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Abstract: Analyses of geostatistical data are often based on the assumption that the

spatial random field is isotropic. This assumption, if erroneous, can adversely affect

model predictions and statistical inferences. Today, many applications consider

global data, and hence, it is necessary to check the assumption of isotropy on a

sphere. This study proposes a test for spatial isotropy on a sphere. The data are

first projected onto the set of spherical harmonic functions. Under isotropy, the

spherical harmonic coefficients are uncorrelated, but are correlated if the underlying

fields are not isotropic. This motivates a test based on the sample correlation matrix

of the spherical harmonic coefficients. In particular, we use the largest eigenvalue of

this matrix as the test statistic. Extensive simulations are conducted to assess the

Type-I errors of the test under different scenarios. Our method requires temporal

replication in the data and, hence, is applicable to many data sets in the Earth

sciences. We show how temporal correlation affects the test and provide a method

for handling such correlation. We also gauge the power of the test as we move

away from isotropy. The method is applied to near-surface air temperature data,

which is part of the HadCM3 model output. Although we do not expect global

temperature fields to be isotropic, we propose several anisotropic models, with

increasing complexity, each of which has an isotropic process as a model component.

Then, we apply the test to the isotropic component in a sequence of such models

to determine how well the models capture the anisotropy in the fields.

Key words and phrases: Anisotropy, spatial statistics, spherical harmonic represen-

tation.

1. Introduction

Modeling spatial dependence is a major challenge when analyzing geostatisti-

cal data. It is common to assume that the spatial covariance function is isotropic,

meaning that the correlation between observations at any two locations depends

only on the distance between those locations, and not on their relative orienta-

tion (Guan, Sherman and Calvin (2004)). With advancements in technology, we
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now observe massive amounts of data, especially in atmospheric sciences. Satel-

lites and ground-based monitoring stations collect data, and large-scale climatic

models produce data covering the entire globe. Thus, it is important to develop

methods for analyzing spatial data observed on spheres. Hence, it is necessary

to understand the inherent correlation structure of the process on the sphere.

Assuming that the process is isotropic leads to simpler interpretation of the cor-

relation structure and reduces the computational complexity. However, in many

applications, isotropy may not be a reasonable assumption, leading to erroneous

model fitting and predictions.

A common method for checking for isotropy is to compare sample semi-

variograms for different directions (Cressie (1993)). Many approaches use di-

rectional variograms to construct tests with stationary alternatives (Matheron

(1961); Diggle (1981); Cabana (1987); Baczkowski and Mardia (1990); Isaaks

and Srivastava (2001)). Some nonparametric methods are based on estimates of

a variogram or a covariogram (Lu and Zimmerman (2001); Guan, Sherman and

Calvin (2004); Maity and Sherman (2012)). The notion of testing for second-

order properties using the asymptotic joint normality of a sample variogram

evaluated at different spatial lags was established by Lu and Zimmerman (2001).

The subsequent works of Guan, Sherman and Calvin (2004) and Maity and Sher-

man (2012) are based on these ideas. Li, Genton and Sherman (2007, 2008) and

Jun and Genton (2012) consider spatiotemporal data and use approaches similar

to those of Lu and Zimmerman (2001), Guan, Sherman and Calvin (2004), and

Maity and Sherman (2012). Bowman and Crujeiras (2013) give a more compu-

tational approach for testing isotropy in spatial data using a robust form of the

empirical variogram based on a fourth-root transformation.

Haskard (2007) extends the Matérn correlation to include anisotropy, facil-

itating a test for isotropy. Fuentes (2007) describes a spectral method based

on estimating parameters that govern the directionality in the spatial depen-

dence (anisotropy), using approximate likelihoods. Matsuda and Yajima (2009)

consider a generalized Matérn class that allows for anisotropy and construct a

likelihood ratio test for isotropy.

The aforementioned methods all apply to random fields on the Euclidean

space, Rd, d > 1, and have stationarity as the alternative. However, a sphere

differs from the Euclidean space in the sense that there is no agreed upon way

to define stationary processes on a sphere, which are not isotropic. Some au-

thors have referred to axially symmetric processes as “stationary” processes on

spheres. However, the notion of an axially symmetric process defined on a sphere
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is essentially different from that of a stationary process on the Euclidean space.

In particular, if Z(θ, φ) denotes an axially symmetric process on S2, then

cov(Z(θ1, φ1), Z(θ2, φ2)) = K(θ1, θ2, φ1 − φ2),

whereas for a stationary process Z ′(x, y) on R2,

cov(Z ′(x1, y1), Z
′(x2, y2)) = K(x1 − x2, y1 − y2).

Thus, we cannot apply these tests to check whether the covariance function of a

process on the sphere is isotropic. This necessitates the development of a test with

a flexible alternative that does not depend on a rigid definition of “stationarity”.

Our approach for testing for isotropy on a sphere is similar in spirit to that

of Bandyopadhyay and Rao (2017), who propose a test for stationarity on Eu-

clidean spaces based on the discrete Fourier transform (DFT) vector. Here, the

elements of the DFT vector are approximately uncorrelated under stationarity on

Euclidean spaces. Because isotropic models on spheres are uniquely character-

ized in terms of the spherical harmonic (SH) representation rather than a Fourier

transform, it is natural to formulate a global test for isotropy based on the SH

coefficients. In our approach, we transform the data onto the SH functions, which

form a set of orthogonal basis functions on the sphere. We exploit the fact that

the correlation between the coefficients is zero if the process is isotropic. Fur-

thermore, they are Gaussian if the random field we start with is Gaussian (Baldi

and Marinucci (2007)). On the contrary, if the random field is not isotropic, this

characterization will not hold. Thus, we formulate our test based on the sample

correlation structure between the SH coefficients. This also ensures that the al-

ternative considered in our test is very general, because every anisotropic model

has coefficients that are correlated in some manner. We construct our test based

on the largest eigenvalue of the sample correlation matrix, which increases as we

move away from isotropy, giving us a right-sided critical region for our test. Our

approach requires replication across time, and we propose a method to deal with

the temporal correlation in the data. The approach is computationally efficient

for gridded data because fast Fourier transforms (FFT) aid in the projection of

the data onto SHs. The test can also be based on a manageable number of SH

coefficients, which means no large dense matrices need to be stored. We also

show that the approximations employed in the test improve as the resolution of

the data in space increases.

We apply the test to near-surface air temperature projections for 2031–2035

obtained from the Hadley Centre Coupled Climate Model Version 3 (HadCM3).

We do not expect these data to be well modeled by an isotropic model. However,
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because we can build anisotropic models from isotropic models, we can apply the

test to the isotropic component of anisotropic models to check the anisotropic

model assumptions. Thus, we propose a sequence of anisotropic models for our

temperature data, each more complex than the previous one, and each having

an isotropic process as a model component. We apply the proposed test to the

isotropic components of the models and consider the values of the test statistic

to determine how well the models capture the anisotropy in the near-surface

temperature fields.

The rest of the paper is structured as follows. In Section 2, we discuss the

HadCM3 data set used in this study. Section 3 illustrates our model and the test

procedure. Section 4 presents a simulation study that evaluates the performance

of our test under various conditions. Section 5 presents our analysis of the near-

surface air temperature data, where we include a thorough discussion of the

nature of the anisotropies in the data. Section 6 concludes the paper.

2. Motivating Data Set

The data set that motivated this study is part of the Coupled Model Inter-

comparison Project Phase 5 (CMIP 5) archive. The CMIP 5 is a large multi-

model ensemble project that has been used for the Intergovernmental Panel on

Climate Change (IPCC) reports. The HadCM3 of the Met Office Hadley Cen-

tre (MOHC) is a coupled climate model that has been used in various climate

studies, including climate prediction and climate modeling. The HadCM3 was

one of the significant models utilized as part of the IPCC Third and Fourth As-

sessments, as well as contributing to the Fifth Assessment. These models have

a resolution of 2.5 degrees in latitude by 3.75 degrees in longitude, producing a

global grid of 73×96 grid cells. This is equivalent to a surface resolution of about

417 km ×278 km at the Equator, reducing to 295 km ×278 km at 45 degrees of

latitude. These model simulations also consider a 360-day calendar, where each

month has 30 days.

From the HadCM3 outputs in the CMIP 5, we consider the Representa-

tive Concentration Pathway 4.5 (“RCP4.5”) simulations of daily near-surface

air temperature (“tas”) in the Kelvin scale for the period of 2031–2035. Our

analysis forms part of a larger analysis, where we aim to estimate anisotropic

correlations in atmospheric processes across the globe. The sample data illus-

trate the near-future projections of climate conditions based on a standard set of

model simulations, and are known to mimic real-life scenarios fairly consistently
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(Schramm et al. (2014)). As mentioned before, the temperature values are gen-

erated on a 73 × 96 latitude × longitude grid for 360 days per year, giving a

total of approximately 12.6 million observations in the data set.

3. Methodology

3.1. SH representation

Let Yt(θ, φ), t ∈ 1, 2, . . . , T denote a Gaussian process (GP) on a sphere

indexed by latitude θ ∈ [0, π] and longitude φ ∈ [0, 2π). Because Yt(θ, φ) is a GP,

it is completely defined by a mean function µ(θ, φ) = E (Yt(θ, φ)) and a covariance

function K(θ1, θ2, φ1, φ2) = Cov (Yt1(θ1, φ1), Yt2(θ2, φ2)). For the time being, the

covariance is assumed to be independent over time. However, this assumption

is not suitable for spatiotemporal data. We discuss the incorporation of a rich

temporal structure in our model using a nonseparable covariance function in

Sections 4.2 and 5. Now, an isotropic GP on a sphere can be defined by a

constant mean function and a covariance function that depend only on the great

circle distance (or equivalently, the chordal distance) between two points on the

sphere. That is, if we consider a sphere of radius R, an isotropic process on the

sphere has the covariance function

K(θ1, θ2, φ1, φ2) = f(gcd(θ1, θ2, φ1, φ2)),

for some function f(·), and

gcd(θ1, θ2, φ1, φ2)=2Rarcsin

({
sin2

(
θ1−θ2

2

)
+cosθ1cosθ2sin

2

(
φ1−φ2

2

)}1/2
)
.

The GP can be expressed in terms of SH basis functions, as suggested by

Jones (1963). Let Sl,m(θ, φ) denote the Schmidt semi-normalized harmonics of

degree l and order m on the surface of the sphere. Analytically, Sl,m(θ, φ) can

be defined as

Sl,m(θ, φ) =


√

(l −m)!

(l +m)!
Pl,m(cosθ)eimφ m ≥ 0,

(−1)mS∗l,−m(θ, φ) m < 0,

where * denotes a complex conjugation and Pl,m(cosθ) denotes the associated

Legendre polynomial of degree l = 0, 1, 2, . . . and order m = 0, 1, . . . , l; that is,

Pl,m(x) = (−1)m(1− x2)m/2 d
m

dxm
Pl(x),

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l.
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The SHs form a complete set of orthogonal basis functions on the sphere; in

particular,∫ π

θ=0

∫ 2π

φ=0
Sl,m(θ, φ)Sl′,m′(θ, φ)∗sinθdφdθ =

4π

(2l + 1)
δll′δmm′ ,

where δij = 1(i = j) is the Kronecker delta. As a result, processes defined on

the sphere can be expressed in terms of expansions of the SH functions. Here,

we consider

Yt(θ, φ) =

∞∑
l=0

l∑
m=−l

almtSl,m(θ, φ), (3.1)

where {almt} is a triangular array (for each t), representing the set of complex-

valued random SH coefficients for which the sum in (3.1) converges in mean

square. Note that because Sl,m(θ, φ) = (−1)mS∗l,−m(θ, φ), for m < 0, the coeffi-

cients satisfy the identity

alm = (−1)ma∗l,−m.

The random variables (almt)l,m are uncorrelated and form a Gaussian family if

and only if, in addition to being Gaussian, Yt(θ, φ) is also isotropic (Baldi and

Marinucci (2007)). Furthermore E[Re (almt)] = 0 = E [Im (almt)] , for m =

0, . . . , l, and Re (almt) and Im (almt) are uncorrelated with the variance

E
[
Re (almt)

2
]

= E
[
Im (almt)

2
]

= Cl/2, where Cl is the power spectrum for

degree l. Because of the conjugacy between the coefficients for positive and nega-

tive m’s, the coefficients are only uncorrelated, and not independent, even though

they are Gaussian. This is illustrated with the help of an example. Let z1 = a+ib

and z2 = a − ib denote two complex random variables with a, b
indpt∼ N(0, τ2).

Now,

Cov(z1, z2) = E(z1z
∗
2) = E(a2 − b2) = Var(a)−Var(b) = τ2 − τ2 = 0.

However, z1 and z2 are not independent because z1 = z∗2 . Thus, for complex

conjugate Gaussian random variables, being uncorrelated does not imply inde-

pendence.

We now have Var(almt) = E
[
|almt|2

]
= E

[
Re (almt)

2
]

+ E
[
Im (almt)

2
]

=

Cl. Because the coefficients are uncorrelated across l and m, the covariance

function for Yt(θ, φ) is

K(θ1, θ2, φ1, φ2) =

∞∑
l=0

ClPl (sinθ1sinθ2cos(φ1 − φ2) + cosθ1cosθ2) .

Hence, the variance of Yt(θ, φ) is
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Var(Yt(θ, φ)) =

∞∑
l=0

Cl.

The derivation of the formula is provided in Section 1 of the Supplementary

Material.

Our testing procedure relies on a transformation from the observations Yt(θ, φ)

to the SH coefficients almt. If Yt(θ, φ) are observed continuously over the sphere,

then the SH transform, given by

almt =

∫ π

θ=0

∫ 2π

φ=0
Yt(θ, φ)Sl,m(θ, φ)sinθdφdθ,

can be used to recover the coefficients almt. However, if we have data on a grid

of size s1× s2, we cannot recover the coefficients exactly. Thus, we estimate almt
as the minimizer of

s1s2∑
i=1

Yt(θi, φi)−
lreg∑
l=0

l∑
m=−l

almtSl,m(θi, φi)


2

4 Wi, (3.2)

where 4Wi is the surface area of the ith quadrangle, relative to the surface area

of the Earth, and lreg is chosen such that (lreg+1)2 ≤ s1s2. For very large gridded

data sets, the sums over longitudes and over m can be computed efficiently using

FFTs. This is a weighted least squares problem, where the weights are equal to

the relative surface area of the quadrangles.

Let Yt denote the data vector for time t at all spatial locations and Y be the

s1s2 × T matrix [Y1, . . . ,YT ]. In addition, let S = (Sl,m)l,m denote the matrix

of the semi-normalized harmonics, truncated at degree lreg, and W denote a

diagonal matrix, with the weights 4Wi on the diagonal. Then, minimizing the

sum with respect to almt gives the coefficient matrix as â = (S′WS)−1S′WY .

We apply this transformation at each time point, and use âlm• = (âlm1, . . . , âlmT )

to denote the SH coefficient corresponding to degree l and order m, replicated

over time. We use â•t to denote all coefficients at time point t.

3.2. Test procedure

Because we truncate the sum in (3.1) to represent the process, we work with

a total of nreg = (lreg + 1)2 SHs. We explore the selection of the truncation

degree lreg in Section 4, based on the stability of the regression that converts

Y to â. Depending on the accuracy of the regression, we only use SHs up to

degree lcorr ≤ lreg and use p = ncorr = (lcorr + 1)2 coefficients in the test. The

selection of lcorr is also described in Section 4. Because the true coefficients a
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are uncorrelated under isotropy, our hypotheses about isotropy are equivalent to

H0 : R = Ip versus H1 : R 6= Ip,

where R = Corr(a•t).

We construct the test statistic based on the eigenvalues of the sample corre-

lation matrix of â•1, . . . , â•T . Under the null hypothesis, the eigenvalues of the

population correlation matrix will all be one, and when we move away from the

null, the largest sample eigenvalue will increase. This motivates us to create a

test based on the largest sample eigenvalue. Johnstone (2001) provides the distri-

bution of the largest eigenvalue of the sample covariance matrix when sampling

from a multivariate normal distribution with a covariance matrix equal to the

identity matrix. Johnstone (2001) also provides an ad hoc construction method

to make the distribution in order to test the above-mentioned hypothesis. For

this purpose, let wlm• denote the standardized SH coefficient corresponding to

degree l and order m. Notationally,

wlm• =
âlm•
‖âlm•‖

.

The vectors wlm• have a sample variance equal to one. Now, we multiply each

standardized SH coefficient by an independent chi random variable in order to

generate a standard Gaussian data matrix, denoted by ã(p) = (ãlm•)l,m, where

ãlm• = rlmwlm•, r2lm
indep∼ χ2

T .

Multiplying rlm by wlmt is critical to the proposed method because the theorem

stating the distribution of the largest eigenvalue does not directly apply to sample

correlation matrices. Now, the test statistic is

l̃1 =
l1(C̃)− µTp

σTp
,

where l1(C̃) is the largest sample eigenvalue of C̃ = ã(p)′ã(p), µTp = (
√
T − 1 +

√
p)2, and σTp = (

√
T − 1+

√
p)(1/

√
T − 1+1/

√
p)1/3. Under the null hypothesis,

when T and p both increase, such that T/p→ γ ≥ 1,

l̃1
d→W1 ∼ F1,

where F1 is the Tracy–Widom law of order 1 (described in Section 2 of the

Supplementary Material).

The test is designed for T ≥ p, but it applies equally well if T < p are both

large. In this case, we simply reverse the roles of T and p in the expressions for

µnp and σnp (Johnstone (2001)). The p-value for the test is computed using the
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cumulative distribution table of the TW1 distribution (Bejan (2005)). Because

the largest eigenvalue increases as the spatial process becomes more anisotropic,

we have a right-tailed test.

4. Simulation Study

4.1. Stability of the SH estimates

In this section, we first verify that the weighted regression technique in (3.2)

gives accurate coefficient estimates â when we truncate the sum in (3.1). For this

purpose, we choose lsim > lreg and simulate nsim = (lsim+1)2 Gaussian complex-

valued coefficients a(nsim×T ) with variance Cl, independent over T = 360 time

replicates, and then apply (3.1) to obtain the spatial data, Yt(θ, φ) (forward

transform). We evaluate how well we recover a when we regress the data Y onto

S, the SHs truncated at lreg (back transform).

For the variance of Yt(θ, φ) to exist, Cl must be summable. To achieve this,

we consider the variances

Cl =
σ2

(α2 + l2)ν+1/2
,

which gives rise to the Legendre–Matérn covariance function (Guinness and

Fuentes (2016)) given by

ψ(θ) =

∞∑
l=0

σ2

(α2 + l2)ν+1/2
Pl(cosθ).

Here, σ2, α, ν > 0 are the three parameters of the covariance function, with σ2

denoting the variance, 1/α denoting the spatial range, and ν the smoothness.

The form of the Legendre Matérn is motivated by the Matérn spectral density

on Rd, which is (α2 + ω2)−ν−1/d. In particular, we set ν = 0.5 and ν = 1 for our

simulation studies. This gives us Cl of the order of 1/l2 and 1/l3, respectively.

For convenience, we refer to the two spectra as Cl2 and Cl3, respectively. Note

that the process obtained from Cl2(ν = 0.5) is not mean-square differentiable.

According to Hitczenko and Stein (2012), this is similar to a process with an

exponential covariance.

In order to ensure computational stability during the regression (back trans-

form), we choose the truncation degree of the SH, lreg, based on the condition

number of S′WS, that is, the ratio of its smallest eigenvalue to its largest. We

choose the largest l such that the condition number of S′WS > 0.001. The

regenerated coefficients are
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â•t = (S′WS)−1S′WYt.

Here, â•t is of length nreg, because S is of order nreg × s1s2, whereas a•t is of

length nsim, which is much larger than nreg because lsim > lreg.

The accuracy of the regression is summarized by the correlation between

the unique real and imaginary parts of the true coefficients for each l and the

corresponding estimates,

rl =
1

2l + 1

l∑
m=−l

Corr(alm•, âlm•),

where

Corr(alm•, âlm•) =

∑T
t=1(almt − ālm)(âlmt − âblm)√∑T

i=1(almt − ālm)2
√∑T

i=1(âlmt − âblm)2
,

and ālm = (1/T )
∑T

t=1 almt and âblm = (1/T )
∑T

t=1 âlmt denote the means of alm•
and âlm•, respectively. Figure 1 shows that the correlation between the true and

estimated SH coefficients is a decreasing function of lreg. This motivates us to

choose lcorr as the maximum degree of SH for which rl > 0.999. This ensures

that the weighted regression in (3.2) gives accurate SH coefficients, as long as the

degree of SH considered is less than or equal to lcorr. We also wish to study the

effect of the grid size on the performance of the weighted regression. With this

in mind, we use three different grid sizes, namely 20× 50, 73× 96, and 100× 200

for our study. In all of our numerical studies, lsim is chosen to be 150. Figure

1 also shows that the regression performs better as the grid size increases and

as the spectra decrease. Table 1 illustrates how both the number of SHs used

for a meaningful regression and the accuracy of the coefficient estimations grow

with l2. Table 1 actually shows the maximum number of SHs one can use in

order to get stable and accurate estimates of the coefficients. However, we are

performing the test on a relatively small number of SH coefficients relative to

the grid size, which can be determined from the power curve (illustrated in a

subsequent section). In our data analysis, we have a grid of size 73 × 96. Our

numerical study indicates that under spectrum Cl2, we can use lcorr up to 30,

which corresponds to constructing a test on at most (30 + 1)2 = 961 unique

coefficients.

In the next subsection, we assess the performance of our test. First, we cal-

culate the Type-I error of the test by generating time-independent coefficients

under the null. Next, we consider the temporal correlation between the coeffi-

cients. Finally, we compute the power of the test under anisotropic models.
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(a) Spectrum Cl2 (b) Spectrum Cl3

Figure 1. Correlation between the true and estimated coefficients for the three different
grid sizes, 20×50, 73×96, and 100×200 and for two different spectra (left versus right)
as a function of the SH degree l. We consider the SH degree up to lreg in the weighted
regression. For each grid size–spectra combination, we take lcorr as that value of l where
the corresponding correlation curve intersects the 0.999 reference line, which gives us
ncorr = (lcorr + 1)2 unique coefficients.

Table 1. The maximum degree of SH that ensures computational stability during a
regression, lreg, and the maximum degree of SH used to guarantee an accurate estimation
of the coefficients, lcorr, for the three different grid sizes and the two spectra. nreg and
ncorr give the number of SH functions used in each setting. lsim is chosen to be 150.

Spectrum Grid Size lreg nreg lcorr ncorr

Cl2

20× 50 18 361 6 49
73× 96 47 2,304 30 961

100× 200 85 7,396 74 5,625

Cl3

20× 50 18 361 17 324
73× 96 47 2,304 47 2,304

100× 200 85 7,396 85 7,396

4.2. Assessing the performance of the test

Type-I error under no temporal correlation

We simulate a00 fromN(0, 1.5) and the other coefficients as time-independent

complex Gaussian, that is,

Re almt, Im almt ∼ N
(

0,
Cl
2

)
, l = 1, . . . , lsim, t = 1, . . . , T = 360,

with lsim = 150 and for Cl2 and Cl3. We follow the test procedure described in

Section 3 for the three grid sizes 20×50, 73×96, and 100×200 with appropriate

choices of lreg and lcorr, as described in Table 1. We perform the test at the 5%
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Table 2. Type-I error (in %) of the test for the three grid sizes, 20 × 50, 73 × 96, and
100× 200, and the two spectra, Cl2 and Cl3. We perform the test at the 5% significance
level. Here, l represents the SH degrees for which we perform the test. Note that for a
particular setting, we only consider l less than or equal to the corresponding lcorr. The
estimated two standard error limits (in percentages) for the empirical Type-I error rates
are (3.6, 6.4). All empirical Type-I error rates fall within these limits, which shows that
they are very close to the nominal error rate of 5%.

20× 50 73× 96 100× 200
l Cl2 Cl3 l Cl2 Cl3 l Cl2 Cl3

3 4.3 3.4 5 4.7 5.6 5 5.3 5.3
4 5.2 3.6 10 4.8 3.7 10 5.4 5.4
5 5.0 5.3 15 5.2 3.6 15 4.9 4.9
8 4.3 20 4.7 3.7 25 3.6 3.6

10 5.2 24 4.9 5.4 35 5.0 4.8
15 5.8 27 4.8 5.6 45 4.9 4.9

29 4.7 3.7 55 5.8 5.5
35 4.5 65 4.9 4.7
40 4.3 70 4.7 4.8
45 4.4 74 5.6 5.5
47 5.2 80 4.2

85 5.0

significance level. The Type I error of the test is given by

p = PrH0
(TW (T, p) > Tobs) = PrH0

(
TW1 >

Tobs − µTp
σTp

)
.

Table 2 shows the Type-I error of the test for the three grid sizes and two different

spectra based on 1,000 simulation replications. The Type-I error varies between

3% and 6%, depending on the choice of l. The estimated two standard error

limits (in percentages) for the empirical Type-I error rates are (3.6, 6.4). All

empirical Type-I error rates fall within these limits, which shows that they are

very close to the nominal error rate of 5%.

Type-I error under temporal correlation

Our test requires replications of the spatial process and, for most applica-

tions, the replications will be correlated in time. Based on our analysis of the

climate temperature data in Section 5 and on previous studies of space–time co-

variances (Stein (2005)), we expect the lower degree coefficients to have a stronger

temporal correlation than those of the higher degree coefficients. For our simu-

lation study, we assume a simple AR(1) structure between the coefficients. For

t = 1, . . . , T = 360,

almt = ρlmalm(t−1) + elmt,
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Table 3. Type-I error (in %) of the test for the three grid sizes, 20 × 50, 73 × 96, and
100 × 200, and the two different spectra, Cl2 and Cl3, after accounting for temporal
correlation. We perform the test at the 5% significance level.

20× 50 73× 96 100× 200
l Cl2 Cl3 l Cl2 Cl3 l Cl2 Cl3

3 4.7 3.7 5 4.7 4.3 5 4.7 5.3
4 4.3 4.1 10 4.6 4.5 10 4.4 5.1
5 4.4 6.0 15 4.8 4.4 15 4.8 5.1
8 5.0 20 4.9 4.8 25 4.6 5.1

10 5.2 24 5.0 5.1 35 5.2 4.9
15 5.9 27 5.3 5.0 45 4.9 5.4

29 4.5 5.4 55 4.4 5.0
35 5.7 65 4.2 4.5
40 4.3 70 4.1 4.8
45 5.7 74 4.9 5.0
47 5.3 80 4.3

85 4.3

where the innovations elmt are uncorrelated across l, m, and t, and elmt ∼
CN(0, Cl). In addition, ρlm = 0.9/

√
l, for l = 1, 2, . . . , lsim, with ρ0 = 0.99,

is the temporal correlation function that decays with the degree of the SH. The

simulated data are transformed to real space using the forward-transform (3.1).

To illustrate the importance of addressing the temporal dependence in spa-

tiotemporal data, we perform the test directly on the coefficients obtained from

back-transforming the data into SH coefficients. In such a scenario, the Type-I

error of the test is more than 99% for each of the grid sizes and spectra, even

when the underlying spatial covariance structure is isotropic.

To account for temporal dependence in our test, we treat âlm•, obtained from

the back transform as a time series, and estimate ρl for every (l,m) combination

by regressing âlm2, . . . , âlmT on âlm1, . . . , âlm(T−1). We then perform the test on

the innovations at the 5% significance level. Table 3 shows the Type-I error of

our test after accounting for temporal dependence. Once again, we see that the

test has the right size.

Power computations

In this section, we study the power of our test for anisotropic data. We con-

sider a few important departures from an isotropic process. In the first scenario,

we consider a process that is axially symmetric. According to Jones (1963), an

axially symmetric process is one in which the covariance at a pair of locations

is a function of the two latitudes and the difference in their longitudes. That
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Figure 2. Empirical power functions of our test (as a function of ψ) corresponding to
Scenario 2 (axially symmetric process) for the three grid sizes and different degrees of
SH, l.

is, K(θ1, θ2, φ1, φ2) = g(θ1, θ2, φ1 − φ2) for some function g(·). Jones (1963) also

gives us a necessary and sufficient condition for a process to be axially symmetric

in terms of the SH coefficients, given by

Cov(almt, al′m′t) = 0,

for m 6= m′. Under this scenario, we generate almt as complex Gaussian with

variance Cl2, defined by

almt =
√
Cl2(Blmt + elmt),

where Blmt is complex Gaussian with variance 0.5 and

Corr(Blmt, Bl′m′t) =

{
0 l 6= l′,m 6= m′,

ψ l 6= l′,m = m′, 0 ≤ ψ ≤ 1.

Here, elmt is complex Gaussian with variance 0.5 and independent across l and

m. Figure 2 plots the power by ψ for the three grid sizes 20 × 50, 73 × 96, and

100 × 200. All results are based on 1,000 simulation replications and T = 360

independent time replications for each simulation replication. For each of the

1,000 data sets, we conduct the test with suitable lreg, as mentioned in Table 1,

and a few suitable l’s, as listed in Table 2.

Figure 2 shows that the test is powerful in detecting small departures from

isotropy for reasonable grid sizes and with a relatively small degree of the SHs.
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We see that the power increases with the degree of the SH functions used in our

analysis. The power also increases as the data points on the sphere become more

dense.

Another way to introduce anisotropy directly into the fields is to assume

that the covariance structures over different parts of the globe are different. A

simple way to do this is to consider different covariances over land and water. In

particular, we define

gl(s) =

{
1, if s ∈ land,
1/lε, if s ∈ ocean,

where ε ≥ 0; ε = 0 is the case of isotropy. The fields are then generated as

Yaniso;t(s) =

lsim∑
l=0

l∑
m=−l

gl(s)almtSl,m(θ, φ),

where almt, for t = 1, . . . , T = 360, is simulated as complex Gaussian with vari-

ance Cl2 and independent over time. Because ε > 0, gl(s) has the effect of

reducing the variance of the high-frequency coefficients, resulting in smoothing

processes over the ocean. Figure 3 plots the empirical power functions of our test

as a function of ε. The other settings are the same as those in Figure 2. Once

again, we consider 1,000 simulation replications to estimate the power function.

The results confirm that the test is powerful, even for very minor departures from

isotropy, with ε < 0.1. We also see that the power of the test increases with the

degree of the SH used in our analysis and with the grid size.

The power computations for another anisotropic model are provided in Sec-

tion 3 of the Supplementary Material. The power curves can be used to determine

the number of SH coefficients that we actually need to consider to construct the

test. If we consider the power curves for the different scenarios corresponding to

the grid size 100 × 200, we do not gain much in terms of power if we increase l

beyond 25. This makes our method feasible when we are working with huge data

sets, because we do not need to work with high-dimensional matrices. For the

real-data application, we have chosen the SH degree to be 25, which means we

are working with (25 + 1)2 = 262 = 676 SH functions.

5. Application to HadCM3 Output Data

We apply our method to near-surface air temperature data obtained as out-

put from the HadCM3. We work with daily air temperature data for the period

2031–2035, projected onto a 73× 96 grid in latitude and longitude. Each month
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Figure 3. Empirical power functions of our test (as a function of ε) corresponding to
Scenario 2 for the three grid sizes and different degrees of SH, l.

in the data has 30 days. Thus, we have data for five years with 360 time points

corresponding to each year, resulting in T = 1,800 time points. Although we do

not believe that the temperature fields are isotropic, we use the test to estimate

the goodness of fit of the models that seek to remove the anisotropies in the

fields. We consider a few anisotropic models based on isotropic processes, and

perform the test on the isotropic component of each model. In each of the models,

Yt(θ, φ), for t = 1, . . . , T , denotes the near-surface air temperature at location

(θ, φ), θ ∈ [0, π], φ ∈ [0, 2π). We consider three models of increasing complexity.

Each model Mi can be written in the form

Yt(θ, φ) = m
(i)
t (θ, φ) + e

(i)
t (θ, φ),

1

k(i)(θ, φ)
e
(i)
t (θ, φ) =

∑
l

∑
m

almtSl,m(θ, φ),

almt = ρlmalm(t−1) + εlmt,

where εlmt ∼ N
(
0, σ2lm

)
. Table 4 describes the form of m

(i)
t (θ, φ) and k(i)(θ, φ)

for each of the models considered.

The first model, M1, has only a spatially varying mean, and M2 has a pixel-

wise seasonal variation in its mean structure along with the spatially varying

mean. Then, M3 additionally takes into account the spatially varying variance.

In Section 4.2, we discussed how temporal correlation in the data, if not ac-
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Table 4. Description of the three models considered. Here, b0, b1, b2 ∈ R and σ2(θ, φ)
denotes the spatially varying variance.

Model Name Model Description

M1
m

(1)
t (θ, φ) = b0(θ, φ)
k(1)(θ, φ) = 1

M2
m

(2)
t (θ, φ) = b0(θ, φ) + b1(θ, φ)sin

(
2π

t

360

)
+ b2(θ, φ)cos

(
2π

t

360

)
k(2)(θ, φ) = 1

M3
m

(3)
t (θ, φ) = b0(θ, φ) + b1(θ, φ)sin

(
2π

t

360

)
+ b2(θ, φ)cos

(
2π

t

360

)
k(3)(θ, φ) = σ(θ, φ)

counted for, can produce misleading results when checking whether a process is

isotropic. Thus, in each of our models, we model the temporal dependencies in

the SH coefficients as AR(1), assuming that the AR coefficients and the inno-

vation variance vary with each (l,m) combination. For each of the models, the

spatially varying mean, b0, is estimated by the pixel-wise mean temperature,

b̂0(θ, φ) =
1

1,800

1,800∑
t=1

Yt(θ, φ),

as illustrated in Figure 4. Here, b1(θ, φ) and b2(θ, φ) are estimated by minimizing

the following squared error criteria at each (θ, φ):

SSE(θ, φ) =

1,800∑
t=1

{
Yt(θ, φ)− b̂0(θ, φ)− b1(θ, φ)sin

(
2π

t

360

)

+ b2(θ, φ)cos

(
2π

t

360

)}2

.

The other parameters in M2 and M3, namely ρlm and σ2lm are estimated at each

pixel (θ, φ) by regressing the last T−1 SH coefficients on the first T−1 coefficients.

We use an SH degree of l = 25, and work with (l+1)2 = 262 = 676 SH coefficients,

which means the sample correlation matrix of the coefficients is 676×676 for each

of the three models. When applied to the isotropic components of the models,

the test yields test statistic values of 958.83, 716.53, and 328.63 for M1, M2, and

M3, respectively. This shows that, as the model complexity increases, the models

do a better job of explaining the anisotropy in the temperature fields. However,

even for the most complex model considered, we obtain a strong rejection of the

isotropic component because the value of the test statistic for model M3 is much

larger than that of a TW 1 distribution with a 99th percentile point of 2.02. The



1270 SAHOO, GUINNESS AND REICH

°

°

°

°

°

°° °°°°°° °

Figure 4. Pixel-wise mean air temperature (in Kelvin) based on five years of model-
output data.

AR(1) coefficient estimates and the estimated innovation variance corresponding

to the different degrees of SH for M3 are shown in Figure 5(a).

Figure 5(b) enables us to visualize the SH functions more clearly. When the

SH order m is zero, the SH functions do not vary with longitude. In addition,

with an increase in |m|, the SH functions start to have more SHs along the

longitudinal axis and converge to zero at the poles at a faster rate, creating a

checkerboard pattern on the sphere until l = |m| has all of the harmonics along

the longitude. Figure 5(a) shows that, for each degree, the m = 0 coefficient is

the most correlated in time and the dependence decreases with an increase in

|m|. This spectral representation is analogous to the two-dimensional Fourier

transform, where each combination of the pair (m,n) corresponds to a two-

dimensional frequency. Thus, based on Figure 5(a), we can say that the low-

frequency coefficients are very highly correlated in comparison with the high-

frequency coefficients. Because the SHs are aligned along the latitudinal direction

for m = 0 and start to become aligned along the longitudes as |m| increases, we

can say that the temperature process is more correlated along the direction of

the latitudes than it is along the longitudes. Figure 5(a) also shows the power

spectrum of the spectral representation for Model M3. It shows the strength of

each frequency signal and tells us that lower frequencies are, in general, more

important than higher frequencies. In particular, the SHs between degrees 7

and 12 seem to be the most meaningful in terms of explaining the process. The

spectral densities for models M1 and M2 have dominant peaks at low frequencies,

overshadowing all other peaks. This is due to the low-frequency variation not
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ρ
σ

Figure 5. (a) Estimates of ρlm and σ2
lm corresponding to m = −l, . . . ,−1, 0, 1, . . . , l,

under each l for M3. (b) SH functions for m = 0, . . . , l, for l = 0, . . . , 3. The SHs
for negative m can be depicted by rotating the positive order ones along the z-axis by
90◦/m. The checkerboard pattern is shown for l = 10,m = 5.

being captured by the spatially varying variance.

The innovations from M3 are still not isotropic, and we point out a few loca-

tions attributable to the anisotropy in the process. We estimate the anisotropic

covariance of the innovation process from the covariance of the innovation coeffi-
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Figure 6. Estimates of the anisotropic (left panel) and (hypothetical) isotropic (right
panel) correlation functions at three locations around the globe, namely, northeast of
Mauritius (first row), around the 45◦ S latitude and the International Date Line (second
row), and North Pacific Ocean, off the coast of Mexico (third row).

cients. If ainnov denotes the innovation coefficients, then the estimate of the co-

variance illustrating the remaining anisotropy is given by Covani = SCov(ainnov)

S′. In contrast, if the process were isotropic at this stage, the covariance matrix

of the innovation coefficients would be diagonal. Thus, to estimate the hypothet-

ical isotropic covariance, we shrink all of the off-diagonal elements of Cov(ainnov)

to zero. The locations with a large deviation between the absolute values of the

estimated covariances are the main sites contributing to the anisotropy of the

near-surface air temperature fields on Earth. Figure 6 shows these locations,

along with the anisotropic and isotropic spatial covariances.

The first location chosen is to the northeast of the islands of Réunion and

Mauritius, located to the east of Madagascar in the western Indian Ocean. The
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covariance structures of this location are shown in Figure 6, row 1. The near-

surface air temperature anomalies in this region are associated with outgoing

longwave radiation (OLR) anomalies over the west Pacific Ocean (Misra (2004)),

as well as with rainfall anomalies over eastern South Africa, which can potentially

affect temperatures in the western and southwestern Indian Ocean (Reason and

Mulenga (1999)). Row 2 of Figure 6 corresponds to our second location, which is

in the south Pacific Ocean, just above the 45◦ S latitude and slightly to the right

of the International Date Line. This is linked to low-frequency variations in the

atmospheric circulation over the Southern Hemisphere extratropics (Carleton

(2003)). This coincides with the Southern Oscillation, which is characterized

by the barometric difference between Darwin and Tahiti. Fluctuations in this

difference cause temperature anomalies in parts of the western Pacific, leading

to large anisotropies in the temperature covariance. The third location (Figure

6, row 3) is in the north Pacific Ocean, off the coast of Mexico. This location is

at the junction of the Pacific/North American teleconnection pattern prevalent

over the central north Pacific and the equatorial Pacific Ocean, which is the El

Niño zone. This accounts for the temperature anomalies in this area, causing the

covariance structure in the temperature fields to move away from isotropy.

6. Discussions and Conclusions

With the availability of large-scale global climate data, it is necessary to

develop spatiotemporal models on a sphere that explain the underlying spatial

process and help make accurate predictions. It might be convenient to assume

that the covariance structure on the globe is isotropic. However in most real-

life applications, this assumption does not hold. Therefore, we have proposed a

method to determine the aptness of this simplifying assumption.

We assume that a particular meteorological variable is distributed as a GP

on a sphere, and we express the process as a linear combination of the SH func-

tions, which form a complete set of orthogonal basis functions on the sphere.

Under isotropy, the SH coefficients are uncorrelated and Gaussian (Baldi and

Marinucci (2007)). We use this characterization of the coefficients to set up a

test for isotropy based on the sample correlation between the coefficients. The

test statistic, based on Johnstone (2001), is given in Section 3.2. We provide the

conditions necessary to ensure computational stability and accuracy during the

regression in Section 4.1.

In Section 4.2, we perform an extensive simulation study to evaluate the
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performance of our test. We examine the Type-I errors for three grid sizes and

two different spectra under time independence and considering a simple AR(1)

dependence in time. The grid sizes are similar to the data resolutions generally

observed in real-life applications. Our simulation results show that the test has

the right Type-I error for all three grid sizes and under the different conditions.

We also consider the power of our test under two anisotropic models. Figures 2

and 3 show that the test is able to detect slight deviations from isotropy in all

three scenarios. Furthermore, the power of the test increases as the resolution

of the grids become finer. In addition, the power increases with the number of

SH coefficients used to compute the sample correlation matrix, which, in turn,

depends on the maximum degree of the SH considered.

We show how the test is sensitive to temporal correlation, and provide a mod-

eling framework to address the temporal correlation that gives accurate Type-I

error rates. This is demonstrated in Section 4.2, where we consider a decaying

temporal correlation between the coefficients and perform the test before and

after modeling the temporal dependencies. Most spatiotemporal processes are

not isotropic, and our method provides a way to objectively perform a test to

help arrive at that conclusion. Furthermore, we can easily determine the possi-

ble locations in the data attributed to the anisotropy using our method. As seen

in our data analysis, even for the most complex model considered, the test for

isotropy is rejected. This highlights the need for better anisotropic models that

capture the global anisotropic covariance structures of spatiotemporal processes.

Supplementary Materials

The Supplementary Material provides the derivation of the covariance func-

tion, a description of the Tracy Widom law of order 1, and power computations

for another anisotropic model.
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