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The supplementary material contains the proofs of Theorem 1 (Section S1.1), Proposition 1

(Section S1.2) and Theorem 2 (Section S1.3), additional numerical studies on the ordering of

blocks for SFSA (Section S2.1), prediction performance of SFSA compared with other com-

peting methods for a large (100,000) 2D spatial example (Section S2.2), performance of both

parameter estimation and prediction of SFSA for a medium size 2D spatial data (Section S2.3),

the Bayesian analysis results of a precipitation dataset (Section S2.4), and a discussion on se-

lecting the nearest neighboring blocks based on the residual correlations (Section S3).

S1. Proof of Theorems

S1.1. Proof of Theorem 1

We provide the proof of Theorem 1 here. Without loss of generality, let β = 0

for notation simplicity. We first prove that the approximated density in (2.7) is

Gaussian. Let U denote C(S, S∗)C(S∗, S∗)−1, Uk denote C(Sk, S∗)C(S∗, S∗)−1,

and UN(k) denote C(SN(k), S
∗)C(S∗, S∗)−1; then

K∏
k=1

p(yk|yN(k),w
∗,θ) is propor-

tional to:

exp{−1

2

K∑
k=1

(yk − Ukw
∗ − Σk,N(k)Σ

−1
N(k)(yN(k) − UN(k)w

∗))T

× Σ−1k|N(k)(yk − Ukw
∗ − Σk,N(k)Σ

−1
N(k)(yN(k) − UN(k)w

∗))} ·
K∏
k=1

|Σk|N(k)|−
1

2 ,

where Σk|N(k) = Σk − Σk,N(k)Σ
−1
N(k)Σ

T
k,N(k), Σk = Cs(Sk, Sk) + τ2Ink

, Σk,N(k) =

Cs(Sk, SN(k)), and ΣN(k) = Cs(SN(k), SN(k)) + τ2InN(k)
. Next, we introduce nota-
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tions for obtaining the quadratic term of the Gaussian density. Let

Bk,l =


Ink

, if l = k;[
−Σk,N(k)Σ

−1
N(k)

]
(·, n(l−1) + 1 : n(l)), if l ∈ N(k);

0, otherwise,

where n(l) =
∑

1≤i≤l,i∈N(k) ni, and recall that N(k) denotes the neighbor set for

the k-th block. Let B∗k = (Bk,1, . . . , Bk,K), then we can obtain that

yk − Σk,N(k)Σ
−1
N(k)yN(k) = B∗ky

and

Uk − Σk,N(k)Σ
−1
N(k)UN(k) = B∗kU.

Therefore,

K∏
k=1

p(yk|yN(k),w
∗,θ) ∝ exp{−1

2

K∑
k=1

(y − Uw∗)TB∗Tk Σ−1k|N(k)B
∗
k(y − Uw∗)} · |Σcon|−

1

2

= exp{−1

2
(y − Uw∗)TBTΣ−1conB(y − Uw∗)} · |Σcon|−

1

2 ,

whereB = (B∗T1 , B∗T2 , . . . , B∗TK )T ∈ Rn×n and Σcon = diag{Σ1|N(1), . . . ,ΣK|N(K)}.
Since Bk,l is a nonzero matrix only for l ≤ k, B is an n×n lower-triangular matrix

with ones as its diagonal entries. Hence, |B| = 1 and it is clear that

K∏
k=1

p(yk|yN(k),w
∗,θ) = N (Uw∗, B−1ΣconB

T−1

).

Recall that the marginal likelihood by SFSA is:

p̃(y|θ) =

∫
w∗

K∏
k=1

p(yk|yN(k),w
∗,θ) · p(w∗|θ)dw∗.
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After integrating out w∗, it can be shown that

p̃(y|θ) ∝ exp{−1

2
yTBT (Σ−1con − Σ−1conBUΣw∗U

TBTΣ−1con)By}

×|UTBTΣ−1conBU + C−1∗ |−
1

2 · |Σcon|−
1

2 · |C∗|−
1

2 , (S1.1)

where C∗ ≡ C(S∗, S∗) and Σ−1w∗ = UTBTΣ−1conBU+C−1∗ . By Sherman-Woodbury-

Morrison inversion formula,

Σ−1con − Σ−1conBUΣw∗U
TBTΣ−1con = (Σcon +BUC∗U

TBT )−1. (S1.2)

Therefore,

BT (Σ−1con − Σ−1conBUΣw∗U
TBTΣ−1con)B = (B−1ΣconB

T−1

+ UC∗U
T )−1.

By using the fact that |B| = 1 and the Sylvester’s theorem, we can show that

|B−1ΣconB
T−1

+ UC∗U
T |

= |B−1| · |Σcon| · |In + Σ−1conBUC∗U
TBT | · |BT−1 |

= |Σcon| · |Im + UTBTΣ−1conBUC∗|

= |Σcon| · |UTBTΣ−1conBU + C−1∗ | · |C∗|. (S1.3)

Thus, the marginal likelihood by SFSA follows the Gaussian distribution given

in Theorem 1. It is also straightforward to prove the positive definiteness of the

covariance matrix C†y in Theorem 1. Recall that Σcon is obtained based on the

residual covariance function Cs(s, s′) + τ2δ(s, s′), where δ(·, ·) is the Kronecker

delta function, it is hence positive definite by the Schur complement rule. In ad-

dition, B is a lower triangular matrix of a full rank n, and the predictive process

covariance, C(S, S∗)C(S∗, S∗)−1C(S, S∗)T , is positive semi-definite. Therefore,

the approximated data covariance matrix, C†y, is positive definite.

S1.2. Proof of Proposition 1

Without loss of generality, we assume β = 0 for notation simplicity. Let the

partition rule P partition the predictive location set Sp into K disjoint blocks

Sp,k, k = 1, . . . ,K, with the corresponding observation vector yp partitioned as

yp = ∪Kk=1yp,k; suppose that each yp,k has a size np,k such that
∑K

k=1 np,k = np.
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Then according to the assumptions of SFSA, the joint density of yp and y is

approximated as follows:

p̃(yp,y|θ) =

∫
p̃(yp|y,w∗,θ) · p̃(y|w∗,θ) · p(w∗|θ)dw∗

=

∫ K∏
k=1

p(yp,k|yk,yN(k),w
∗,θ) ·

K∏
k=1

p(yk|yN(k),w
∗,θ) · p(w∗|θ)dw∗.

Let Up,k = C(Sp,k, S∗)C(S∗, S∗)−1 and Bp,k = (Bp,k,1, . . . , Bp,k,K), where Bp,k,l

has the similar definition to Bk,l in (2.8), encoding the residual dependence infor-

mation of yp,k given its neighbors, yk and yN(k), for the l-th block, l = 1, . . . ,K.

The Gaussian density p(yp,k|yk,yN(k),w
∗,θ) has the following quadratic term:

(yp,k − Up,kw
∗ +Bp,k(y − Uw∗))TΣ−1p,k|N(k)(yp,k − Up,kw

∗ +Bp,k(y − Uw∗)),

where Σp,k|N(k) is the residual conditional variance of yp,k given its neighbors.

Let B∗p,k = (0, . . . , Inp,k
, . . . ,0, Bp,k) ∈ Rnp,k×(n+np), ỹ = (yT

p,1, . . . ,y
T
p,K ,y

T )T ∈
R(n+np)×1, and Ũ = (UT

p,1, . . . , U
T
p,K , U

T )T ∈ R(n+np)×m; then the quadratic term

of p(yp,k|yk,yN(k),w
∗,θ) can be written as:

(ỹ − Ũw∗)TB∗Tp,kΣ−1p,k|N(k)B
∗
p,k(ỹ − Ũw∗).

Hence,

p̃(yp,y|θ) ∝
∫

exp{−1

2

K∑
k=1

(ỹ − Ũw∗)TB∗Tp,kΣ−1p,k|N(k)B
∗
p,k(ỹ − Ũw∗)}

× exp{−1

2
(y − Uw∗)TBTΣ−1conB(y − Uw∗)}

× exp{−1

2
w∗C−1∗ w∗} ·

K∏
k=1

|Σp,k|N(k)|
− 1

2 · |Σcon|−
1

2 · |C∗|−
1

2dw∗,

where C∗ ≡ C(S∗, S∗), and Σcon and B are given in Theorem 1. Let B∗p =

(B∗Tp,1, . . . , B
∗T
p,K)T and Σp,con = diag{Σp,1|N(1), . . . ,Σp,K|N(K)}; then it can be

shown that

K∑
k=1

(ỹ − Ũw∗)TB∗Tp,kΣ−1p,k|N(k)B
∗
p,k(ỹ − Ũw∗) = (ỹ − Ũw∗)TB∗Tp Σ−1p,conB

∗
p(ỹ − Ũw∗).
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Let Bp = (BT
p,1, . . . , B

T
p,K)T , B̃ =

(
Inp

Bp

0 B

)
and Σ̃con =

(
Σp,con 0

0 Σcon

)
;

since B∗p = (Inp
, Bp), it can be shown that

p̃(yp,y|θ) ∝
∫

exp{−1

2
(ỹ − Ũw∗)T B̃T Σ̃−1conB̃(ỹ − Ũw∗)− 1

2
w∗C−1∗ w∗}

×|Σ̃con|−
1

2 · |C∗|−
1

2dw∗.

After integrating out w∗, one can obtain that

yp,y|θ ∼ N (x̃β, B̃−1Σ̃conB̃
T−1

+ ŨC∗Ũ
T ),

where x̃ = (xT
p ,x

T )T . Since

B̃−1 =

(
Inp

Bp

0 B

)−1
=

(
Inp

−BpB
−1

0 B−1

)
,

by the properties of the Gaussian distribution, yp|y,θ ∼ N (µp,Σp), where µp

and Σp are given in Proposition 1.

S1.3. Proof of Theorem 2

Since assumptions (5.1) and (5.2) are the block-version assumptions for the

nearest neighbor Gaussian process, by using the results in Datta et al. (2016),

we can verify that the finite dimensional density defined in (5.3) satisfies the

conditions of Kolmogorov consistency theorem and hence leads to a valid spatial

process, denoted by w̃†s(s). According to the law of total covariance,

˜Cov(w̃†s(s), w̃
†
s(s
′)) = Ẽ( ˜Cov(w̃†s(s), w̃

†
s(s
′)|w̃s(S)))

+ ˜Cov(Ẽ(w̃†s(s)|w̃s(S)), Ẽ(w̃†s(s
′)|w̃s(S))),

where ˜Cov(·, ·) and Ẽ(·) are the covariance and expectation operators for the

spatial process w̃†s(s). The covariance function of w̃†s(s) can be readily obtained

using the law of total covariance. We take the scenario that s, s′ /∈ S but belong

to the same block k for illustration. In this case, Ẽ(w̃†s(s)|w̃s(S)) = −Bsw̃s(S)
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and Ẽ(w̃†s(s′)|w̃s(S))) = −Bs′w̃s(S), thus

˜Cov(Ẽ(w̃†s(s)|w̃s(S)), Ẽ(w̃†s(s
′)|w̃s(S))) = Bs

˜Cov(w̃s(S), w̃s(S))BT
s′ = BsΣ

†
yB

T
s′ ,

where Σ†y = B−1ΣconB
T−1

. Following the assumption given in (5.2), we can

see that ˜Cov(w̃†s(Sp,k), w̃†s(Sp,k)|w̃s(S)), is the residual conditional variance of

w̃s(Sp,k) given its neighboring observations w̃s(Sk) and w̃s(SN(k)), denoted by

Σp,k|N(k). Thus,

Ẽ( ˜Cov(w̃†s(s), w̃
†
s(s
′)|w̃s(S))) = Σp,k|N(k)(s, s

′).

S2. Ordering of Blocks for SFSA and Additional Numerical Results

S2.1. Ordering of blocks for SFSA

We discuss the effect of block ordering on the likelihood approximation for

SFSA. Following Guinness (2016), here we consider four block ordering methods:

1) The sorted coordinate ordering that sorts blocks according to their x- and

y- coordinates (denoted by “SC”); 2) the maximum-minimum-distance ordering

(denoted by “MMD”); 3) the random ordering (denoted by “RAND”); and the

center-out ordering that orders the blocks according to their distances to the

center of all observation locations (denoted by “CO”). For the SC ordering, we

sorted the blocks first according to their y-axis coordinates and then according to

their x-axis coordinates; for the CO ordering, the center of observations is defined

as the mean of coordinates of all observation locations. Since the Kullback-Leibler

(KL) divergence measures the distance between the approximate likelihood and

the full likelihood, we compare the performance of different ordering methods

in terms of the KL divergence values that are obtained by plugging in the true

parameter values.

Table 1 shows the KL divergence results for two simulation examples. The

first example is the 2-dimensional example in Section S2.3 with 4000 non-uniformly

distributed observations, and the second example is the 2-dimensional example

in Section S2.2 with 105 uniformly distributed observations; since calculating the

determinant of the full covariance matrix is computationally expensive for large

sample size, for the second example of 105 observations, we randomly selected

104 observations for calculating the KL divergence. For each simulation example,
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we considered the Gaussian covariance function with different range values.

It is clear that for the non-uniformly distributed observations (example 1),

the CO ordering produces the best results, while for the uniformly distributed

observations (example 2), the SC ordering performs the best. The MMD ordering

works the best for the nearest neighbor Gaussian process (Guinness, 2016) but

does not work very well for SFSA, which may be because the ordering of SFSA

is for approximating the residual likelihood instead of the original likelihood.

Table 1: The Kullback-Leibler divergence for the approximated likelihood by SFSA with
different methods for the block ordering. For SFSA, the number of neighboring blocks
q = 1.

Example 1 SC MMD RAND CO
φ = 0.2 377.52 429.68 357.35 299.83
φ = 0.5 319.79 366.59 311.97 254.36
φ = 2 83.99 90.34 82.47 77.96

Example 2 SC MMD RAND CO
φ = 0.5 204.96 257.78 234.53 214.75
φ = 2 1.30 1.56 1.61 2.35

S2.2. Prediction for a large 2D spatial data

We generated 100, 000 locations in a (0, 10) × (0, 10) square domain. The

data were realizations from a Gaussian process with mean zero and a Gaussian

covariance function with σ2 = 1 and τ2 = 0.1; we varied the range parameters to

account for different dependence scales. Two prediction scenarios were consid-

ered: 1) Prediction on 10, 000 randomly selected locations (denoted by “MAR”)

and 2) prediction on locations in a spatial hole (4, 6) × (4, 6) in the central re-

gion of the study domain (denoted by “MBD”); the first scenario accounts for

the small-range prediction performance and the second scenario accounts for the

large-range prediction performance.

We compare SFSA with a few state-of-the-art methods, including the lo-

cal GP with adaptive designs (LaGP) (see Gramacy and Apley (2015)), the

nearest-neighbor GP (NNGP) proposed by Datta et al. (2016), and the variants

of SFSA (including FSA-Block and CBCL); note that CBCL is a block-version

of NNGP. For LaGP, we consider three heuristics for selecting the local design

points: The active-learning-cohn heuristic (alc) proposed by Cohn (1996), the
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nearest-neighbor heuristic (nn), and the mean-squared-prediction-error heuristic

(mspe) developed in Gramacy and Apley (2015). For different heuristics, the

total number of design points is 100, and the alc and mspe heuristics start with

50 nearest neighbors; we also considered the LaGP with a larger number of near-

est neighbors (500 neighbors), denoted by “nn-big”. For NNGP, the observed

location set was used as the reference set and the observations were ordered ac-

cording to the sum of their x- and y- coordinates; then 100 nearest neighbors

were selected for both parameter-estimation and prediction steps. For SFSA,

the blocks are regular blocks with centers on a 20× 20 regular grid in the study

domain, and the nearest neighboring block is used to correct the residual covari-

ance matrix; the knots are from a regular-grid location set with m = 225. As

discussed in Section 2.5, the sorted-coordinate (SC) ordering and the center-out

(CO) ordering were used for SFSA under the MAR and MBD prediction scenar-

ios, respectively. FSA-Block and CBCL are special cases of SFSA with q = 0

and m = 0, respectively.

Table 2: Mean Squared Prediction Errors (MSPEs) of SFSA (and its variants), LaGP,
and NNGP. The results were obtained based on 20 simulated data sets.

Gauss SFSA LaGP FSA-Block NNGP CBCL
range design nn alc mspe nn-big
φ = 0.5 MAR 0.101 0.102 0.101 0.101 0.100 0.101 0.101 0.102

MBD 0.264 0.363 0.306 0.301 0.282 0.308 0.334 0.351
φ = 2 MAR 0.100 0.101 0.101 0.101 0.101 0.100 0.101 0.101

MBD 0.104 0.186 0.134 0.134 0.134 0.104 0.175 0.176

The prediction results are summarized in Table 2. For the MAR scenario,

all the methods have comparable prediction performances, indicating that they

all have very similar performances for small-range predictions. For the MBD sce-

nario, SFSA outperforms the LaGP method with different heuristics on selecting

local design points; especially for a larger range value φ = 2, SFSA results in

a much smaller MSPE. Hence SFSA has better large-range prediction perfor-

mances than the local GP approximation. For the LaGP method, the alc and

mspe heuristics lead to much smaller prediction errors than the nn heuristic,

indicating that choosing some points far away from the prediction location can

help improve the prediction accuracy. But using the alc or mspe heuristic is more
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computationally expensive, with similar computational time to the nn heuristic

with 500 local design points. The NNGP method has better prediction perfor-

mances than the LaGP with the nn heuristic, but it is inferior to LaGP with the

alc and mspe heuristics.

Under the MBD scenario, FSA-Block does not work very well for a small

range φ = 0.5, since its low-rank component cannot give a satisfactory approxi-

mation to the original process; it gives similar results to SFSA for a larger range

φ = 2 as expected, since the low-rank component approximates the original pro-

cess quite well in this case. The CBCL method is a block-version of NNGP and

yields slightly inferior prediction performances to NNGP. Since SFSA is a com-

posite of FSA-Block and CBCL, it yields more robust prediction performances

for different range values, and under different prediction scenarios.

S2.3. Parameter estimation and prediction for a medium size spatial

data

In this section, we compare SFSA with its variants FSA-Block and CBCL

in terms of both parameter estimation and prediction; the results by the full

covariance model (denoted by “FM”) are the “gold standard,” since it the-

oretically works the best. We generated 4000 locations in a square domain

S ≡ [0, 10] × [0, 10]. These locations were non-uniformly distributed, with 500

locations in each of the sub-domains [0, 5] × [0, 5] and [5, 10] × [5, 10], 1000 lo-

cations in the sub-domain [0, 5] × [5, 10], and 2000 locations in the sub-domain

[5, 10] × [0, 5] (see Figure 1). We considered two prediction settings: 1). Pre-

diction on locations near block boundaries (denoted by “Boundary”), where

block boundaries were created by a 10 × 10 regular grid on S (sx = 1, . . . , 9

and sy = 1, . . . , 9 constituted the block boundaries). The locations within 0.15

distances to the crosses of block boundaries were selected for prediction, and the

rest of locations were used for parameter estimation; 2). prediction on locations

in spatial holes (denoted by “Hole”), where locations in two rectangle regions

[1.5, 3.5]× [4.5, 5.5] and [6.5, 8.5]× [4.5, 5.5] were selected for prediction, and the

rest of locations were used for parameter estimation.

For both simulation settings, the regular-grid block boundaries were used

to define blocks for all comparison methods, and equally spaced grid knots were
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(a) Prediction around block boundaries.
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(b) Prediction in holes.

Figure 1: Upper panels show training and prediction locations for the “Boundary” sce-
nario and lower panels show training and prediction locations for the “Hole” scenario.
The rectangle boxes in lower panels indicate the hold-out spatial holes.

used for both FSA-block and SFSA; for SFSA and CBCL, the neighbor set SN(k)

for the k-th block was specified as the nearest neighboring block (q = 1), and the

block numbers were ordered from left to right, top to bottom. The simulation

data sets were generated from the GP model with β = 0 and the Matérn co-

variance function with a nugget effect. We experimented the Matérn covariance

function with different smoothness- and range-parameter values for comparing

performances of different methods.

Table 3 shows the parameter-estimation results for the simulated data with

the Gaussian covariance function under the “Boundary” prediction scenario. We

will focus on this scenario, since for parameter estimation, no big differences are
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observed between the “Boundary” scenario and the “Hole” scenario. We obtained

Relative Efficiency (RE) for parameter estimators by each method, where RE is

defined as the ratio of Mean Squared Error (MSE) of an estimator by FM to that

by using an approximated inference method. A RE value as close to 1 as possible

is preferred, because the full covariance model theoretically leads to estimators

of the highest efficiencies (in terms of the smallest MSEs).

Table 3: Parameter-estimation results for the Gaussian covariance function. Relative
Efficiencies (REs) of parameter estimates by different methods are reported and the
results were obtained based on 200 simulated data sets. For FSA-Block and SFSA,
m = 100 equally spaced knots were used.

Gauss SFSA FSA-Block CBCL
σ2(1) 0.80 0.67 0.82
φ(0.2) 0.70 0.44 0.71
τ2(0.01) 1.03 0.90 1.02

σ2(1) 0.90 0.73 0.86
φ(0.5) 0.60 0.36 0.56
τ2(0.01) 0.87 0.78 0.87

σ2(1) 0.89 0.60 0.48
φ(2) 0.62 0.32 0.26

τ2(0.01) 0.94 0.93 0.95

For the Gaussian covariance model (the Matérn covariance with ν →∞) with

a small range (φ = 0.2 or 0.5), SFSA and CBCL have comparable REs and both of

them outperform FSA-Block. This is because the predictive-process component

in SFSA/FSA-Block cannot borrow much information from the knots due to the

weak correlations between observations; hence in order to increase the parameter-

estimation efficiency, it is more effective to borrow information from neighboring

locations than to increase the knot number. When the range is relatively large

(φ = 2), SFSA leads to the largest relative efficiencies for both the variance and

the range parameters among three approaches, since borrowing information from

either the neighboring locations or the knot locations is very effective in this case;

also both SFSA and FSA-Block outperform CBCL, which may be because CBCL

ignores correlations between each block and its non-neighboring blocks, and the

loss of dependence information is more severe for a large range value. Since for

all three range values, SFSA results in either comparable or higher REs for all

covariance parameters, it is more robust to data-dependence structures in terms



12 BOHAI ZHANG, HUIYAN SANG AND JIANHUA Z. HUANG

of parameter estimation.

Then we compare prediction performances of these three methods. Table 4

shows Mean Squared Prediction Errors (MSPEs) of each method, under both

“Boundary” and “Hole” scenarios. For the “Boundary” scenario, SFSA and

CBCL have comparable MSPEs for the Gaussian model with small range values,

and both methods have much smaller MSPEs than those by FSA-Block in this

case. This is because the smooth component, predictive process part of FSA-

Block, does not perform well for small range values with limited number of knots;

and conditioning on “similar” neighboring observations for predictions (set q ≥ 1)

is more effective to reduce prediction errors at locations around block boundaries.

When φ increases to 2, all three methods have comparable MSPEs, and SFSA

and FSA-Block have slightly smaller MSPEs than that by CBCL. This indicates

that enhancing the predictive-process component in FSA-Block for large range

values can help reduce prediction errors around boundaries significantly.

Table 4: Prediction results for the Gaussian covariance function, under both
the“Boundary” scenario and the “Hole” scenario. Mean Squared Prediction Errors
(MSPE) and their standard errors (in parentheses) were obtained based on 200 sim-
ulated data sets. For FSA-Block and SFSA, m = 100 equally spaced knots were used.

Gauss SFSA FSA-Block CBCL FM
φ = 0.2 Boundary 0.063 (0.010) 0.091 (0.015) 0.069 (0.012) 0.023 (0.003)

Hole 0.321 (0.137) 0.337 (0.144) 0.331 (0.143) 0.267 (0.115)
φ = 0.5 Boundary 0.023 (0.003) 0.032 (0.004) 0.028 (0.004) 0.012 (0.001)

Hole 0.093 (0.040) 0.116 (0.051) 0.110 (0.051) 0.050 (0.024)
φ = 2 Boundary 0.012 (0.001) 0.012 (0.001) 0.014 (0.001) 0.010 (0.001)

Hole 0.014 (0.003) 0.016 (0.003) 0.024 (0.006) 0.012 (0.002)

For the “Hole” scenario, SFSA outperforms other two methods for the Gaus-

sian covariance model with different ranges, indicating that combining the strengths

of borrowing dependence information from neighboring locations around holes

and the knot locations close to holes can further increase the prediction accu-

racy. Especially for a moderately large range value (φ = 0.5), SFSA leads to

much smaller MSPEs than other two methods, since either borrowing informa-

tion from neighbors (CBCL) or borrowing information from knots (FSA-Block)

is not sufficient in this case.

Last, we investigate the effect of the number of neighboring blocks (q) on the
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Figure 2: Relative Efficiencies (REs) and MSPEs versus q for SFSA using the Gaussian
covariance model with σ2 = 1, φ = 2, and τ2 = 0.01, under the Boundary scenario. The
q-nearest neighboring blocks were chosen as the neighbor set for SFSA. The case q = 0
corresponds to the FSA-Block result.

performance of parameter estimation and prediction of the SFSA. The left panel

in Figure 2 shows the parameter-estimation results for the Gaussian covariance;

we used m = 100 equally spaced knots and K = 100 equally partitioned blocks

for the SFSA approach. For this relatively strong data-dependence structure,

q = 3 (with about 120 neighboring observations for each block) can lead to REs

of all estimators larger than 0.8. The right panel in Figure 2 shows how MSPEs

decrease with increasing values of q, and q = 2 or 3 seems to be a good choice,

since further increasing q cannot reduce prediction errors significantly.

We also experimented the Matérn covariance model with ν = 1.5, and similar

conclusions hold: When the range is small, SFSA has comparable performance

to CBCL, and both methods outperform FSA-Block; when the range is relatively

large, SFSA is superior to other two comparison methods in terms of REs.

S2.4. Analysis of a precipitation dataset

We apply our method to the precipitation dataset in United States in 1962,

which contains yearly total precipitation anomalies that are yearly totals stan-

dardized by the long-run mean and standard deviation for each of the 7352

weather stations. This precipitation data was collected by the National Climate

Data Center and has been analyzed in several studies (e.g., Johns et al. (2003);
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Table 5: Parameter-estimation results for the Matérn covariance function with ν = 1.5.
Relative Efficiencies (REs) of parameter estimates by different methods are reported and
the results were obtained based on 200 simulated data sets. For FSA-Block and SFSA,
m = 100 equally spaced knots were used.

Matérn SFSA FSA-Block CBCL
σ2(1) 0.99 0.86 0.89
φ(0.5) 0.91 0.66 0.82
ν(1.5) 0.88 0.66 0.85
τ2(0.01) 0.94 0.91 0.96

σ2(1) 0.92 0.81 0.79
φ(1) 0.89 0.71 0.74
ν(1.5) 0.87 0.72 0.73
τ2(0.01) 0.93 0.86 0.95

Table 6: Prediction results for the Matérn covariance function with ν = 1.5, under
both the“Boundary” scenario and the “Hole” scenario. Mean Squared Prediction Errors
(MSPE) and their standard errors (in parentheses) were obtained based on 200 simulated
data sets. For FSA-Block and SFSA, m = 100 equally spaced knots were used.

Matérn SFSA FSA-Block CBCL FM
φ = 0.5 Boundary 0.038 (0.005) 0.047 (0.006) 0.044 (0.006) 0.025 (0.003)

Hole 0.117 (0.044) 0.124 (0.050) 0.138 (0.052) 0.097 (0.037)
φ = 1 Boundary 0.018 (0.001) 0.019 (0.002) 0.021 (0.002) 0.014 (0.001)

Hole 0.032 (0.010) 0.034 (0.011) 0.042 (0.015) 0.028 (0.009)

Kaufman et al. (2008); Sang and Huang (2012)). We used it as a benchmark

dataset to compare SFSA with other competing methods. According to Johns

et al. (2003), this dataset appears no significant non-stationarity and anisotropy.

Therefore, we chose to use the spatial regression model in Section 2.1 with β = 0

and an isotropic covariance function to fit the data. Since observations are on

the sphere, the chordal distance with units of kilometers was used to compute

the pairwise distances between weather stations, to ensure positive-definiteness

of the covariance function. We partitioned the data into a training dataset

of 7000 observations and a prediction dataset of 352 observations, where the

prediction dataset contains 143 locations in a randomly specified space hole

(−87,−82) × (35, 38) and 209 locations randomly selected from the remaining

locations. The Matérn covariance was used to model the data-dependence struc-

ture. Since previous studies (Sang and Huang, 2012) indicated that the smooth-
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Figure 3: Relative Efficiencies (REs) and MSPEs versus q for SFSA using the Matérn
covariance model with σ2 = 1, φ = 0.5, ν = 1.5, and τ2 = 0.01, under the Boundary
scenario. The q-nearest neighboring blocks were chosen as the neighbor set for SFSA.
The case that q = 0 corresponds to the FSA-Block result.

ness parameter ν is very close to 0.5, we fixed ν = 0.5.

We investigate the performance of SFSA, with comparisons to two of its spe-

cial cases FSA-Block and CBCL; the full covariance model results will serve as

the baseline. For all comparison methods, the K-means clustering algorithm was

applied to create data blocks based on the training data. For SFSA and CBCL,

since the data locations are non-uniformly spaced, we ordered the data blocks in

the dense region of observations first; then the neighbor set of a block was speci-

fied as its nearest neighboring data block (q = 1). For SFSA and FSA-Block, the

K-means clustering algorithm was applied to the training dataset for obtaining

300 cluster centers that were used as the knot set. Both maximum likelihood esti-

mation and Bayesian inference were considered for estimating model parameters.

For Bayesian inference, we collected 6000 posterior samples of model parameters

after a burn-in period of 1000 iterations; we obtained the Maximum A Posteriori

(MAP) estimates of model parameters and the corresponding MSPEs by using

the MAP estimates.

Table 7 shows the parameter-estimation and prediction results by each method,

with parameter estimates obtained by maximum likelihood estimation (MLE).

We can see that the resulting estimates of model parameters by these three

methods are all close to the full model results. The SFSA approach produces the
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Table 7: Maximum likelihood estimation results using the exponential model (Matérn
covariance function with ν = 0.5).

Method σ2 φ τ2 Log lik MSPE
FSA-Block, K = 70 0.68 180.22 0.11 −5218.69 0.31
CBCL, K = 70 0.69 174.37 0.10 −5206.07 0.33
SFSA, K = 70 0.67 170.96 0.10 −5179.15 0.30
FSA-Block, K = 25 0.68 172.29 0.10 −5190.36 0.30
CBCL, K = 25 0.69 169.64 0.10 −5177.63 0.28
SFSA, K = 25 0.69 170.86 0.10 −5160.71 0.27
Full Model 0.68 166.84 0.10 −5150.60 0.27

largest log-likelihood value among three comparison methods for a given block

number, since it approximates the full covariance model the best and includes

other two methods as special cases. In terms of prediction, when the block num-

ber K = 70, the prediction errors of the SFSA and the FSA-Block methods are

much smaller than that of the CBCL approach, and this may be because the

additional correction of residual covariance is not sufficient for a relatively small

block size. When the block number K = 25, the prediction errors of the SFSA

and the CBCL methods turn to be much smaller than that of the FSA-Block ap-

proach, indicating that the additional correction of residual covariance between

neighboring blocks becomes more effective for a larger block size.

Table 8: Bayesian inference results using the exponential model (Matérn covariance
function with ν = 0.5). Parameter posterior 50(2.5, 97.5) percentiles are reported.

Method σ2 φ τ2 DIC G P D MSPE
FSA-Block, K = 70 0.69(0.58,0.90) 182.11(148.30,243.83) 0.11(0.10,0.12) 10439.50 108.30 105.12 213.42 0.31
CBCL, K = 70 0.70(0.60,0.85) 179.34(148.71,224.64) 0.10(0.10,0.12) 10418.12 115.52 107.66 223.18 0.33
SFSA, K = 70 0.68(0.58,0.87) 172.05(143.23,231.91) 0.10(0.10,0.12) 10357.64 107.84 105.25 213.09 0.31
FSA-Block, K = 25 0.69(0.58,0.88) 176.14(142.39,240.19) 0.11(0.10,0.12) 10392.52 105.39 105.68 211.07 0.30
CBCL, K = 25 0.70(0.61,0.93) 174.44(143.23,242.79) 0.10(0.09,0.11) 10361.55 98.57 106.29 204.86 0.28
SFSA, K = 25 0.69(0.58,0.97) 174.17(141.37,256.07) 0.10(0.09,0.11) 10329.95 96.94 104.63 201.57 0.28
Full Model 0.70(0.59,0.85) 173.86(141.48,218.46) 0.10(0.09,0.11) 10307.03 95.22 101.04 196.26 0.27

Table 8 gives the Bayesian inference results, which agree with the results by

MLE. We observe that the posterior median of each model parameter by SFSA

is close to that by the full covariance model. Besides, the Deviance Informa-

tion Criteria (Gelman et al., 2014) (DIC) value by SFSA is the smallest among

the three methods, indicating that it fits this precipitation data the best. We

also considered the posterior predictive loss criterion scores (Gelfand and Ghosh,
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1998), where “G” denotes the sum of squared biases for the posterior predictive

means, “P” denotes the sum of posterior predictive variances, and “D” is the sum

of corresponding G and P values; a smaller D value indicates a better fit. The D

value of SFSA is the smallest one for different block sizes. The posterior predic-

tive interval results for the hold-out 352 observations are reported in Table 9, and

all methods show appropriate 95% posterior predictive interval coverage rates.

Table 9: Predictive interval (PI) coverages and widths for the hold-out 352 observations.
The pointwise 95% posterior predictive intervals were obtained as the posterior predictive
means plus/minus corresponding 1.96 posterior predictive standard errors.

Method 95% PI cover % 95% PI width
FSA-Block, K = 70 0.955 2.100
CBCL, K = 70 0.955 2.118
SFSA, K = 70 0.957 2.099
FSA-Block, K = 25 0.957 2.104
CBCL, K = 25 0.966 2.107
SFSA, K = 25 0.966 2.093
Full Model 0.957 2.061

SFSA results in a comparable prediction result to that by either FSA-Block

or CBCL for a given block size. Therefore, if we do not have any prior knowledge

of the optimal block size, using SFSA can provide more robust model-inference

and prediction results; otherwise, its special cases, either FSA-Block (SFSA with

q = 0) or CBCL (SFSA with m = 0), can be sufficient in modeling the data.

S3. Selection of the Nearest Neighboring Blocks

In this section, we provide some thoughts on selecting the nearest neighboring

blocks based on the residual correlations. In this paper we have focused on the

regular-blocks partition, and it is very natural to use the distance between two

block centers as the measure of their “closeness”.

More optimally, the “closeness” of two blocks can be measured by the correla-

tions of observations in two blocks. Recall that we apply the nearest neighboring

blocks approximation to the residual process, and hence the residual correlations

between observations in two blocks provide a natural way for measuring the

closeness of two blocks. For the moment, assume that the covariance-function

parameter θ is known. For the k-th block, we can calculate the residual covari-

ance matrices Σk,k, Σ`,`, and Σk,` for 1 ≤ ` < k. Then the Frobenius norm of



18 BOHAI ZHANG, HUIYAN SANG AND JIANHUA Z. HUANG

the residual correlation matrix Rk,` ≡ diag(Σ
−1/2
k,k )Σk,`diag(Σ

−1/2
`,` ), denoted by

‖Rk,`‖F , can serve as a measure of distances between two blocks. Thus, the q-

nearest neighboring blocks for block k are the ones with the first q largest values

for ‖Rk,`‖F by using this criterion.

In practice, the covariance-function parameters θ are unknown and need

to be estimated. One may obtain some rough estimates of parameters from

pilot studies to use the above neighbor-selection strategy, or adaptively update

neighbor-selection within the MCMC iteration (for Bayesian inference) or the

Newton-Raphson type iteration (for frequentist inference).

References

Cohn, D. A. (1996). Neural network exploration using optimal experiment design. Neural

networks 9 (6), 1071–1083.

Datta, A., S. Banerjee, A. O. Finley, and A. E. Gelfand (2016). Hierarchical nearest-neighbor

gaussian process models for large geostatistical datasets. Journal of the American Statis-

tical Association 111, 800–812.

Gelfand, A. E. and S. K. Ghosh (1998). Model choice: a minimum posterior predictive loss

approach. Biometrika 85, 1–11.

Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin (2014). Bayesian Data Analysis,

Volume 2. Chapman & Hall/CRC Boca Raton, FL, USA.

Gramacy, R. B. and D. W. Apley (2015). Local Gaussian process approximation for large

computer experiments. Journal of Computational and Graphical Statistics 24, 561–578.

Guinness, J. (2016). Permutation methods for sharpening Gaussian process approximations.

arXiv preprint arXiv:1609.05372 .

Johns, C. J., D. Nychka, T. G. F. Kittel, and C. Daly (2003). Infilling sparse records of spatial

fields. Journal of the American Statistical Association 98, 796–806.

Kaufman, C. G., M. J. Schervish, and D. W. Nychka (2008). Covariance tapering for likelihood-

based estimation in large spatial data sets. Journal of the American Statistical Associa-

tion 103, 1545–1555.

Sang, H. and J. Huang (2012). A full scale approximation of covariance functions for large spatial

data sets. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 74,

111–132.


