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Supplementary Material

In this supplement, we provide the proofs of Theorems 1-4, Corollaries 1 and 2, Lemmas
1 and 2, and Remark 5 in the main paper. Throughout this supplement, the symbol C denotes
a positive constant which is not necessarily the same one in each appearance, I(A) denotes the
indicator function of the event A. It proves convenient in defining that log + = max{1,Inz} for

z >0, where Inx denotes the natural logarithm.

Proof of Lemma 1. If z1,-- - , z, are all nonnegative, we have that

P(X1Yi <z, XnVi < 2)

= /.../[(gjly1 <z, Tl < 2n) AFxy o X Yy Yo (1, Ty Yy 5 Yn)

= /~~~/I(a:1y1 <z, TnYn < 2n) dFxy oo x, (1,0 y20)dFyy oy, (Y1, 0, Yn)
(by independence of {X, } and {Y,.})

://P(QZ1Y1 SZ17"' ,mnYnSZn) dFXl,---,Xn(wh'" 73771)
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IN

/.../p(myl <z1)- - P(xnYy < 2,) dFx, .. x,(z1, @) (by NOD of {¥,})
= E[Fy,(21/X1) - Fy, (20/X0)]

< E[Fy, (21/X1)] -+ E[Fy, (2. /X2)] (by NOD of {X,})

_ / / Iz < 21) dFy, (y1)dFx, (z1) - - / / I(@nyn < 20) dFY, (yn)dFx, (2n)

= // I(ziyr < 21) dFx, v (21, 91) - "//I(ﬁﬂnyn < 2n) dFx,, v, (Tn, Yn)
(by independence of {X, } and {Y,.})

=P(X1Y1 < 21) - P(Xo Y < 23).
Otherwise, we have that
PXY1 <z, , XpYn<2zp) =P(X1Y1 <21) - P(XpYn < 2p) =
Similarly, we also have that
P(X1Y1>z1, -, XpYn > z) S P(XaY1 > 21) - P(Xp Yo > 2n).

Therefore, X1Y1,---,X,Y, are NOD. O

To prove Theorem 1, we need the following lemma which is the Rosenthal moment inequal-

ity for sums of NOD random variables.

Lemma A. (Asadian et al., 2006). Let {X,,n > 1} be a sequence of NOD random variables
with EX, = 0 and E|X,|° < co for some s > 2 and all n > 1. Then there exists a positive

constant C depending only on s such that for alln >1,

E

s n n s/2
SO BIX + (Z EX,?)
k=1 k=1

S
k=1
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Proof of Theorem 1. We can rewrite Y, (wnr Xx — Ewnp EX3) as

n

Z(wnka — EwnkEXk)

k=1
n n
= Z(wIkX; - Ew:kEle) - (w:ka_ - Ew:kEXk_)
k=1 k=1
n n
+ ) (W Xy — BwEXy) =Y (w X — Bw EX]).
k=1 k=1

Since {X;7,n > 1} and {X,,, n > 1} are still sequences of NOD random variables, and {w;'k,7 n >
1,1 <k <n}and {w,,,n>1,1 <k < n} are still arrays of NOD random variables, we may
assume that {X,,n > 1} and {wyk,n > 1,1 < k < n} are all nonnegative. Note that for all

>0,

Zl P {11%1]?%(” Wnh > Enl/p} < Z P{w,, > Enl/p}
o—

n=1k=1

o0 n

<O WS i,
n=1 k=1

<cC Z ntmP < o
n=1

By the Borel-Cantelli lemma,
n~Y? max wpp — 0 as. (1)
1<k<n

The moment condition EX” < co is equivalent to S P{X > nl/ﬁ} < oo, and hence

> P{X, >n'"} < 0.

n=1

By the Borel-Cantelli lemma, the series

> X I(X, > n''?)
n=1
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converges almost surely. Then we have by (1) that

n~t/? E W Xp I (X > nl/B) < (nfl/p ax wnk) XeI( Xy, > nl/ﬁ)
ST
k=1 SRS

< -1/p " X, I(X 1/8
NS -

—-1/p 1/8
< (n 1rsnkasxnwnk) ZXkI(Xk > k")

— 0 a.s.
Since n*/PI(X}), > n/?) < X, I(X; > n*/?), we also have that
n_l/prnknl/BI(Xk >n'?) 50 as.
k=1
On the other hand, by Remark 2,
n /P ZEwnkEXkI(Xk >nl/Py=n /P (Z Ewnk,) EXPHP1(X > nl/P)
k=1 k=1

<Con YeEXPI(X > n'/P)

— 0,
and hence
n S BB (071X > 0M%)) <n VYT Bun EX(X0 > 1t%) - 0.
k=1 k=1

Hence, to prove the result, it suffices to prove that

n_l/pz (wnka(nl/B) —EwnkEXk(nl/B)) —0 a.s., (2)

k=1

where X (n'/?) := X3 I(X), < n'/?) 4+ n/PI(X; > n'/?). Note that {Xj(n'?),n > 1,1 <

k < n} is still an array of nonnegative rowwise NOD random variables. By the Borel-Cantelli

lemma, to prove (2), it suffices to show that

=

(wnka (TLl/B) — EwnkEXk (nl/B))
k=1

>€n1/p}<oo7 Ve>0. (3)
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Set
Xk = W Xp (0 P)I(wnp Xe (nP) < 0Py + 0P I(w,p X1 (n*P) > n/P).

Then, by Lemma 1, {wn,Xx(n*/?),n > 1,1 < k < n} is an array of rowwise NOD random
variables. Since X, is an increasing transformation of wn X (n*/?), {Xnk,n > 1,1 < k < n}

is still an array of rowwise NOD random variables. Note that

{ >€n1/p}

C Uzzl {wnka (nl/ﬁ) > nl/p} @] { Z (Xnk — EwnkEXk(nl/B))
k=1

n

(wnka (TLI/B) — EwnkEXk (TLI/B))

k=1

> Enl/p} . (4)

By the Markov inequality and a standard computation,

n

P{wnka (nl/ﬂ) > nl/p}

M2

1k=1

3
Il

o/ (1B
1n pE(wnka(n ))

Il
—

n k

n

M

n~*? BuwS, EX®(n''?)

n=1k=1
<ey T EXUIX <0 40P P {X > 010}
n=1
=0 P EXCIi-1< X7 < i)+CZP{XB > n}
n=1 =1 n=1

:CiEX“I(i—l <X’ gi)in*“/ﬁ +CiP{XB >n}
n=i n=1

i=1

< CEX? < oo, (5)
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and by Remark 2,

n~ P

ZEw R EXi (") ZEXnk
k=1

<n*1/PZEw £ X5 (0 2) L (wni Xy (n?) > n*/?) +ZP{w WXi(0!%) > 0t}
k=1

<op /P Z Ewnp Xp (0 P) I (wnp Xi(nt?) > nt/?)
k=1

" B+1-8
=m "> B (wnka (nl/ﬁ)) I(Jwn Xe(n'/?)] > n'/?)
k=1

<2n (Z Ew’ ) EX®

<con' PP =cn P 5.

(6)
Hence by (4)-(6), to prove (3), it suffices to show that
Z {Z Xt — EX 1) >5n1/p}<oo, Ve>0. (7)
n=1 k=1

By the Markov inequality and Lemma A, we have that for any ¢ > 2,

{ >€n1/p}

q/2 n
( _2/pZEXnk) +Cn” PNy EXE,. (8)
k=1

If B < 2, then

5 ) n
I(wnp Xp(n*?) < n'/Py 4 2P ZP{wnka(nl/B) > nl/p}

= E (wnka(nl/B
k=1
(

< E (wnka nl/B
1

< 2p(2=R)/p (Z Ew’ ) EX?

k=1

)
B+2-8 - B
)) I(wne Xp(n/?) < n'/?y 4 n?/Pp =877 ZE (wnka (nl/B))
k=1

~
Il

< Cpit@=-B/r — op2/e—B/o
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Choosing ¢ > 2a/3, we have

o n q/2 53]
3 (n/ 3 Exgk) <O ) <o
k=1

n=1 n=1

If 3 > 2, then

ZEX2 < (ZEw )EX2 <C
k=1

k=1

Choosing ¢ > 2/(2/p — 1), we have

3 (n2/P ZEX%«) <O R <o,
k=1

n=1 = n=1

For any ¢ > a,

S EXL=YE (wnkxk(nlfﬂ))q Twne Xe(n'?) < n'/?)
k=1 k=1

4+ nd/P ZP {wnka(nl/B) > nl/p}
k=1

kid oat+g—a
<Y E (wnka(nl/B)) I(wne Xe(n'/?) < nt/?)

k=1

+nd/Ppo/P ZE (wnka(nl/B))
k=1

< opla—)/p (Z szk) EX® (nl/ﬂ)

k=1

< CnlJr(q*a)/PEXa (nl/B)

— CntZ/P*Oé/BEXOé (nl/B)7

(10)
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which implies that
> on PN EXL <CY n *PEX (')
n=1 k=1 n=1

o0
=0y P EXCIX <) 40P {X >0t}

n=1

:Ciln“/ﬁilEX“I(i—1<XB gi)—f—CiP{XB >n}

= CiEX‘*I(i— 1< X’ < i)in*“/ﬁ +CiP{XB > n}
i=1 n=t

n=1

< CEX? < 0. (11)
Thus (7) follows from (8)-(11). The proof is completed. O

Proof of Corollary 1. If o > 2p, then the result holds at once by Theorem 1. Now we
consider the case a = 2p. Then 8 = 2p and E|wX|** = E|w|*’ E|X|*® < co. As in the proof of
Theorem 1, we may assume that X,,n > 1, and wnpr, » > 1 and 1 < k < n, are nonnegative.
By Lemma 1, {wnp Xk, n > 1,1 < k < n} is an array of rowwise NOD random variables. By a
result of Taylor et al. (2002),

o

> (war Xy — EwEX)

>5n1/p} <oo, Ve>0,
k=1

which ensures the result by the Borel-Cantelli lemma. O
To prove Theorem 2, we need the following Fuk-Nagaev inequality for NOD random vari-

ables. One can refer to Chen and Sung (2017).

Lemma B. Let {{x,1 < k < n} be a sequence of NOD random variables such that for some

n

D (& — B

k=1

q>2, Elx|?* < o0 for 1 <k <n. Then, for any € >0 and § > 0,
2

P{ >E}S2eXP{—m}+C;E|§k|q/Eq7

where C' is a positive constant depending only on § and g.
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Proof of Theorem 2. Set a, = /2nlogn,b, = n'/?(logn)'/?, n > 1. Note that for all £ > 0,

M2

P{ max Wpg > Enl/z}
1<k<

<n

o0

E P{ max Wpk >5an} <
1<k<n

n=1 n=1

n

P{wpr > snl/Z}

n=1 k=1

<ot Eug,
n=1 k=1

< Can_a/z < 00.
n=1

By the Borel-Cantelli lemma,
-1
G IDAX Wnk —0 as. (12)

The moment condition EX? /(log X)#/? < oo is equivalent to

iP{X > bn} < oo

n=1

Then by the Borel-Cantelli lemma, the series

i XoI(Xn > bn)

n=1

converges almost surely. Then by (12),

n n
ay’ ;wnkaI(Xk >by) < (a;1 1ISHI?SXn wnk> ;Xk[(Xk > bn)

< la;?! " XeI(X
< (an [nax w k>; k(X > b)

—0 as.
Since bp I(Xy > bn) < XpI(Xy > bn), we also have that

agl ankan(Xk >bn) >0 as.
k=1



Pingyan Chen, Tao Zhang and Soo Hak Sung

On the other hand, by Remark 2,

n
ay' Y Bwuk EXpI(Xg > by)

k=1

" En: Xx# -
s 1 LA, S 8/2 §
- (klenk) E [(log X)6/2 X' 7P (log X)P/?I(X > by)

x#

T > o)

< Cn*“‘*E{

— 0,
and hence
n n
ay' > Bwnk Eb (X > by) < ay' Y Bwak EXpI(Xg > bn) = 0.

k=1 k=1

Let Xy (bn) := XpI(Xi < bn) + b I(Xy > bn). Then, to prove the result, it suffices to show

that
limsup'zk:l(w Xk (ba) Wak X (b )| <p as. (13)
n—00 4223
By the Borel-Cantelli lemma, it suffices to show that
ZP{ > (wak X (bn) — Bwnk Xk ()| > 5an} < oo, Ve>p (14)
n=1 k=1

Note that {Xx(bn),1 < k < n} is still a sequence of nonnegative NOD random variables. By
Lemmas 1 and B, we have that for any § > 0,

p{ >}

52112 _ ”
<2exp{ — — n =+ +Ca,” E (Wnp X (b))
{ <2+6>2“E<wnm<bn>>2} Z:: (1 X )

n

> (wok Xk (bn) — Bwnr X (ba))
k=1

2¢’nlogn .
<2 — - @ E (wnrp X (b)), 1
<2 { =gyt g |+ O Y (o) 1

the last inequality follows from the fact that EXZ(b,) < EX?=1foralln >1and 1<k < n.

Since £ > p, we can choose § closed to zero enough such that 1/2¢2/(2 + &) > p, which ensures
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that

- 2e’nlogn }
expq — - - < oo. (16)
; { (2+0) Xhoy Ewyy

By a standard computation,

<Y 0t (logn) " * (EX I(X < by) + by P{X > by})

=C> n *P(logn) *PEXI(X <b,) +C > P{X >ba}

n=1 n=1

< CEX"/(log X)"/? < . (17)
Thus (14) follows from (15)-(17). The proof is completed. O

Proof of Remark 5. To prove the first inequality, let a = lim inf,,_, (Tf1 >orel Ewik)l/Z =
limm oo infr>m (n7 D0, Ewik)l/z. Then, for any € > 0, there exists a positive integer N

such that
" 1/2
nu>1fn <n_1ZEwik) —a|<e itm>N,
= k=1
which implies that
" 1/2
<n_1ZEwik) >a—¢ ifn>N.
k=1

It follows that

i exp (_ u®nlogn ) > i exp (_ u? logn)
n=N 22:1 Ewik n=N (ll B 5)2 .

If w < a —e¢, the second series diverges, and hence the first series also diverges. By the definition
of p, we have that p > a — ¢. Since € > 0 was arbitrary, we obtain that p > a. Hence the first

inequality holds. Similarly, the second inequality also holds. [
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Proof of Corollary 2. By E(wX) =0,
anka :Z(w”k —Ewnk)Xk—{—(Ew) (Xk —EXk),
k=1

k=1 k=1

and by the classical Hartman-Wintner law of iterated logarithm (see Hartman and Wintner,

1941),

" (X, - EX
lim sup |2 (X Wl _ VE(X —EX)? as.,
n—oo v2nloglogn

which ensures that

| 2 hey (X — EXy)

li =0 as.
171111_)5;1? v2nlogn a8
Thus, to prove the result, it suffices to show that
" nk — Ewni) Xk
lim sup |2y (e Woke) X =+ E(w— Ew)? as. (18)

n—o00 AV 2n log n

So we can assume that Ew = 0. For any M > 0, set

Wyg, = Wni I (|wnk| < M) — BwniI (Jwni| < M),
whg = WakI(|wnk| > M) — Bwpi I(|wni| > M).

Then wpx = wl,; + w, and

|20k wnn el [0y WXl [y WXl |30y WXl [ Dk Wik X

. (19

V2nlogn V2nlogn = /2nlogn T  2nlogn + V2nlogn (19)
By Theorem 2.3 of Li et al. (1995),
. |ZZ—1w;Lka’|

1 ==L — = /E(wl <M)-EwIl < M))? as., 20

im sup A=W, = /BT (] < M)~ Bl (] < M7 as (20)

and by Remark 7,

n n X

lim sup | k=1 U Xkl S~ Bel(w] > M) as. (21)

n—00 V2nlogn

Since

E(wI(w| £ M) — BwI(jw| £ M))* = Ew®, E(wI(jw| > M) — EwI(Jw| > M))> =0
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as M — oo, (18) follows from (19)-(21). The proof is completed. O
Proof of Lemma 2. We prove the result by induction on k.
(i) If k = 1, then EX,, = np, and we take C; = 1. Assume that EX} < Cinp, for i < k. We
can write the expansion of X, (X, —1)--- (X, — k) as
k
Xo(Xn = 1) (X0 —k) = X5 4+ 3 aix).
i=1

Since E [X,(Xn — 1) (Xn — k)] =n(n—1)--- (n — k)pE™, we have that
k -
EX," =nn-1)---(n—k)p;" = > wEX,
=1

k
<n(n—1)--(n-kpy* + > |ai| EX,

i=1

k
< (pa)* ™+ |ailCinpa
i=1
k

= npn{(npn)k + Z la:|C:}

i=1

k
< npafct + ) JailCi}
=1

Hence, we can take Cy41 = c* + Zle |ai|Cs.
(ii) If ¥ = 1, then EX,, = np, and we take D; = 1. Assume that EX’ < D;(np,)" for i < k.

Then

k
EX; ™ <nn—1)--(n—k)pi™ + ) || EX,,
i=1
k

< ("pn)k+1 + Z |a¢|Di(npn)i

i=1

k
= (npa)" {1+ Z |ai| Di(npn) "7}

i=1

k
< (npn) L+ Y Jas| Did” T

i=1

Hence, we can take D1 =1+ 3% | |a;|Dyd™*"1F. O
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Proof of Theorem 3. Since m(n)(wn1,Wn2, - ,Wnyn) has the multinomial distribution with
parameters (m(n),1/n,1/n,--- ,1/n), m(n)wn1, m(n)wn2,- - ,m(n)ws, are negatively associ-
ated (see Joag-Dev and Proschan, 1983) and hence NOD. In particular, m(n)w,s has the

binomial distribution with parameters m(n) and 1/n. Then by Lemma 2, for any a > 1,

n na+1
ZE|nwnk|°‘ ——— E|m(n)wn1|*
k=1

m(n)>

mime - Olm(n)/n), — if m(n)/n <1,

-O(m®(n)/n®), iUm(n)/n>1

(i) We can rewrite n'~1/? (X, —EX) as

n n
n' TP (Xy —EX) =n'"Y?P (Z(“’nkX’f — BwwEXy) + Y Bw BXy — EX)
k=1 k=1
= nlil/p Z(’wnka — EwnkEXk)
k=1

=0~ " (nwnk Xi — nEwnk EX).
k=1

Without loss of the generality, we can choose 8 closed to p enough such that a > 2p (if
E|X|? < oo, then E|X|BI < oo for 0 < 8 < B), where 1/a + 1/8 = 1/p. Thus (3.1) holds by
(22) and Theorem 1.

(ii) Note that

"X - BX| =) se
2logn 2logn

. 1

N v2nlogn

ank(Xk — EXy)
k=1

n

)

NWnk (Xk — EXk)
1

k=
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and it is easy to show that

. > u’nlogn
mf{u> 0: Zexp (_Z;l—lE—(f'w?ﬂc)z> < o0

N . e B u? log n
_1nf{u>0-ngleXP( (n/m(n))(l—l/n)+1> <OO}

<+Vr+1.

Without loss of the generality, we can choose 8 close 2 enough such that o > 4, where 1/a +

1/8 =1/2. Thus, (3.2) holds by (22) and Theorem 2. The proof is completed. O

Proof of Theorem 4. By (3.3) and (3.4), we have that for all n > 1,

po D=t Xnkek =X 3pien _—

I;n - S2 , Gn —a=—X,(by —b) + €n, (23)

where & =n" '3} €.

(i) By (23), to prove (3.5), it suffices to prove that

n_l/pZXnkek — 0 a.s., (24)
k=1
n tPX, Z er = 0 as., (25)
k=1
liminfn™'S2 >0 a.s. (26)
n—r 00

By Corollary 1, (24) holds. By the Kolmogorov strong law of large number for an array of
rowwise NOD random variables (see Taylor et al., 2002), and the Marcinkiewicz-Zygmund
strong law of large number for a sequence of NOD random variables (see Wu, 2010),
X, - EX as., n ‘7P ZE’“ —0 as, (27)
k=1

which ensure (25). By the moment condition, EX? exists, and EX? > (EX)? whenever X

is non-degenerated. Thus there exists M > 0 such that EX”(M) > (EX)?, where X(M) =
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XI(|X|<M)+ MI(X >M)— MI(X < —M). Then by the Kolmogorov strong law of large

number for an array of rowwise NOD random variables (see Taylor et al., 2002) again,

n—>00 n—00

liminf n~'S? = lim inf <n_1 ZX’%’“ — )_(2)
k=1

=liminfn 'Y X7 — (EX)?

n—r oo
k=1
= liminfn~" kZ {(XF)7 + (X)) — (BX)?
=1

> liminfn™" Y {(X(M))” + (X7 (M))*} — (EX)?

n—00 P
= E(XT(M))? + E(X (M))? — (EX)? as.

=EX*(M) - (EX)*>0 as.,

which implies (26). Hence (3.5) holds. The equation (3.6) follows from (3.5), (23) and (27).
The proof of (i) is completed.

(it) By Corollary 2,

: | 2 k1 Xnrel »
1 —t==——"— = \/E(X — EX)?Ee? as. 28
17gsogp V2nlogn ( )*Ee (28)

By the Kolmogorov strong law of large numbers for an array of rowwise independent random
variables (see Hu et al. 1989),
X, = EX as., n7'Sy=n""> X5, - X7 - BE(X’) - (EX)” as,, (29)
k=1
and by the classical Hartman-Wintner law of iterated logarithm (see Hartman and Wintner,
1941),

Dkt €k
= —0 as. 30
v2nlogn as (30)

Then (3.7) follows from (23) and (28)-(30). The equation (3.8) follows from (3.7), (23) and (30).

The proof is completed. [
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