s)}
Because exp(aTZij +b; +ri;) > exp{—O(1 + |b; + 145|) }, we have
1+a /0 t Rij(s) exp(07 Zij + b; 4 ri;)dA(s)
> exp{—O(1+ |b; + ry|)}{1 + oz/ot R;.(s)dA(s)}.
This gives
W2i(0, A) < exp{O(1 + [bi + 74)}
XH{H/ dA(s)} N {1+/OTRZ~A(s)dA(s)};.
t<r

(S1.2)

Hence, the other half of condition (C3) in [Zeng and Lin| (2010) holds.
We next verify condition (C4) in|Zeng and Lin| (2010). From inequation

(S1.2), we obtain |\Ilgl-j(5, A)| < exp{O(1 + |b; + r;;|)}. Thus,

a — —~ ~

< exp{O(1+ |b; + ri;]) }.
) 0

%\1/2”(5, A)‘ _ \qf%j(é, M{A; — (@A + 1)Qs(8, A)} X

< exp{O(1+ |b; +744])},

‘aA%” (@ A)[H| = [w5,@ A)(aAij+1)/0Yij 205 (B, AL (s)]

< exp{O(1 + |b; + 74])},
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where H belongs to a set of functions in which A + eH is increasing with

bounded total variation. Then by the mean-value theorem, we have

‘qIQZ](ﬂ( )777A) - ‘11213(5(2);%A)‘ S eXp{O(l + ‘bl + 7’@]‘)}|B(1) - 5(2)’7
| Waii (01, A) — Wai5 (0P, A)] < exp{O(1 + |b; + i)y — @),

‘\II2Z]<9 A(l)) \IIQIJ 0 A quzg 9 A*)[A - A(Q)]

)= ’6/\
< exp{O(1 + |bi + 1))} /0 IAD (5) — A (s)|ds.

Fix G;. = g;., by the form of ¢(b;, r;;0?), it holds

supE[/ exp{O(1 + |b; + 7i;]) }(bi, 74 az)dbidr,;} < 00,
bi,r;

o2

and there exists C' > 0 such that

wbz,n, ’)

U(bi, 73 0%)

‘¢(b17 T

I ‘ M(bi,Tz‘-;UQ)
¢(bz‘77"u

Y (bi, s 02)

< Cexp(1+ |b; +74l),

where ¢, ¢ and w indicate the first, second and third derivative with respect

to o2. Thus

Wi (00, AD) — Ty (6, A)|
<O(1) exp(1 + |b; +ri.\){\6(1) e +/ IAD (s) —A<2>(s>|ds}.
0
Similarly, we can verify the bounds for the other three terms in (C4) in

Zeng and Lin| (2010).

Condition (C5) in Zeng and Lin| (2010) follows from the identifiability
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result in Lemma (1| at the end of this appendix. Hence, we have verified all

conditions in Theorem 1 of|Zeng and Lin| (2010)) so our Theorem 1 holds. ]
Proof of Theorem 2. Consider a parameter set
H = {(h1, hs) : by € R%, hy(-) is a function on [0, 7] : ||h1]| < 1, ||he|lzy < 1},

where d is the dimension of 6. For subject i, by taking derivative with
respect to FEuclidian parameter # and A along the submodel 6 + e¢h; and
dA. = (1 + €hy)dA, we obtain a map S,, : (0, A) — [*°(H) defined as

Sa (0, A)[h1, ha] 2 nlézn (e EYORY: / t hg(s)dA(s))

0

e=0

= Polg(0, A)[h1] + Palr (0, A)[ha],
where P,, denotes the empirical measure based on n independent families,
lo(0, N)[I] = hi B {V1s(0, A)}, Ia(6, A)[ho] = Ep{Vai(6, A)[hal},
and Vig(0, A) = (I,2(6, )7, 50, { Ay — (alis + 1) 500, 0) } Zi5) "
Vai(0, A)[ho]
= "Z {Aith(Yz'j) — (@A +1) /OT Qa:(6, M) (s < Yz‘j)hz(s)d/\(s)}-
j=1

Here, E(Q) is defined as

[Z/exp{\ﬂu(@,/&)}dbidri.}12/Qexp{\l’u(@,/\)}dbidn..
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We further define map S: (6, A) — [*°(H) as the limit of S,,, and
S(6, A)[hy, hy] = Ply(6, A)[h1] + Pir(6, A)[ho],

where P is the expectation corresponds to the empirical measure IP,,, then
S (O, An) = 0 and S(by, Ag) = 0.

First, because [y and [, are bounded Lipschitz functions on M, and H
is a Donsker class, by Donsker theorem it is easy to know /n(S, (6o, Ao) —
S(6o, Ag)) converges weakly to a Gaussian process on H. Following the

arguments in Theorem 2 of [Murphy (1995)), we obtain that

W51 V1S, — S) (B, M) [ha, ha) — V/A(Sh — S) (60, Ao) [, ha|
hi,ho)EH

=op{1l +v/n([|0 — Ol + IA — Aol)}-

Next we show operator S(6y, Ay), which is the derivative of S(6, A) at
(6o, Ao), mapping set {(0—0p, A—Ag) : (6, A) is in the neighborhood of (6, Ag)}

to [*°(H), is continuous and invertible on its range. Note that

. ~ o
loo (0, ) [, a] =hT { By Via(0, VAT (0, 4) + By Vis(0,4)
— EfVii(0, AV E;VE(0,) [,
. 0
lon (6, M), o] =i { EpVis(0, A)Vai(60, 1) [h] + By V0, M) o

— EyVai(8, A E;Vas (0, M) o]},
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Ir6(6, A)[ha, hi] :th{EfVu(@a A)Vai (0, A)[ha] + Ef%VZi(ev A)[hs]

~ ByVid(0.0) By Var(6.8) ] .

0
oA

— Vi (0, A) [ £y Vi (0, ) o]

[5a (0, A)[ha, ha] =EVai(8, A) o] Vay (0, A)[ha] + By Vai(0, A)[ha, o

where
0 0 A) — di 1 o S & 2 T
%Vu(, ) = lag(r‘g—g—g,@— p a;(aﬁijﬂ)(&ng—QSij)Zz‘qu>’
a A a “ *\71T
a_Avlz(ea )[hQ] %V?l(evA)[hQ] = (0707;sz) )
and

~ ~ Yij

0

9 = .
Va0 M)l Do) = — D (ahy; - 1)

j=1

x[fﬁﬁgx&A%x@—%ﬂ&x&AyAm%xwwwwpu@MA@»
Hence,

S(0g, Ao)(0—0o, A—Ag)[hy, ho] = (0—6)T Ay (hy, hy)+ / ' Ay (hy, he)d(A—Ay),

0
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where Al(hl, hQ) = Blhl + thg + fO h2 Dl( )d

Dy(s) =By |Vai(0, ) S (g + 1) (0, A)I (s < Yij)}]

Jj=1
ng

~ ~ T T
+ By (0,0, 3 (g + 1){a;5(8, ) = 13050, M) Z51 (5 < Vi)

j=1

— EfVi,(0, M) Ef nz {(alyj +1)Q0;(0, A)I (s < Vi) },

j=1

As(h1, hs) = By(s)hy + C1(s)ha(s) + / " ho(t) Da(s, t)dt,

Ef[Z{A” — ) (g + 1) Q0 (0, A)I (s < Vi) }ZA”[
~ iy 2<aA 10y @)1 (s < ;)
- B¢ Z A=Y A 1000, A (s < Yi)}

x By ZAUI (s = YZ])}

and

X z": {(aA; + 1)921']'(5» A)I(t < Yij)}]

J=1
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n

- Ef{ > (@l —1)aQ3,(0, A)I(t < Yy, s < YU)},

j=1

and By, B> and Bj are in turn
By =By Va0, ) + By, AWVaul0, A)F — E{Vis(0, A) B Va0, A)”

B = {Vi0.0) 30 815 = ¥} — B0} 30 8105 = ¥y .

Jj=1 Jj=1

By(s) = By |Vis(6, ) nz (A, Ya) A 10,8 A) (s < Yij)}]

2 A80TG)
+ (0,0, (1) {a€2i5(8, A) = 13050, M) Z5 1 (5 < Vi)
j=1
B I(s =Y ~
— EfVll(H, A)Ef Z {A”% - (aAij + 1)921']'(9’ A)I(S S Y;J)}
j=1

It is easy to show that S(OO,AO) is a continuous Fredholm operator.
From Lemma at the end of this appendix, we show that if [g[h1]+Ix[ho] = 0
almost surely, then h; = 0 and hy = 0. Thus, S(fy, Ag) is one-to-one so is
invertible.

Finally, according to Theorem 3.3.1 of van der Varrt and Wellner| (1996)),
we conclude that \/ﬁ(é\n — by, A, — Ao) converges weakly to a mean zero

Gaussian process in the metric space B? x [*°(£). In addition, since
V(80 80) B — B0, Ry — o) [ ha] = (S, — S) (80, Ao) [ ha] + 0y(1).
we can choose a h3 such that S(6y, Ag)[h1, hi] = hy. Thus,

V(0 — 00)"hy = /n(Sy — S) (0o, Ao)[hn, h3] + 0,(1).
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We conclude that én is an asymptotically linear estimator for 6, and that

its influence function is on the space spanned by the score functions. Thus

~

0,, is an asymptotically efficient estimator. n

Lemma 1. Suppose that conditions (A.1)-(A.5) hold. If

> G = ) milgr)

o

X /f[l{)\(Yij)ﬂw(ﬁ,%A)}A”{Quj(ﬁ,%A)}i‘@b(bz‘,T¢~;02)dbidﬁ1
= Z (G = g:) pil)

X /H {/\O(Yij)szj(ﬁo,707Ao)}Aij{Quj(ﬁoﬁoyAo)}él/’(bi,ﬂ'-;Ug)dbz'dﬁ'},
j=1

(S1.3)

then 6 = 6y and A = Ay.

Proof. First, by condition (A.5), it holds

/ H {/\(Yij)Qmj (57 Y5 A)}Aij {Qlij (57 Y5 A)}i¢(bi> T UQ)dbidTiA
j=1

1
a

Z/H{)\O(Yij)inj(ﬁoﬁo,Ao)}A”{Qh‘j(ﬁoﬁo,Ao)} Y (bi, 75 08)dbdr.
j=1

(S1.4)
then it suffices to show that (S1.4)) implies § = 6y and A = A,.

LetY;; =0forj=1,...,n;, Ay = 1and A;; =0 for j # 1, then (S1.4)
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becomes

)\(O) exp(ﬂgil + ’)/TXﬂ) /exp(bl + T‘il)’l/J(bi, ;.3 UQ)dbidTi.

=X0(0) exp(Logi1 + ’YoTXil) /eXp<bi + i) (biy 7 0(2)>dbidri->
which could be written as
log A(0) + Bgij + 7" Xij + Cp,(0%) =10g Ao(0) + Bogi; + Vo Xij + Cn, (07)-

According to condition (A.4), we first conclude that 8 = Sy and v = 7.
Fix any k such that 1 < k < n;, let A;; = 1, Y;; = 0 in (S1.4) for
Jj = 1,...,k; for those j such that j > k, if A;; = 0, then replace Y;; = T,

otherwise integrate Y;; from 0 to 7. Then we obtain

k g 1=y
/H A(0) exp(b; + r4) H {1+ aA(r)exp(Bgi; + 7" Xij +bi +1i5) ) °
Jj=1 j=k+1
1 1 T ~1184 9
X [a — a{l—'—CKA(T) exp(ﬂgij —|—’}/ Xij —|—bl—|—7“”)} :| w(bi,ri.;a )dbzdrl
k i 1Ay
= /H )\0(0) eXp(bi + rij) H {1 + OKAO(T) exp(ﬁogij + VgXZ] + bz + 7“7;]')} «
Jj=1 j=k+1
1 1 T _174A 9
X [a — a{l + C(Ao(’T) exp(ﬁogij + Yo X’U + bz + 7'1])} a:| w(bza Tis Uo)dbidri-'
(SL.5)

Since {A;; : j = k+1,...,n;} are arbitrary, by summing over A;;, j =
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k+1,...,n;, on both sides of (S1.5)), we obtain

K
//\(O)k H exp{b; + 7i;}9(b;, i 0% )dbidr;.
=1

k
j=1
of 0 oty 0
Let ¥* = , 2y = where Y; is the kinship
0 o2 0 02X

(S1.6) turns to be

matrix, then by moment generating function,

(S1.7)

Condition (A.1) implies that A(0) > 0. Note that the index set {1, ..., k}

in can be replaced by any subset of {1,...,n;}. Thus, eg;E*eij/ =

e Xeis J # 3’ 4,7 = 1,...,ni. By (A.4) we obtain o} = o3y, 07 = 07,
and A(0) = \o(0).

Let A;; = 1 in (S1.4) and integrate Y;; from 0 to y, y € [0,7]. For

7 =2,...,n;, we use the same argument to yield

_1
/ {1 + aA(y) exp(Boga + %TXu +b; + Til)} “1p(bi, ri.; Ug)dbidﬁ.

:/ {1 + aMo(y) exp(Bogin + %TXﬂ +b; + 7"1‘1)}_510(517 ri; 08)dbydr..
(S1.8)

Let t = Ag(y) > 0 where y € [0,7], and g(-) = Ao Ag'(-) > 0. Then (S1.8)
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can be written as

/ {1 + ag(t) exp(Bogi + ’Y(?Xil +b; + Til)}ia@b(bia T3 Jﬁ)dbidn.
:/ {1 + at exp(Bogi + Vo Xi1 + bi + Til)}faq/J(bi, ri; 00)dbidr;..  (S1.9)
By definition, we know ¢(0) = 0, and g is a continuous and differentiable

function. By taking first derivative with respect to ¢ on both sides of (S1.9)),

then let ¢ = 0, we obtain ¢’(0) = 1. Similarly, by doing the second deriva-

tive, third derivative and so on, we obtain ¢ (0) = ¢g®(0) = --- = 0.
Hence, we conclude that g(t) = t, ¢'(t) = ¢ (t) = --- =0, t > 0. That is,
AG) = Aol?). =

Lemma 2. Suppose conditions (A.1)-(A.5) hold, for family i, the equation
l(60, No) [ha] + 1a (80, Ao)[h2] = 0
almost surely implies hy = 0 and hy = 0.

Proof. From condition (A.5), lg(fy, Ao)[h1] + Ia(fo, Ao)[ho] = 0 implies that

for each G;. = g;.,

lo(B0, No)| g, . (] + Ia (80, No) |, _, [ha] = O, (S1.10)

-
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Thus,

0= / Iy 1y2 (B0, Ao) Rai (B0, Mo, by, 7470 (bi, 75 00 )dbydr.
+ /Z {2y — (14 alyj)Qsi; (00, Ao) b1y Zis
j=1

x Ryi(0o, Ao, by, 73510 (biy ri; 03 )dbidr;.

Y.

+/i{Aijh2(Yij) - (1+04A¢j)92ij(5071\0)/ ) h2<5)dA0(5)}

0

X Rli(eo, Ao, bi, Tz'j)w(bi; T Ug)dbldm, (Slll)

where hy = (h1}, h1,)T and

R1i<907 A07 bi7 TZ]) = H {)\0(}/;4)92”(50, AU)}AM {Qllj (507 AO)}ail'

j=1
We next show that establishes hy = 0 and hy = 0. The argument
is similar with that in the proof of Lemma

First, we let G;; = ¢;; and X;; be fixed. Then for a fixed k, where
1 < k < n;, we define a sequence measures iy, ..., fin, on {0,1} x [0,7] as

follow. Let A be any Borel set from the Borel o-field on [0, 7], then

b ({0} x A) = 0, ({1} x A) = I(0 € A), m <k,

({0} x A) =1(1 € A), um({1} x A) = [ I(z € A)dz, m > k.
We integrate both sides of (S1.11)) over {(A;1,Yi1), ..., (Ain;, Yin,)} with

respect to [["_, ftm. The integration we made here is actually equivalent
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to let A;, = 1 and Y;,, = 0 for all m < k, and let Y;,,, = 7 if A;,, =0
and integrate Y, from 0 to 7 if A;,, = 1 for £ < m < n;. The resulting

integration with k& < m < n; is actually 0. We sum all the equalities of

(S1.11)) for all possible combinations of {A; ji1, ..., Aiy, }-
For the first term on the left side of (S1.11)), for any (b;,7;;), by the

integration with respect to d([["_; pim), if 7 < k, then we have

/ hfll.ag (00a AO)Rli(Q()? AO’ bi’ rij)d( H Mm)
m=1

= hils2(00, Ao) ] Ao(0) exp(Bogij + 76 Xij + bi + 735),

m<k

if j > k, then

0 :/h1T1jgg(90,Ao)Rli(90,Ao,bi,ﬁj)d(H fm)
m=1

= H X0(0) exp(Bogij + Vo Xij + bi + 135)

m<k

Xy {(1—Aij)h{1iag(907Ao)Rlz‘j(HoaAo(T)’bi,Tij)
A;;€{0,1}

+Aij/ h1T1ja§(90,Ao)Ruj(@o,Ao(t),bi,rij)dt},

0

where

Ruij (B0, Mo(1), b, 717) = {0 (£) Qa1 (Bo, Mo) Y2 {155 (B0, Ao) Y/ T (Vi > 1).
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Hence,

//h1T1jag(Q0;Ao)R1i(907A0,bi77‘z‘j)¢(bz‘,Ti~;0(2))db¢d7’i.d(H fim)

m=1

= / hily2 (80, Ao) H X0(0) exp(Bogim + V0 Xim + bi + Tim) 0 (bi, 73 05 ) dbidr..

m<k

(S1.12)

Let Zi; = (g, X;)T, then using a similar argument, we have

//Z {Ai; = (14 ali)Qsi5(00, Ao) Y 1o Zis
j=1

X Ryi(00, Mo, bis 7i5)0 (biy i U(Q))dbidri-d(H fm)

m=1

k
= / > Zij T 20(0) exp(Bogim + %0 Xim + bi + rim )b (bi, s o) dbydr.,

j=1 m<k

(S1.13)

and

//i:i;{Aith(Yij)_/OYij(l"'_O‘Aij)Q%j(go,Ao)hz(S)dAo(s)}

X Rii (6o, Ao, biarij)w(bia T3 U(Q))dbidri-d(H fim)

m=1

= Z h2(0) / H X0(0) exp(Bogim + V0 Xim + bi + Tim )0 (b, 7.5 03 ) dbidr..

j<k m<k

(S1.14)

Combine (51.12), (S1.13)) and (S1.14)), and after integrating over b; and r;;,
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we obtain that

k k k
(> €ij) Sy ( (> i) + > M Zij + kha(0) = 0,
1

j=1 ]: j 1

DO | —

hiir Oixn, ‘ _
where ¥p,, = , hi1 = (hi11, hi1o)T. Since the subscript

Onix1 h1122
of j is arbitrary, for any 1 < ky < ks < n;, we have

ko
1
5( Z eij)TEhH Z eU Z h Zz] + kz lﬁ)hg(O) = O,
Jj=k1 Jj=k1 Jj=k1

hence it leads to fel%,, e, + thZ-j +hy(0) = 0 and e/}, €5 =0, 7 # 5.

2645
Again by (A.4), we obtain that hy; = 0, his = 0, hence hy = 0.
In equation (S1.11f), we let Y¥;; =0, j = 2,...,n, and A;; =1, j =

1,...,n;, then we have

ha(Yir) = / " ha(y)dAo(y)

y / (14 a)exp(BoGa + 74 Xi1 + b + i)
{1 -+ OéAQ(Y;l) exp(ﬁoGil + "}/gXll -+ bl —|' Til)}a71+2

X eXP(Z BoGij + 70 Xij + i+ 1i;)1(bi, ri; 06 )dbidr.

=2
X { exp(D 52, BoGij + 5 0 Xij + bi +7i5) 8 (i, i 05) db-dr: B

{1 + aMo(Yi1) exp(BoGin +E X + bi + 7“2‘1)}0671Jr1 o
(S1.15)

Let g*(t) = fot ha(s)dAo(s), then (S1.15) can be written as a homogeneous
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ordinary differential equation
1 dg*(t)
Xo(t) dt
) / (1+a)exp(3_7L, BoGij + V& Xij + b + 1rij)(by, 7}1, a3)
{1+ aho(Yir) exp(BoGir + ¢ X + b +1:1) }* 2
y [/ exp(3_7L, BoGij + 75 Xij + bi +145) 0 (bi, 1 0F)
{1 + alo(Yir) exp(BoGir + 75 Xa + bi + 7“1‘1)}a_hrl

dbidri} -

with boundary condition ¢*(0) = 0. By solving this equation, we obtain
g*(t) =0, t € [0,7]. Hence, hy(-) = 0 by (S1.15)). The proof is completed.

]

S2 Additional Simulation I

In the additional simulation study, we mimic the real application setting,
where we consider only one confounder ‘Education’. We generate the ob-
servations of education by randomly sampling the standardized values of
education from the real data. We simulate genotype with the same fre-
quency as APOE-e4. The coefficient for the genotype is 0.930 and for the
education is —0.687. The transformation model corresponds to o = 2 and
the baseline hazard rate is set to be a constant so that the survival probabil-
ity at year 20 (age 70 is year 0) is 20% (i.e., Ag(t) = ¢(0.27*—1)/(20cr)). We
generate censoring time from the uniform distribution so that the censoring

rate is around 80%. We generate 300 and 500 families respectively with
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heterogeneous pedigree structures randomly sampled from 1705 families in
real data, where 1013 families contain only proband and the remaining 692
families contain only parents and/or parents with different number of sib-
lings. We set o7 = 0.132 and o2 = 0.224. The simulation is conducted with
500 replicates.

We summarize the estimated coefficients and hazard rates in Table
S.1 comparing our method and the regular transformation method using
proband data only. The results show that the proposed method still per-
forms reasonably well using proband and relatives data even under heavy
censoring scenario. While the results with proband data only are less accu-
rate and efficient, especially the estimate of genetic effect. In addition, we
also report the estimated o based on maximizing the profile likelihood on
a grid-search-point set {1.0,1.2,1.5,1.8,2.0,2.2,2.5,3.0} in Table S.2. The
results reveal that the proposed profile likelihood method for o works well
using both proband and relatives data. The semiparmetric transformation
model for only proband data is a misspecified model but still flexible. How-
ever, the estimated « using proband data only is no longer around the true

value.
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Table S.1: Simulation results of the additional simulation I

Proband with relatives Proband only

n Par True Bias SD SE CP% Bias SD SE CP%

300 B 0.930 —0.017 0.344 0.336 94.6 —0.078 0.366 0.245 82.5
vy —-0.687 —0.010 0.153 0.153 95.3 0.055 0.158 0.118 84.3
A(r/4)  0.120 0.003 0.025 0.028 96.1 0.006 0.029 0.025 91.3

A(r/2) 0.240 0.002 0.045 0.048 96.0 0.001 0.055 0.042 88.2

of 0.132 —0.040 0.343 0.389 89.6

o? 0.224 0.030 0.141 0.232 96.8

T

500 B 0.930 0.004 0.264 0.260 94.7 —0.098 0.282 0.188 79.6
¥ —0.687 —0.009 0.120 0.120 94.8 0.039 0.128 0.091 81.6

A(r/4)  0.120 —0.004 0.019 0.023 95.6 0.012 0.023 0.020 88.8
A(r/2) 0.240 —0.005 0.036 0.039 95.4 0.012 0.051 0.033 84.3

o? 0.132 —0.027 0.193 0.212 93.7

o2 0.224 0.019 0.125 0.140 95.7

s

S3 Additional Simulation I1

We perform more simulation studies for the special case of 02 = 0, and com-
pare the results with that of the approach without considering the polygenic
heterogeneity. Note that when o = 0 the proposed transformation model
reduces to the frailty model. We consider the setup of Case I scenario with

a = 0. Other setup is similar to the simulation in Section 4.
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Table S.2: Counts of the estimated as in additional simulation I

n  Proband 1.0 12 15 1.8 20 22 25 30

300 with relatives 67 16 23 29 276 22 46 21

proband only 240 39 38 31 21 22 29 80

500 with relatives 38 15 17 33 282 36 56 23

proband only 185 40 46 35 29 24 31 110

The simulation results are summarized in Table S.3. Overall, the pro-
posed method performs equally well with the frailty method. Despite that
the biases by the proposed method are slightly bigger than that by the
frailty method and the SDs are slightly smaller than that by the frailty
method, but the values of Bias and SD by the two methods are approx-
imately around the same level. Particularly, because the 95% confidence
interval (CI) of o2 is constructed using the Satterthwaite approximation,
the lower bounds of Cls are always positive. Therefor, the empirical CP
corresponding to o2 always equals to constant 0. To address this prob-
lem, we adjust the 95% CI by forcing those lower bounds below some small
number, say 0.05, to 0. In specific, when n = 300 the empirical mean, SD,
SE and CP of the estimated o2 by adjustment are 0.101, 0.093, 0.127 and

85.5% respectively, and when n = 500 the corresponding results are 0.099,
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Table S.3: Simulation results of the additional simulation II with Case I scenario

Proposed Model Frailty Model

n Par True Bias SD SE CP% Bias SD SE CP%

300  of 0.25 —0.031 0.097 0.097 96.6 0.000 0.090 0.085 94.2
B 0.50 —0.028 0.285 0.277 94.8 —0.010 0.284 0.269 94.6

¥ —0.50 —0.035 0.096 0.098 95.2 —0.016 0.093 0.093 95.2

A(r/4) 0.75  0.030 0.172 0.167 94.6 0.027 0.169 0.166 93.8

A(r/2) 1.50 0.089 0.336 0.334 964 0.053 0.321 0.318 934

500  of 0.25 —0.029 0.070 0.074 95.8 —0.002 0.063 0.065 95.6
Ié] 0.50 —0.009 0.225 0.211 94.5 —0.002 0.222 0.208 94.0

¥ —0.50 —0.031 0.074 0.076 95.3 —0.011 0.071 0.072 95.2

A(r/4) 0.75  0.007 0.135 0.128 94.3 0.012 0.133 0.126 94.0

A(r/2) 1.50 0.064 0.267 0.253 95.5 0.027 0.256 0.241 93.6

0.068, 0.100 and 92.5%.
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