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Appendix A: Discussion of Model (2)

Sufficient conditions to establish model (2) of the main manuscript are given in the fol-

lowing Proposition 1, and we consider a more general covariance structure of γ(t, s; t′, s);

that is, we assume

γ(t, s; t′, s) = g(s)γ0(t, t
′), s ∈ Rn∗ (1)

where γ0(t, t
′) = γ(t, s0; t

′, s0) is a covariance function and g(s) is a positive function.

Proposition 1. Let ε(s, t) denote a zero-mean square integrable stochastic process with

covariance function satisfying assumption (1). If
∫ T

0
γ0(t, t)dt < ∞, then, for any given

s ∈ Rn∗ and t ∈ [0, T ], the following expansion holds,

ε(s, t) = g(s)1/2
∞∑

j=1

ξj(s)ϕj(t), (2)
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where {ξj(s)}
∞
j=1 is a sequence of stochastic spatial processes that have mean zero and are

uncorrelated for a given location s, and {ϕj(t)}
∞
j=1 is a sequence of fixed eigenfunctions

of γ0(t, t
′). Moreover, if ε(s, t) is a Gaussian process, then {ξj(s)}

∞
j=1 is a sequence of

Gaussian processes.

Proof. Let ε(s)(t) = g(s)−1/2ε(s, t). It follows that ε(s)(t) are stochastic processes with a

common covariance function γ0(t, t
′) at any location s. First, by Karhunen-Loève expan-

sion (Ghanem and Spanos, 1991), for given s ∈ Rn∗ and t ∈ [0, T ], we have

ε(s)(t) =

∞∑

j=1

ξj(s)ϕj(t), (3)

where {ξj(s)}
∞
j=1 is a sequence of uncorrelated random variables. For given s ∈ Rn∗ , ω ∈ Ω,

ε(s)(t) is a deterministic function and therefore,
(
ε(s)(t), ϕj(t)

)
=
∫ T

0
ε(s)(t)ϕj(t)dt is well-

defined in L2([0, T ]). Moreover, for given s ∈ Rn∗ , we have

∫

Ω

∫ T

0

|ε(s)(t)ϕj(t)|dtdP ≤

{∫

Ω

∫ T

0

ε(s)(t)2dtdP

∫

Ω

∫ T

0

ϕj(t)
2dtdP

}1/2

=

{∫ T

0

γ0(t, t)dt

∫

Ω

1dP

}
< ∞.

By Fubini’s Theorem,
∫ T

0
ε(s)(t)ϕj(t)dt is measurable in (Ω,F , P ), and therefore, we have

ξj(s) =
(∑∞

j=1 ξj(s)ϕj(t), ϕj(t)
)
=
∫ T

0
ε(s)(t)ϕj(t)dt is a stochastic process.

Next, we show that if ε(s, t) is a Gaussian process, then ξj(s) is a Gaussian process;

that is, for any finite integer m > 0, (ξj(s1), . . . , ξj(sm))
T is a multivariate Gaussian

random vector. Let

ξj(sk)n =
n∑

i=1

ε(sk)(iT/n)ϕj(iT/n)(T/n),

for k = 1, . . . , m, and by definition, ξj(sk)n → ξj(sk) for each sk as n → ∞. Since ε(s)(t)

is a Gaussian process in Rn∗ × [0, T ], (ξj(s1)n, . . . , ξj(sm)n)
T is a multivariate Gaussian

random vector, for any finite integer n > 0, with the characteristic function

E
{
ei

∑m
k=1

τkξj(sk)n
}
= e−(1/2)τT Πnτ ,
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where τ = (τ1, . . . , τm)
T , and Πn is an m×m matrix whose (k, k′)th component is

(T 2/n2) (ϕj(T/n), . . . , ϕj(T ))
[
cov(ε(sk)(iT/n), ε(sk′)(i′T/n))

]n
i,i′=1

(ϕj(T/n), . . . , ϕj(T ))
T . (4)

As n → ∞, the term in (4) −→
∫ T

0

∫ T

0
γ0(t, sk; t

′, sk′)ϕj(t)ϕj(t
′)dtdt′, where γ0(t, s; t

′, s′) =

cov{ε(s)(t), ε(s
′)(t′)} is the covariance function of ε(s)(t).

Since ei
∑m

k=1
τkξj(sk)n → ei

∑m
k=1

τkξj(sk) as n → ∞, and
∣∣ei

∑m
k=1

τkξj(sk)n
∣∣ < 2, by the

dominated convergence theorem, the characteristic function of (ξj(s1), . . . , ξj(sm))
T ,

E
{
ei

∑m
k=1

τkξj(sk)
}
= limn→∞E

{
ei

∑m
k=1

τkξj(sk)n
}
= e−(1/2)τTΠτ

where Π =
[∫ T

0

∫ T

0
γ0(t, sk; t

′, sk′)ϕj(t)ϕj(t
′)dtdt′

]m
k,k′=1

. Thus, the result of model 1 holds.

Since T is fixed, the condition
∫ T

0
γ0(t, t)dt < ∞ is satisfied if the variance of ε(s, t) is

bounded over [0, T ]. Without replications of the spatial process, g(s) cannot be estimated.

However, if g(s) can be estimated using say prior information, then a more general,

spatially varying covariance function γ(t, s; t′, s) would be possible. In the following proof,

we assume g(s) is known, and let g(s) = 1 for for s ∈ Rn∗ .

Appendix B: Proof of Theorem 1

Consider the covariance function γ0(t, t
′) as defined in Section 2. Its Karhunen-Loéve

expansion can be written as γ0(t, t
′) =

∑∞
j=1 λjϕj(t)ϕj(t

′), where λi and ϕi(t) are the

eigenvalues and eigenfunctions of γ0(t, t
′). The sample covariance function can be written

as γ̂0(t, t
′) = n−1

∑n
i=1{ε(si, t) + υ(si, t)}{ε(si, t

′) + υ(si, t
′)}. Now, let T denote the

collection of functions defined on [0, T ] with square integrable second-order derivatives;

that is, T = {f(t) : f ′′(t) ∈ L2([0, T ])}. In fact, T is a linear subspace of L2[0, T ]. For

f(t) ∈ T , we define two operators Γ and Γ̂,

Γf(t) =

∫ T

0

γ0(t, t
′)f(t)dt, Γ̂f(t) =

∫ T

0

γ̂0(t, t
′)f(t)dt.
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Moreover, let P⊥
k f = f −

∑k−1
j=1(f, ϕj)ϕj be the projection of f(t) onto the space perpen-

dicular to {ϕ1(t), . . . , ϕk−1(t)} by the inner product (·, ·), and P̃⊥
k f = f −

∑k−1
j=1(f, ϕ̃j)ϕ̃j

be the projection of f(t) onto the space perpendicular to {ϕ̃1(t), . . . , ϕ̃k−1(t)} by the inner

product (·, ·)α. Finally, by definition, we have ‖ϕj(t)‖ = ‖ϕ̃j(t)‖α = ‖ϕ̂j(t)‖ = 1.

In geostatistics, asymptotic results depend on the asymptotic framework adopted.

For example, Zhang (2004) showed that under the infill asymptotics (i.e., increasingly

dense sampling locations in a fixed spatial domain), maximum likelihood does not yield

consistent estimates for all parameters; also see Ying (1991),Lahiri (1996), Loh (2005).

Here, we focus on the increasing domain asymptotics such that spatial domain increases

at the same rate as the number of sampling locations. Under this increasing domain

framework, consistency of γ̂0(t, t
′) can be established.

Now, we give a proof of Theorem 1.

Proof. First, we show that, under (A.1)–(A.4), we have

sup‖f‖α≤1‖(Γ̂− Γ)f‖
P

−→ 0. (5)

Denote Γ̂1f = n−1
∑n

i=1

∫ T

0
ε(si, t)ε(si, t

′)f(t)dt, Γ̂2f = n−1
∑n

i=1

∫ T

0
ε(si, t)υ(si, t

′)f(t)dt,

Γ̂3f = n−1
∑n

i=1

∫ T

0
υ(si, t)ε(si, t

′)f(t)dt, and Γ̂4f = n−1
∑n

i=1

∫ T

0
υ(si, t)υ(si, t

′)f(t)dt.

By the following inequality

sup‖f‖α≤1‖(Γ̂− Γ)f‖ ≤ sup‖f‖α≤1‖(Γ̂1 − Γ)f‖+ sup‖f‖α≤1‖Γ̂2f‖

+sup‖f‖α≤1‖Γ̂3f‖+ sup‖f‖α≤1‖Γ̂4f‖ ≡ (I1) + (I2) + (I3) + (I4),

it suffices to show that (Ii)
P

−→ 0 for each i = 1, 2, 3, 4.

Proof of (I1)
P

−→ 0. Note that L2([0, T ]) is a separable space (Billingsley, 1995), and

an orthonormal basis in L2([0, T ]) can be constructed by expanding {ϕj(t) : j = 1, . . . ,∞}

to {ϕj(t) : j = 1, . . . ,∞}∪{φj(t) : j = 1, . . . ,∞}. For any f(t) ∈ T ⊆ L2([0, T ]), we have

f(t) =
∑∞

j=1 αj(f)ϕj(t) +
∑∞

k=1 βk(f)φk(t), where αj(f) = (f, ϕj) and βk(f) = (f, φk).
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Moreover, for k = 1, 2, . . ., we have

Γφk(t) =

∫ T

0

γ(t, t′)φk(t)dt =
∞∑

j=1

λjϕj(t
′)

∫ T

0

ϕj(t)φk(t)dt = 0,

Γ̂1φk(t) = n−1

n∑

i=1

ε(si, t
′)

∫ T

0

ε(si, t)φk(t)dt

= n−1
n∑

i=1

ε(si, t
′)

∞∑

j=1

ξj(si)

∫ T

0

ϕj(t)φk(t)dt = 0.

For any f with ‖f(t)‖α ≤ 1, we have αj(f)
2 ≤ ‖f(t)‖ ≤ ‖f(t)‖α ≤ 1. Thus, we also have

(I1)
2 = sup‖f‖α≤1‖(Γ̂1 − Γ)f(t)‖2

=
∞∑

j=1

αj(f)
2‖(Γ̂1 − Γ)ϕj(t)‖

2 ≤
∞∑

j=1

‖(Γ̂1 − Γ)ϕj(t)‖
2.

Therefore, it suffices to show
∑∞

j=1E‖(Γ̂1 − Γ)ϕj(t)‖
2 → 0.

Next, we quantify E‖(Γ̂1 − Γ)ϕj(t)‖
2. By the fact that Γ(t, t′)ϕj(t) = λjϕj(t

′) and

Γ̂1(t, t
′)ϕj(t) = n−1

∑n
i=1 ε(si, t

′)ξj(si), we have

E‖(Γ̂1 − Γ)ϕj(t)‖
2 = E

∫ (
n−1

n∑

i=1

ε(si, t
′)ξj(si)− λjϕj(t

′)

)2

dt′

= n−2E

∫ ( n∑

i=1

ε(si, t
′)ξj(si)

)2

dt′ − 2n−1E

∫
λjϕj(t

′)

(
n∑

i=1

ε(si, t
′)ξj(si)

)
dt′

+λ2
j

∫
ϕj(t

′)2dt′ ≡ n−2(II1)− 2n−1(II2) + λ2
j .

Straightforward calculation yields simplification of (II1) and (II2) such that

(II1) =
n∑

i=1

n∑

i′=1

E

∫
ε(si, t

′)ξj(si)ε(si′, t
′)ξj(si′)dt

′

=
n∑

i=1

n∑

i′=1

E

{
ξj(si)ξj(si′)

∫
ε(si, t

′)ε(si′, t
′)dt′

}

=

n∑

i=1

n∑

i′=1

E

{
ξj(si)ξj(si′)

∫ ( ∞∑

j′=1

ξj′(si)ϕj′(t
′)

)(
∞∑

j′′=1

ξj′′(si′)ϕj′′(t
′)

)
dt′

}

=

n∑

i=1

n∑

i′=1

∞∑

j′=1

E {ξj(si)ξj(si′)ξj′(si)ξj′(si′)}
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and

(II2) = λj

n∑

i=1

E

∫
ε(si, t

′)ξj(si)ϕj(t
′)dt′

= λj

n∑

i=1

E

∫ ( ∞∑

j′=1

ξj′(si)ϕj′(t
′)

)
ξj(si)ϕj(t

′)dt′

= λj

n∑

i=1

∞∑

j′=1

E(ξj′(si)ξj(si))

∫
ϕj′(t

′)ϕj(t
′)dt′ = nλ2

j

∫
ϕj(t

′)2dt′ = nλ2
j .

Combining both equations above, we have

E‖(Γ̂1 − Γ)ϕj(t)‖
2 = n−2

n∑

i=1

n∑

i′=1

∞∑

j′=1

E{ξj(si)ξj′(si)ξj(si′)ξj′(si′)} − λ2
j .

n−2
n∑

i=1

n∑

i′=1

∞∑

j′ 6=j

E{ξj(si)ξj′(si)ξj(si′)ξj′(si′)}+ n−2

[
n∑

i=1

n∑

i′=1

E{ξj(si)
2ξj(si′)

2} − λ2
j

]
.

Further, for a Gaussian process ξj(s), we have

E{ξj(si)
2ξj(si′)

2} = 2[E{ξj(si)ξj(si′)}]
2 + λ2

j . (6)

Thus,

E‖(Γ̂1 − Γ)ϕj(t)‖
2 = n−2

n∑

i=1

n∑

i′=1

∞∑

j′=1

E{ξj(si)ξj(si′)}E{ξj′(si)ξj′(si′)}

+n−2
n∑

i=1

n∑

i′=1

[E{ξj(si)ξj(si′)}]
2.

Finally, we have

∞∑

j=1

E‖(Γ̂1 − Γ)ϕj(t)‖
2 ≤ n−2

n∑

i=1

n∑

i′=1

∞∑

j=1

∞∑

j′=1

E{ξj(si)ξj(si′)}E{ξj′(si)ξj′(si′)}

+n−2

n∑

i=1

n∑

i′=1

∞∑

j=1

[E{ξj(si)ξj(si′)}]
2,

and therefore (I1)
P

−→ 0.
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Proof of (Ii)
P

−→ 0, for i = 2, 3. For a function g(t, t′) ∈ L2([0, T ] × [0, T ]), it is easy

to show that
∥∥∥∥
∫ T

0

g(t, t′)f(t)dt

∥∥∥∥
2

=

∫ T

0

{∫ T

0

g(t, t′)f(t)dt

}2

dt′

≤

∫ T

0

{∫ T

0

g(t, t′)2dt

}{∫ T

0

f(t)2dt

}
dt′ = ‖f(t)‖2

∫ T

0

∫ T

0

g(t, t′)2dtdt′.

Therefore, we have

sup‖f‖α≤1

∥∥∥∥
∫ T

0

g(t, t′)f(t)dt

∥∥∥∥
2

≤

∫ T

0

∫ T

0

g(t, t′)2dtdt′. (7)

By (7), we have

E(I2)
2 = E(I3)

2 ≤ n−2E

∫ T

0

∫ T

0

{
n∑

i=1

υ(si, t
′)ε(si, t)

}2

dtdt′

= n−2
n∑

i=1

n∑

i′=1

E

∫ T

0

∫ T

0

υ(si, t
′)ε(si, t)υ(si′, t

′)ε(si′, t)dtdt
′

= n−2

n∑

i=1

n∑

i′=1

∫ T

0

∫ T

0

E {υ(si, t
′)υ(si′, t

′)}E {ε(si, t)ε(si′, t)} dtdt
′

= n−2
n∑

i=1

∫ T

0

∫ T

0

E {ε(si, t
′)ε(si, t

′)}E {ε(si, t)ε(si, t)} dtdt
′

= n−1

{∫ T

0

γ0(t, t)dt

}2

−→ 0.

Thus, (Ii)
P

−→ 0 holds for i = 2, 3.

Proof of (I4)
P

−→ 0. By (7), we have

E(I4)
2 ≤ n−2E

∫ T

0

∫ T

0

{
n∑

i=1

υ(si, t
′)υ(si, t)

}2

dtdt′

= n−2

n∑

i=1

n∑

i′=1

∫ T

0

∫ T

0

E {υ(si, t
′)υ(si′, t

′)υ(si, t)υ(si′, t)} dtdt
′

= n−2
n∑

i=1

{∫ T

0

∫ T

0

E
{
υ(si, t)

4
}
I(t = t′)dtdt′ +

∫ T

0

∫ T

0

γ0(t, t)γ0(t
′, t′)I(t 6= t′)dtdt′

}

+n−2
∑

i 6=i′

∫ T

0

∫ T

0

γ0(t, t)γ0(t
′, t′)I(t = t′)dtdt′ = n−1

{∫ T

0

γ0(t, t)dt

}2

−→ 0.
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Thus, (I4)
P

−→ 0 and (5) is established.

Define the statement Sj: as n → ∞,

α[ϕ̃j , ϕ̃j]
P

−→ 0; (8a)

(ϕ̂j, ϕj)
2 P
−→ 1; (8b)

λ̂j
P

−→ λj. (8c)

Since ‖ϕ̃j‖
2
α = 1, (8a) and (8b) are equivalent to (9a) and (9b), respectively,

‖ϕ̃j‖
2 P
−→ 1; (9a)

‖ϕ̂j(t)− ϕj(t)‖
P

−→ 0. (9b)

First, we show that if Sj holds for all j < k, then as n → ∞,

sup‖f‖α≤1|(P
⊥
k f,ΓP⊥

k f)− (P̃⊥
k f, Γ̂P̃⊥

k f)|
P

−→ 0. (10)

Note that

sup‖f‖α≤1‖(f, ϕj)ϕj − (f, ϕ̃j)αϕ̃j‖ ≤ sup‖f‖≤1‖(f, ϕj)ϕj − (f, ϕ̂j)ϕ̂j‖

+sup‖f‖≤1‖(f, ϕ̂j)ϕ̂j − (f, ϕ̃j)ϕ̃j‖+ sup‖f‖≤1‖(f, ϕ̃j)ϕ̃j − (f, ϕ̃j)αϕ̃j‖

≡ (III1) + (III2) + (III3).

By (9a) and (9b), we have

(III1) = sup‖f‖≤1‖(f, ϕj)ϕj − (f, ϕj)ϕ̂j‖+ sup‖f‖≤1‖(f, ϕj)ϕ̂j − (f, ϕ̂j)ϕ̂j‖

≤ sup‖f‖≤1‖f(t)‖
1/2‖ϕj(t)‖

1/2‖ϕj − ϕ̂j‖+ sup‖f‖≤1‖f(t)‖
1/2‖ϕ̂j(t)‖

1/2‖ϕj − ϕ̂j‖

= op(1).

By ϕ̂j(t) = ϕ̃j(t)/‖ϕ̃j(t)‖ and (9a), we have

(III2) = ‖(f, ϕ̂j)ϕ̂j‖
∥∥1− ‖ϕ̃j‖

2
∥∥ ≤ ‖f‖1/2‖ϕ̂j‖

3/2(1− ‖ϕ̃j‖
2) ≤ (1− ‖ϕ̃j‖

2) = op(1).

By the definition of (·, ·)α, we have

(III3) = sup‖f‖α≤1α[f, ϕ̃j ]‖ϕ̃j‖ ≤ sup‖f‖α≤1(α[f, f ])
1/2(α[ϕ̃j, ϕ̃j])

1/2‖ϕ̃j‖ = op(1).
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Thus, for j < k, we have sup‖f‖α≤1‖(f, ϕj)ϕj − (f, ϕ̃j)αϕ̃j‖ = op(1), and

sup‖f‖α≤1‖(P̃
⊥
k − P⊥

k )f‖ ≤
k−1∑

j=1

sup‖f‖α≤1‖(f, ϕj)ϕj − (f, ϕ̃j)αϕ̃j‖
P

−→ 0. (11)

Also by (5), we have sup‖f‖α≤1‖(Γ̂− Γ)f‖
P

−→ 0, which implies

sup‖f‖α≤1‖(Γ̂− Γ)P̃⊥
k f‖

P
−→ 0. (12)

Combining (11) and (12), it follows that

sup‖f‖α≤1|(P
⊥
k f,ΓP⊥

k f)− (P̃⊥
k f, Γ̂P̃⊥

k f)| ≤ sup‖f‖α≤1|(P
⊥
k f,ΓP⊥

k f)− (P̃⊥
k f,ΓP⊥

k f)|

+sup‖f‖α≤1|(P̃
⊥
k f,ΓP⊥

k f)− (P̃⊥
k f,ΓP̃⊥

k f)|+ sup‖f‖α≤1|(P̃
⊥
k f,ΓP̃⊥

k f)− (P̃⊥
k f, Γ̂P̃⊥

k f)|

P
−→ 0,

and thus, (10) is established. The remainder of the proof follows (Silverman, 1996) and

we omit the details.

Remarks: To verify the regularity conditions (A.3) and (A.4), we consider the case in

which ξj(s), j = 1, 2, . . ., are stationary (detrended) Gaussian process with its covariance

function from the Matérn family. That is,

ρj(d) =
1

Γ(νj)

(
d

2rj

)νj

2Kνj

(
d

rj

)
,

where rj > 0 is a range parameter controlling the rate of autocorrelation decay with

lag distance, νj > 0 is a shape parameter controlling the smoothness of the Gaussian

process, and Kνj(·) is a modified Bessel function of the second kind of order νj . For

Rn∗ = [0, n1/2]× [0, n1/2] ⊂ R
2, sufficient conditions for (A.3) and (A.4) are

(i) There exist constants r > 0 and ν > 0, such that rj ≥ r and νj ≤ ν.

(ii) The distance between any two sampling sites is greater than a constant.

9



Proof. Since Kν(x) ∝ e−xx−1/2{1+O(1/x)} when |x| → ∞, there exist constants c1, c2 >

0, such that for |d| > c1, we have

ρj(d) ≤ c2d
ν−1/2 exp−(d/r).

Recall that there exists a constant C, such that
∑∞

j=1 λj = C. By (i), for any two

sampling locations si and si′ , we have

∞∑

j=1

E{ξj(si)ξj(si′)} ≤

∞∑

j=1

λjc2d
ν−1/2
ii′ exp{−(dii′/r)} = Cc2d

ν−1/2
ii′ exp{−(dii′/r)},

where dii′ = ‖si − si′‖.

For a given sampling location si, we have

n∑

i′=1

∞∑

j=1

∞∑

j′=1

E{ξj(si)ξj(si′)}E{ξj′(si)ξj′(si′)} ≤ C2c22

n∑

i′=1

d2ν−1
ii′ exp{−2(dii′/r)}

n∑

i′=1

∞∑

j=1

[E{ξj(si)ξj(si′)}]
2 ≤

n∑

i′=1

∞∑

j=1

λ2
jc

2
2d

2ν−1
ii′ exp{−2(dii′/r)} ≤ C2c22

n∑

i′=1

d2ν−1
ii′ exp{−2(dii′/r)}.

By (ii), the sampling density of any subset of Rn∗ ⊂ R
2 is bounded by a constant,

say ̺. Let Bm = {i′ : mh < dii′ ≤ (m + 1)h}, where h is independent of n. Thus,

|Bm| ≤ (2m + 1)̺πh2 and Rn∗ ⊂
⋃⌊{(2n)1/2/h}⌋

m=0 Bm, where ⌊·⌋ denotes the floor function,

and |Bm| denotes the cardinality of a discrete set Bm.

n∑

i′=1

d2ν−1
ii′ exp{−2(dii′/r)} ≤ πc21̺C +

⌊{(2n)1/2/h}⌋∑

m=0

(2m+ 1)π̺h2(mh)2ν−1 exp{−2(mh/r)}

≤ πc21̺C + π̺h2 +
∞∑

m=1

3mπ̺h2(mh)2ν−1 exp{−2(mh/r)}.

As h → 0, we have
∑∞

m=1 mh2(mh)2ν−1 exp{−2(mh/r)} →
∫∞

0
u2ν exp{−2(u/r)}du =

O(1).

Therefore, (A.3) and (A.4) hold.
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Appendix C: Proof of Theorem 3

Recall the sample covariance function γ̄0(t, t
′) = n−1

∑n
i=1 ȳ(si, t)ȳ(si, t

′), and define the

operator Γ̄ as Γ̄f(t) =
∫ T

0
γ̄0(t, t

′)f(t)dt for f(t) ∈ T .

Proof. The proof of Theorem 3 is similar to that of Theorem 1, but we replace y̆(s, t),

y̆si, y̆ and Γ̂ with ȳ(s, t), ȳsi, ȳ and Γ̄, respectively. Further, we replace (5) with Lemma 1

below.

Lemma 1. Under (A.1)–(A.4) and (A.11), we have

sup‖f‖α≤1‖(Γ̄− Γ)f‖
P

−→ 0.

Proof. Since ȳ(si, t) = y(si, t)− µ(si, t) + µ(si, t)− µ̄(si, t), we have

sup‖f‖α≤1‖(Γ̄− Γ)f‖ ≤ sup‖f‖α≤1‖Γ̄f − Γ̂f‖+ sup‖f‖α≤1‖Γ̄2f‖+ sup‖f‖α≤1‖Γ̄3f‖

+sup‖f‖α≤1‖Γ̄4f‖ = (IV1) + (IV2) + (IV3) + (IV4),

where Γ̄2f = n−1
∑n

i=1

∫ T

0
{y(si, t)−µ(si, t)}{µ(si, t

′)−µ̄(si, t
′)}f(t)dt, Γ̄3f = n−1

∑n
i=1

∫ T

0
{y(si, t

′)−

µ(si, t
′)}{µ(si, t) − µ̄(si, t)}f(t)dt and Γ̄4f = n−1

∑n
i=1

∫ T

0
{µ(si, t

′) − µ̄(si, t
′)}{µ(si, t) −

µ̄(si, t)}f(t)dt. To show Lemma 1, it suffices to show that (IVi)
P

−→ 0, respectively, for

i = 1, . . . , 4. By (5), we have (IV1)
P

−→ 0.

Proof of (IVi)
P

−→ 0, i = 2, 3. By (7), we have

E(IV2)
2 = E(IV3)

2 ≤ n−2E

∫ T

0

∫ T

0

[
n∑

i=1

{y(si, t
′)− µ(si, t

′)}{µ(si, t)− µ̄(si, t)}

]2
dtdt′

= n−2
n∑

i=1

n∑

i′=1

∫ T

0

∫ T

0

E[{y(si, t
′)− µ(si, t

′)}{µ(si, t)− µ̄(si, t)}

{y(si′, t
′)− µ(si′, t

′)}{µ(si′, t)− µ̄(si′, t)}]dtdt
′.

Applying Cauchy-Schwarz inequality twice and (A.11), we have

E[{y(si, t
′)− µ(si, t

′)}{µ(si, t)− µ̄(si, t)}{y(si′, t
′)− µ(si′, t

′)}{µ(si′, t)− µ̄(si′, t)}]

≤ c1/2n

[
E{y(si, t

′)− µ(si, t
′)}4
]1/4 [

E{y(si′, t
′)− µ(si′, t

′)}4
]1/4

.
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Therefore,

E(IV2)
2 = E(IV3)

2 ≤ c1/2n

{∫ T

0

[
E{y(si, t)− µ(si, t)}

4
]1/4

dt

}1/2

= c1/2n (3T 4)1/8
{∫ T

0

γ0(t)
3/8dt

}1/2

−→ 0. (13)

Thus, (IVi)
P

−→ 0, for i = 2, 3.

Proof of (IV4)
P

−→ 0. Similarly, it is straightforward to show that

E(IV4)
2 ≤ n−2E

∫ T

0

∫ T

0

[
n∑

i=1

{µ(si, t
′)− µ̄(si, t

′)}{µ(si, t)− µ̄(si, t)}

]2
dtdt′

= cnT
2 −→ 0

Therefore, (IV4)
P

−→ 0.

Appendix D: Proof of Theorem 2 and 4

Theorem 2 is a special case of Theorem 4 without the mean trend and parameter β. Thus,

it suffices to prove Theorem 4.

Proof. By Theorem 2 of Mardia and Marshall (1984), it suffices to show that

(B.1) As n → ∞, ‖Σ‖2 = O(1), ‖DlΣ‖2 = O(1), ‖Dll′Σ‖2 = O(1) for all l, l′ = 1, . . . , qm.

(B.2) For some δ > 0, there exist positive constants C∗
l such that ‖DlΣ‖

−2
F ≤ C∗

l n
−1/2−δ

for l = 1, . . . , qm.

(B.3) For any l, l′ = 1, . . . , qm, a∗ll′ = limn→∞{t∗ll′(t
∗
llt

∗
l′l′)

−1/2} exists and A∗ = [a∗ll′ ]
qm
l,l′=1 is

nonsingular.

(B.4) There exists a positive constant c∗0, such that ‖Σ−1‖2 < c∗0 < ∞.

By (A.12), we have ‖ΦT
Φ‖2 = O(1). Since Σ = Φ

T
ΛΦ+ σ2In,

‖Σ‖2 ≤ ‖Λ‖2‖Φ
T
Φ‖2 + σ2 ≤ maxj=1,...,J‖Λj‖2 + σ2 ≤ O(m)O(1) + σ2 = O(1).
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Similarly, for DlΣ = Φ
TDlΛΦ with ϑl = θj,k,

‖DlΣ‖2 = ‖ΦTDkΛjΦ‖2 = O(m)‖DkΛj‖2.

For Dll′Σ = Φ
TDll′ΛΦ with ϑl′ = θj,k′ and ϑl = θj,k

‖Dll′Σ‖2 = ‖ΦTDkk′ΛjΦ‖2 = O(m)‖Dkk′Λj‖2, for j = j′,

‖Dll′Σ‖2 = 0, for j 6= j′.

Thus, (B.1) is established.

For (B.2), it can be seen through the following equation,

‖DlΣ‖
2
F = tr{ΦT (DlΛ)ΦΦ

T (DlΛ)Φ} ≥ tr{mIn(DlΛ)mIn(DlΛ)}

= m2

n∑

i=1

{µi(DlΛ)}
2 = m2

J∑

j=1

‖DlΛj‖
2
F = (m2

J∑

j=1

1/Cl)n
1/2+δ,

for ϑl = θj,k.

For (B.3), if ϑl = θj,k, ϑl′ = θj′,k′ and j 6= j′, t∗ll′ = 0. Therefore, A∗ = diag{A∗
1, . . . , A

∗
J},

where A∗
j = [a∗ll′ ]

q
k,k′=1, ϑl = θj,k and ϑl′ = θj,k′. Moreover, we have t∗ll′ = tr{(Λj +

σ2In)
−1(DkΛj)(Λj + σ2In)

−1(Dk′Λj)} = wj,kk′, for ϑl = θj,k and ϑl′ = θj,k′. Therefore,

A∗
j = Aj is nonsingular, and (B.3) is established.

For (B.4), the smallest eigenvalue of Σ, µn(Σ) ≥ σ2, and therefore, ‖Σ−1‖2 ≤ σ−2.

Therefore, by Theorem 2 of Mardia and Marshall (1984), we obtain


 H(β0)

1/2 E{−ℓ′′(β0, ϑ0)}

E{−ℓ′′(β0, ϑ0)}
T H(ϑ0)

1/2








 β̂

ϑ̂


−


 β0

ϑ0







D
−→ N(0, Ip+q),

where E{−ℓ′′(β0, ϑ0)} is a p × q matrix with (i, j)th element −
∂2ℓ(λ,ϕ(t),θj ,σ

2)

∂βi∂ϑj
|β=β0,ϑ=ϑ0

.

Note that
∂2ℓ(λ,ϕ(t),θj ,σ2)

∂βi∂ϑj
= XTΣ−1(DjΣ)Σ

−1(Y − Xβ) and E{−ℓ′′(β0, ϑ0)} = 0. Thus,

Theorem 4 is proved.
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Appendix F: Remarks on Non-Gaussian Processes

Theorems 1 and 3 hold for non-Gaussian stochastic processes under two additional as-

sumptions:

(C.1)
∑n

i=1

∑n
i′=1

∑∞
j=1 cov{ξj(si)

2, ξj(si′)
2} = o(n2)

(C.2) For detrended geostatistical functional data, E{y(si, t
′)− µ(si, t

′)}4 < ∞.

The proofs are similar to those of Theorems 1 and 3 for Gaussian processes. However, in

(5), (6) is replaced by E{ξj(si)
2ξj(si′)

2} = cov{ξj(si)
2, ξj(si′)

2}+λ2
j , and for (I1), we have

∞∑

j=1

E‖(Γ̂1 − Γ)ϕj(t)‖
2 ≤ n−2

n∑

i=1

n∑

i′=1

∞∑

j=1

∞∑

j′=1

E{ξj(si)ξj(si′)}E{ξj′(si)ξj′(si′)}

+n−2
n∑

i=1

n∑

i′=1

∞∑

j=1

cov{ξj(si)
2, ξj(si′)

2}.

With (C.1) replacing (A.4), (I1)
P

−→ 0 holds. In Lemma 1, a fourth moment condition

(C.2) is required in (13) to show

E(IV2)
2 = E(IV3)

2 ≤ c1/2n

[
E{y(si, t

′)− µ(si, t
′)}4
]1/4 [

E{y(si′, t
′)− µ(si′, t

′)}4
]1/4

−→ 0,

and thus, (IVi)
P

−→ 0, for i = 2, 3.

Remarks: For the increasing domain, the average distance n−2
∑n

i=1

∑n
i′=1 ‖si−si′‖2 → ∞

as n → ∞. Since as distance grows, the spatial correlation becomes weaker, and here

Condition (C.1) means that the average covariance goes to zero. Moreover, in Theorem 2

and Theorem 4 as well as Step II of estimation procedure, Gaussian assumption cannot

be relaxed.

Appendix G: Further Simulation Study

In Section 5.1 of the main manuscript, our proposed method (GFD) is compared with two

alternative approaches (ALT1 and ALT2). Here, we investigate the performance of the
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proposed method with different numbers of eigenfunctions through simulation studies.

For the proposed method with J eigenfunctions, denoted as GFDJ , J = 2, 3, 4. For

the simulated datasets in Section 5.1, our methods with J = 2, . . . , 4 are carried out,

where datasets are simulated from an underlying geostatistical functional data with 2

eigenfunctions, as specified in Section 5.1 of the paper.

n
Method β1 β2 β3 β4 β5 β6 β7 MSPE1 MSPE2

True Values 4.000 3.000 2.000 1.000 0.000 0.000 0.000 – –

100

GFD2 4.001 2.992 1.998 1.007 0.002 0.000 -0.001 2.610 1.106

SD 0.031 0.030 0.029 0.031 0.033 0.027 0.030 0.715 0.108

GFD3 4.001 2.992 1.997 1.007 0.003 0.001 -0.001 2.611 1.117

SD 0.031 0.030 0.029 0.031 0.033 0.027 0.030 0.714 0.110

GFD4 4.002 2.992 1.997 1.007 0.004 0.000 -0.001 2.609 1.126

SD 0.030 0.031 0.029 0.032 0.033 0.028 0.030 0.715 0.113

ALT1 3.996 2.991 2.001 1.011 0.005 -0.005 0.004 3.720 3.775

SD 0.053 0.055 0.054 0.058 0.056 0.053 0.057 1.130 0.453

ALT2 4.001 2.992 1.998 1.007 0.002 0.000 -0.001 3.715 1.109

SD 0.031 0.030 0.029 0.032 0.033 0.027 0.030 1.133 0.108

Table 1: The mean, standard deviation (SD) of regression coefficient estimates and mean

square prediction errors under GFD2, GFD3, GFD4, ALT1 and ALT2, for sample size

n = 100.

In Table 1, the regression coefficient estimates of our methods with different eigen-

functions have similar biases and standard deviations. Compared with the two compet-

ing methods, our method with different eigenfunctions has performance similar to the

traditional functional data analysis, while outperforms ordinary least squares in terms of

smaller standard deviations. For prediction, GFD2 slightly outperforms GFD3 and GFD4,

since the datasets are simulated from models with 2 eigenfunctions. All three methods

(GFD2, GFD3 and GFD4) outperform the two competing methods (ALT1 and ALT2). In
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short, if we correctly specify the number of eigen-components for the geostatistical func-

tional data, the result is the best. If we choose a larger number of eigen-components, the

prediction results are not as good, but are still much better than the alternative methods.

n
Method λ1 r1 λ2 r2 σ2 λ3 r3 λ4 r4

True Values 2.50 0.50 0.50 0.30 1.00 – – – –

100

GFD2 2.312 0.469 0.516 0.319 1.017 – – – –

SD 0.451 0.136 0.085 0.107 0.049 – – – –

GFD3 2.312 0.468 0.516 0.317 0.990 0.066 1.266 – –

SD 0.451 0.136 0.085 0.105 0.049 0.007 2.371 – –

GFD4 2.312 0.467 0.516 0.316 0.971 0.066 1.307 0.057 2.810

SD 0.451 0.136 0.085 0.105 0.050 0.007 2.417 0.006 3.131

Table 2: The mean, standard deviation (SD) of spatial-temporal coefficients estimates

under GFD2, GFD3 and GFD4 for sample size n = 100.

In Table 2, the parameter estimates from our method with different eigenfunctions are

obtained. In the case of GFD2 where the number of eigenfunction is correctly specified,

the simulation results are close to the true values, as illustrated in Table 2 of the main

manuscript. In the cases of GFD3 and GFD4 where we specify more eigenfunctions than

the true model, the estimates for the first two eigen-components are similar to those of

GFD2, and are close to the true values. For additional eigen-components, the estimates

of the additional eigenvalues, λ3 and λ4, are quite small compared with the estimates of

λ1 and λ2.

For sample size N = 1000, 2000, 3000, the corresponding computational time of pro-

posed methods is 0.1, 0.5 and 1.5 minutes, respectively, while the method without utilizing

Sherman-Morrison-Woodbury formula and Sylvester’s determinant theorem needs 1.5, 11

and 45 minutes for the same size. The computational burden can be further relieved

by utilizing some form of approximation, such as blocking or tapering, in the covariance

matrix inversion.
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