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Abstract: In this study, we develop a new semiparametric approach to model geo-

statistical data measured repeatedly over time. In addition, we draw inferences

about the parameters and components of the underlying spatio-temporal process.

Dependence in time and across space is modeled semiparametrically, giving rise to

a class of nonseparable and nonstationary spatio-temporal covariance functions. A

two-step procedure is devised to estimate the model parameters based on the like-

lihood of detrended data, and the computational algorithm is efficient owing to the

dimension reduction. Extensions to spatio-temporal processes with general mean

trends are also considered. Furthermore, the asymptotic properties of our proposed

method are established, including consistency and asymptotic normality. A simu-

lation study shows the sound finite-sample properties of the proposed method, and

a real-data example is used to compare our method with alternative approaches.

Key words and phrases: Geostatistics, semiparametric methods, spatio-temporal

processes.

1. Introduction

As real-time monitoring technologies continue to advance, data over space

and time are becoming more abundant. Collectively known as spatio-temporal

data, these data arise in many scientific fields, with different data formats and

goals. To analyze the various types of spatio-temporal data, several statistical

models and methods have been developed, including varying coefficients models

(Lu et al. (2009)), hierarchical dynamic spatial models (Zhang, Yao and Tong

(2003); Johannesson, Cressie and Huang (2007); Ghosh et al. (2010)), and fil-

tering and dimensional reduction (Huang and Cressie (1996); Cressie, Shi and

Kang (2010); Brynjarsdóttir and Berliner (2014)). For a further discussion on

spatio-temporal statistics, see Cressie and Wikle (2011). In this study, we fo-

cus on spatio-temporal data in which the individual units are spatial sampling
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locations, and at a given sampling location, measures are repeated over time.

We propose a class of semiparametric models with nonseparable and nonstation-

ary spatio-temporal covariance functions. We develop a new methodology for

inferences that balance model flexibility and computational feasibility. We also

establish the corresponding asymptotic properties.

When modeling spatio-temporal data, it is generally important to incorpo-

rate the spatio-temporal covariance. Separablility, such that the spatio-temporal

covariance function is assumed to be a product of the spatial covariance and

the temporal covariance, is a convenient assumption, but can be overly restric-

tive in many applications. Thus, various nonseparable spatio-temporal covari-

ance functions have been proposed. For example, Cressie and Huang (1999)

and Gneiting (2002) constructed nonseparable spatio-temporal covariance func-

tions using a Fourier inversion and completely monotone functions, respectively.

Although the above approaches allow for spatio-temporal nonseparability, the

spatio-temporal processes are assumed to be stationary. To relax the stationar-

ity assumption, Stein (2005) considered asymmetric models, that is, where the

covariance function is spatially isotropic, but not symmetric spatio-temporally.

Fuentes, Chen and Davis (2008) and Rodrigues and Diggle (2010) developed

nonstationary and nonseparable models using a spectral representation and con-

volution, respectively. Although the above methods focus on building covariance

models for spatio-temporal data, it is not always clear how model estimations

and statistical inferences are to be carried out. There is a clear need for an ad-

ditional statistical methodology for the analyzing of spatio-temporal data taken

at regular or irregular sampling locations.

Nonparametric approaches are increasingly used for spatio-temporal mod-

eling, and tend to be robust against covariance function misspecification. For

example, extending the work of Gneiting (2002), Choi, Li and Wang (2013) pro-

posed a nonparametric approximation of completely monotone functions in the

construction of spatial and spatio-temporal covariance structures. Nonparamet-

ric methods may also alleviate the computational burden of estimating spatio-

temporal covariance functions. Based on an originally parametric covariance

function, Zhang, Sang and Huang (2015) proposed a nonparametric full-scale ap-

proximation, that applies reduced-rank techniques and sparse matrix algorithms

to enhance computational efficiency, although theoretical backing is not given.

We believe that there is considerable value to further develop nonparametric

or semiparametric methods and exploring their theoretical properties in spatio-

temporal statistics. Here, we adopt a semiparametric approach to modeling and
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drawing inferences about the spatio-temporal mean function and covariance func-

tion. Moreover, the theoretical properties of our new methods are established,

which seem to be rare in semiparametric spatio-temporal statistics.

In particular, we model dependence over space and time using a Karhunen–

Loève-type expansion that results in nonseparable and nonstationary spatio-

temporal covariance functions. The model parameters are estimated using a

two-step procedure based on likelihood, and the computational feasibility is en-

hanced further using dimension reduction. Extensions to spatio-temporal models

with a general mean function (or trend) are also considered. Furthermore, the

asymptotic properties of our proposed method, such as consistency and asymp-

totic normality, are investigated and established. These theoretical results are, to

the best of our knowledge, the first of their kind for semiparametric methods for

inferences about spatio-temporal models with nonseparable and nonstationary

covariance functions. A simulation study shows the sound finite-sample proper-

ties of the estimates, and a real-data example compares our method with several

the existing approaches. Our model may also be applied to spatially correlated

functional data, although without replicates at each sampling location (Paul and

Peng (2011); Gromenko et al. (2012); Hörmann and Kokoszka (2013)). How-

ever, Gromenko et al. (2012) did not establish the theoretical properties of their

method, whereas Paul and Peng (2011) and Hörmann and Kokoszka (2013) re-

stricted their attention to separable models and the consistency of the sample

means and empirical covariance operators, respectively (see also Horváth and

Kokoszka (2012)).

The remainder of the paper is organized as follows. We propose a nonsepara-

ble and nonstationary spatio-temporal covariance model in Section 2. We develop

an estimation procedure for the detrended spatio-temporal data in Section 3.1,

and in Section 4.1, we extend the results to spatio-temporal data with a general

mean trend. The theoretical properties of our methodology are established as

theorems in Sections 3.2 and 4.2. Numerical examples using simulated and real

data are given in Section 5. The technical details, including theorem proofs, are

provided in the Supplementary Material.

2. Semiparametric Spatio-Temporal Model Formulation

Let R denote a spatial domain of interest in Rd, with d ≥ 1, and let [0, T ]

denote the time interval of interest, with 0 < T < ∞. Taking into account pos-

sible spatio-temporal correlation and measurement errors, we model the spatio-
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temporal response variable y(s, t) by

y(s, t) = µ(s, t) + ε(s, t) + υ(s, t), (2.1)

where µ(s, t) = E{y(s, t)} is a fixed spatio-temporal mean function, ε(s, t) is a

zero-mean spatio-temporal random process, and υ(s, t) is a zero-mean measure-

ment error, where s ∈ R and t ∈ [0, T ]. For the spatial domain of interest R, our

method allows some irregularity, such as nonconvexity, but the domain needs to

be continuous. In this and the following sections, we assume a zero-mean function

µ(s, t) = 0. We consider more general mean functions in Section 4. We further

assume that the measurement error υ(s, t) follows an independent and identically

distributed Gaussian distribution with mean zero and variance σ2, independent

of ε(s, t).

To model the spatio-temporal random process ε(s, t), we assume that it

is a zero-mean Gaussian process with a Karhunen–Loève (KL)-type expansion

(Ghanem and Spanos (1991)). That is, ε(s, t) =
∑∞

j=1 ξj(s)ϕj(t), where {ξj(s) :

s ∈ R}∞j=1 is assumed to be a sequence of independent Gaussian processes, and

{ϕj(t)}∞j=1 is a sequence of eigenfunctions. Thus, (2.1) can be rewritten as

y(s, t) = µ(s, t) +

∞∑
j=1

ξj(s)ϕj(t) + υ(s, t). (2.2)

In general, we may assume that, for a given s ∈ R, ε(s, t) ∈ L2[0, T ] is a

square integrable random function and is modeled by a stochastic (not necessarily

Gaussian) process with mean zero and a spatio-temporal covariance function

denoted as

γ(t, s; t′, s′) = cov{ε(s, t), ε(s′, t′)}, s, s′ ∈ R, t, t′ ∈ [0, T ].

We further assume that, for two locations s 6= s′, the curves ε(s, t) and ε(s′, t′)

have the same (possibly nonstationary) temporal covariance function γ0(t, t
′)

(see, e.g., Gromenko et al. (2012); Hörmann and Kokoszka (2013)). Sufficient

conditions to establish (2.2) are given in Appendix A of the Supplementary Ma-

terial. Let λj = var{ξj(s)} denote the jth eigenvalue of the covariance function

γ0(t, t
′). We further assume cov{ξj(s), ξj′(s′)} = 0, for j 6= j′, which ensures the

positive definiteness of the covariance function γ(t, s; t′, s′) and enhances the com-

putational feasibility (Gromenko and Kokoszka (2013)). From the KL expansion,

we can write the spatio-temporal covariance function as

γ(t, s; t′, s′) =

∞∑
j=1

cov{ξj(s), ξj(s′)}ϕj(t)ϕj(t′). (2.3)
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In spatio-temporal statistics, it is common practice to assume that the spatio-

temporal process ε(s, t) in model (2.1) is stationary over space and time. In

contrast, the ε(s, t) formulated here using the KL expansion encompasses spatio-

temporal covariance functions that are nonstationary. Specifically, from (2.3),

it is clear that ε(s, t) does not need to be stationary in space or time, but can

be stationary in space if ξj(s) is a stationary spatial process for all j (Cressie

(1993)). In addition, the spatio-temporal covariance function in (2.3) does not

need to be separable in space and time (Cressie and Huang (1999); Fuentes, Chen

and Davis (2008)), but is separable if λj = 0 for j ≥ 2. Moreover, if any ξj(s) is

a nonstationary spatial process, ε(s, t) is nonstationary in both space and time.

Next, we approximate (2.2) by the first J components; that is, we assume

y(s, t) = µ(s, t) + ξ(s)Tϕ(t) + υ(s, t), (2.4)

where ξ(s) = (ξ1(s), . . . , ξJ(s))T and ϕ(t) = (ϕ1(t), . . . , ϕJ(t))T , for s ∈ R and

t ∈ [0, T ]. We further assume that the spatial covariance function of ξj(s) is

λjρj(‖s − s′‖; θj), where ρj(·; θj) is a spatial correlation function in the Matérn

family, with a qi-dimensional vector of correlation parameters θj (Cressie (1993)).

Although there are multiple ways to model a spatial process, we have chosen

the Matérn family because it is theoretically sound and is a popular choice in

practice. That is, the spatio-temporal covariance structure specified in (2.4) is

semiparametric.

3. Covariance Estimation and Theoretical Properties

3.1. A two-step estimation procedure

We now turn to the estimation of the covariance function in (2.4), assuming

that µ(s, t) is known. We relax this assumption and consider a general mean

trend in Section 4.

Suppose data are observed at n sampling locations s1, . . . , sn, and at sam-

pling location si, y(si, t) is observed at mi time points ti1, . . . , timi
. Let ysi =

(y(si, ti1), . . . , y(si, timi
))T denote the observed data at sampling location si,

y = (yTs1 , . . . , y
T
sn)T denote the observed data at all the sampling locations,

y̆si = (y(si, ti1) − µ(si, ti1), . . . , y(si, timi
) − µ(si, timi

))T denote the detrended

data at sampling location si, y̆ = (y̆Ts1 , . . . , y̆
T
sn)T denote the detrended data

at all the sampling locations, and N =
∑n

i=1mi denote the total number of

observations. Furthermore, let Φi = (ϕ(ti1), . . . , ϕ(timi
)) denote a J × mi ma-

trix of eigenfunctions at sampling location si, Φ = diag{Φ1, . . . ,Φn} denote a

block diagonal matrix of eigenfunctions at all the sampling locations, Λi,i′ =
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(cov{ξj(si), ξj′(si′)})Jj,j′=1 = diag{λ1ρ1(‖si − si′‖; θ1), . . . , λJρJ(‖si − si′‖; θJ)}
denote a J × J diagonal matrix for the covariance between sampling locations

si and si′ , and Λ = [Λi,i′ ]
n
i,i′=1 denote an n × n block matrix for the covariances

between all pairs of sampling locations. It follows that the variance-covariance

matrix of y is

cov(y) = Σ = ΦTΛΦ + σ2IN ,

where, from (2.1), σ2 is the measurement error variance, and IN is the identity

matrix with rank N .

Thus, the negative log-likelihood function of the parameters in (2.4) is

`(λ, ϕ(t), θj , σ
2) =

1

2
y̆TΣ−1y̆ +

1

2
log{det(Σ)}+

N

2
log(2π), (3.1)

where λ = (λ1, . . . , λJ)T and ϕ(t) = (ϕ1(t), . . . , ϕJ(t))T . Maximizing (3.1)

yields the maximum likelihood estimates of the eigenvalues λ, eigenfunctions

ϕ(t), qi-dimensional correlation parameters θj , and measurement error variance

σ2. However, such a computation is intensive, if not infeasible, because there are

J+
∑J

j=1 qj+1 unknown parameters and J unknown functions involved. To over-

come this challenge, we develop a two-step procedure that is likelihood-based,

but computationally more feasible than the maximum likelihood estimation. The

theoretical properties of the resulting estimates are established in Section 3.2.

In Step I of the estimation procedure, with

γ̂0(t, t
′) = n−1

n∑
i=1

y̆(si, t)y̆(si, t
′),

where y̆(si, t) = y(si, t) − µ(si, t), we estimate λ and ϕ(t) as follows. First, let

ϕ̃1(t) be the maximizer of

max
‖f(t)‖α=1

∫ T

0

∫ T

0
f(t)γ̂0(t, t

′)f(t′)dtdt′, (3.2)

where ‖f‖α = (f, f)
1/2
α , (f, g)α =

∫ T
0 f(t)g(t)dt + α

∫ T
0 f ′′(t)g′′(t)dt is an inner

product, and α > 0 controls the smoothness of the resulting maximizer. When

α = 0, we denote ‖f‖ = (f, f)1/2 and (f, g) =
∫ T
0 f(t)g(t)dt. Consequently, the

standardized ϕ̃1(t), defined as ϕ̂1(t) = ϕ̃1(t)/||ϕ̃1(t)||, provides an estimate of

ϕ1(t). For j > 2, let ϕ̃j(t) be the maximizer of (3.2), subject to the constraints

(f, ϕ̃k)α = 0, for k < j. Similarly, define ϕ̂j(t) = ϕ̃j(t)/‖ϕ̃j(t)‖ as the estimate

of ϕj(t). Next, given ϕ̃j(t), the estimate of λj is

λ̂j =

∫ T

0

∫ T

0
ϕ̃j(t)γ̂0(t, t

′)ϕ̃j(t
′)dtdt′, j = 1, . . . , J.
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The computation in Step I can be carried out by an algorithm for smoothed

functional principal component analyses, using a basis expansion (Silverman

(1996)). Although this algorithm is fast to compute and the consistency of

the resulting estimates is well established when the data are drawn indepen-

dently from a stochastic process, its applicability and the estimation properties

for spatio-temporal data have not been adequately studied. We pursue this in

Section 3.2.

In Step II of the estimation procedure, we estimate θj and σ2 by minimizing

the negative log-likelihood function (3.1), given ϕ(t) = ϕ̂(t) and λ = λ̂, as follows:

`(θj , σ
2|λ̂, ϕ̂(t)) =

1

2
y̆TΣ−1y̆ +

1

2
log{det(Σ)}+

N

2
log(2π).

The resulting estimates are denoted as θ̂j and σ̂2. The computational complexity

is of order O(N3), where N is the total number of observations, owing to the

inversion and the determinant calculation of an N×N matrix Σ, which is still in-

tensive for large N . Thus, we further improve the computational efficiency using

the Sherman–Morrison–Woodbury formula and Sylvester’s determinant theorem

(Harville (2008)),

Σ−1 = (ΦTΛΦ + σ2IN )−1 = σ−2IN − σ−2ΦT {ΦΦT + σ2Λ−1}−1Φ,

det(Σ) = det(ΦTΛΦ + σ2IN ) = σ2N det(Λ) det

(
ΦΦT

σ2
+ Λ−1

)
,

which reduce the computational complexity to a smaller order of O(J3n3), where

n is the number of sampling locations. A similar approach is adopted by Ny-

chka et al. (2015), although our method is semiparametric for spatio-temporal

processes and theirs is nonparametric for spatial-only processes.

3.2. Theoretical properties

We now investigate the asymptotic properties of the estimates obtained from

the proposed two-step procedure in Section 3.1. Let
P−→ denote convergence in

probability and
D−→ denote convergence in distribution. We consider the in-

creasing domain asymptotics, such that the distance between any two sampling

sites is greater than a constant. We assume the following regularity conditions

for Theorem 1. Let Rn∗ denote the spatial domain R at the n∗th stage of the

asymptotics.

(A.1) The eigenvalues of γ0(t, t
′) satisfy λ1 > λ2 > · · · > 0.

(A.2) The smoothness parameter satisfies α→ 0 as n→∞.
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(A.3)
∑n

i=1

∑n
i′=1

∑∞
j=1

∑∞
j′=1E{ξj(si)ξj(si′)}E{ξj′(si)ξj′(si′)} = o(n2) as n →

∞.

(A.4)
∑n

i=1

∑n
i′=1

∑∞
j=1[E{ξj(si)ξj(si′)}]2 = o(n2) as n→∞.

Conditions (A.1) and (A.2) establish the consistency of λ̂j and ϕ̂j(t) for the

functional data analysis (Silverman (1996)), and are assumed here for spatio-

temporal data. For a spatio-temporal separable covariance function with J = 1,

Condition (A.1) can be relaxed to λ1 > λ2 > · · ·λM > 0, λM+1 = · · · = 0, for

some M > 0. Conditions (A.3) and (A.4) refer to the covariance function of

the spatial random process ξj(s) and hold for commonly used spatial covariance

functions, some of which are shown in the Supplementary Material.

In Theorem 1, we establish the consistency of the estimated eigenvalues

λ̂j and the estimated eigenfunctions ϕ̂j obtained from Step I of the two-step

procedure given in Section 3.1.

Theorem 1. Under (2.2) and (A.1)–(A.4), for each j, we have

λ̂j
P−→ λj , (ϕ̂j , ϕj)

2 P−→ 1,

as n→∞, where (ϕ̂j , ϕj) =
∫ T
0 ϕ̂j(t)ϕj(t)dt.

Theorem 1 assumes that the mean function is known, which we relax in

Theorem 3.

Next, we establish the asymptotic properties for the estimates of the spatial

parameters θj from Step II, given λ, ϕj(t), and σ2. For an n × n matrix A, let

µi(A) denote the ith largest eigenvalue of A, and let ‖A‖2 = maxi=1,...,n{µi(AT

A)}1/2 denote the spectral norm of A. Define

Λj =
[
cov{ξj(si), ξj(si′)}

]n
i,i′=1

=
[
λjρj(‖si − si′‖; θj)

]n
i,i′=1

,

whose (i, i′)th component is the ((i−1)m+j, (i′−1)m+j)th component of Λ. With

q =
∑J

j=1 qj , let ϑ = (θT1 , . . . , θ
T
J )T denote a q-dimensional vector and define ϑ0 =

(θT10, . . . , θ
T
J0)

T , where θj0 denotes the true value of the correlation parameter in

ρj(·; θj). Moreover, define DkΛj = ∂Λj/∂θj,k, Dkk′Λj = ∂2Λj/∂θj,k∂θj,k′ , and

wj,kk′ = tr{(Λj + σ2In)−1(DkΛj)(Λj + σ2In)−1(Dk′Λj)}, for k, k′ = 1, . . . , qj
and j = 1, . . . , J . Finally, with ϑl denoting the lth component of ϑ, define

DlΣ = ∂Σ/∂ϑl, Dll′Σ = ∂2Σ/∂ϑl∂ϑl′ , DlΛ = ∂Λ/∂ϑl, Dll′Λ = ∂2Λ/∂ϑl∂ϑl′ , and

t∗ll′ = tr{Σ−1(DlΣ)Σ−1(Dl′Σ)}, for l, l′ = 1, . . . , q.

The regularity conditions for Theorem 2 are as follows.

(A.5) The correlation function ρj(·, ·; θj) is twice differentiable with respect to



SEMIPARAMETRIC SPATIO-TEMPORAL COVARIANCE FUNCTIONS 1241

θj , with continuous second-order derivatives for θj ∈ Ωj , where Ωj is an

open set.

(A.6) As n→∞, ‖Λj‖2 = O(1), ‖DkΛj‖2 = O(1), and ‖Dkk′Λj‖2 = O(1), for

k, k′ = 1, . . . , qj and j = 1, . . . , J .

(A.7) For some δ > 0, there exist positive constants Ck, such that ‖DkΛj‖−2F ≤
Ckn

−1/2−δ, for k = 1, . . . , qj and j = 1, . . . , J .

(A.8) For any k, k′ = 1, . . . , qj , aj,kk′ = limn→∞{wj,kk′(wj,kkwj,k′k′)−1/2} exists

and Aj = [aj,kk′ ]
q
k,k′=1 is nonsingular, for j = 1, . . . , J .

(A.9) There exists a positive constant c0, such that ‖Λ−1j ‖2 < c0 < ∞, for

j = 1, . . . , J .

(A.10) As n→∞, mi = O(1) and ΦT
i Φi = miImi

.

Conditions (A.5)–(A.9) are standard assumptions made about Gaussian ran-

dom fields in spatial linear models to ensure the smoothness, growth, and con-

vergence of the information matrix (Mardia and Marshall (1984)). For spatio-

temporal data, we assume (A.5)–(A.9) for ξj(s), a spatial Gaussian process, in

the Karhunen–Loève-type expansion. Condition (A.10) is based on the orthonor-

mality of the eigenfunctions ϕj(t); that is,
∫ T
0 ϕj(t)ϕj′(t)dt = 1 if j = j′, and 0

otherwise. Together with (A.5)–(A.9), (A.10) ensures the smoothness, growth,

and convergence of the information matrix for spatio-temporal data (Sweeting

(1980)).

Let `′′(ϑ, ϑ) = (∂2`(λ, ϕ(t), θj , σ
2))/(∂ϑ ∂ϑT ) be the second-order deriva-

tives of `(λ, ϕ(t), θj , σ
2) with respect to ϑ. Under (A.5)–(A.10), the asymptotic

normality of θ̂j is established in the following theorem.

Theorem 2. Under (2.4) and (A.5)–(A.10), we have

H(ϑ0)
1/2(ϑ̂− ϑ0)

D−→ N(0, Iq),

as n→∞, where q =
∑J

j=1 qj, ϑ̂ = (θ̂T1 , . . . , θ̂
T
J )T , and H(ϑ0) = E{−`′′(ϑ0, ϑ0)}

is the information matrix for ϑ.

Although Theorems 1 and 2 give the consistency and asymptotic normality

of the parameter estimates, they are established for detrended spatio-temporal

data. We relax this assumption in Section 4.
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4. Extensions to Spatio-Temporal Data with Trend

4.1. A modified two-step estimation procedure

In geostatistics, the mean function tends to vary over space and, thus,

µ(s, t) = E{y(s, t)} depends on location s. In addition, µ(s, t) is usually un-

known and needs to be estimated. There are various methods to estimate

µ(s, t), such as kernel smoothing, which often yields consistent estimates (Alt-

man (1990)). Here, we let µ̄(s, t) denote an estimated mean trend and ȳs(t) =

y(s, t)− µ̄(s, t) denote the detrended process. Furthermore, let ȳsi = (y(si, ti1)−
µ̄(si, ti1), . . . , y(si, timi

) − µ̄(si, timi
))T denote the detrended data, and ȳ = (ȳTs1 ,

. . . , ȳTsn)T denote the detrended data at all the sampling locations. The two-step

estimation procedure developed in Section 3.1 for detrended data can be applied

here by replacing y̆(s, t), y̆si , and y̆ with ȳ(s, t), ȳsi , and ȳ, respectively.

Specifically, in Step I of the modified two-step procedure, let γ̄0(t, t
′) =

n−1
∑n

i=1 ȳ(si, t)ȳ(si, t
′). For j = 1, let ϕ̃1(t) be the maximizer of

max
‖f(t)‖α=1

∫ T

0

∫ T

0
f(t)γ̄0(t, t

′)f(t′)dtdt′. (4.1)

For j > 2, let ϕ̃j(t) be the maximizer of (4.1), subject to the constraints (f, ϕ̃k)α =

0 for k < j. After standardization, ϕ̂j(t) = ϕ̃j(t)/‖ϕ̃j(t)‖ becomes the estimate

of ϕj(t). The estimate of λj is

λ̂j =

∫ T

0

∫ T

0
ϕ̃j(t)γ̄0(t, t

′)ϕ̃j(t
′)dtdt′, j = 1, . . . , J.

In Step II of the modified two-step procedure, the negative log-likelihood

function (3.1), after substituting in the estimated mean function, takes the form

`(λ, ϕ(t), θj , σ
2) =

1

2
ȳTΣ−1ȳ +

1

2
log{det(Σ)}+

N

2
log(2π),

and is minimized with ϕ(t) = ϕ̂(t) and λ = λ̂ held fixed. The resulting estimates

are denoted as θ̂j and σ̂2.

Next, we consider a linear regression for the mean function, µ(s, t) = x(s, t)Tβ,

where x(s, t) = (x1(s, t), . . . , xp(s, t))
T denotes p covariate functions at location

s and time t, and β = (β1, . . . , βp)
T denotes a p-dimensional vector of regression

coefficients. The model (2.4) becomes

y(s, t) = x(s, t)Tβ +

J∑
j=1

ξj(s)ϕj(t) + υ(s, t). (4.2)

Let X(si) = (x(si, ti1), . . . , x(si, timi
))T denote an mi × p design matrix at

sampling location si and X = (X(s1)
T , . . . , X(sn)T )T denote an N × p design
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matrix. Thus, the negative log-likelihood function of the parameters in model

(2.4) is

`(λ, ϕ(t), β, θj , σ
2) = (y −Xβ)TΣ−1

y −Xβ
2

+

(
1

2

)
log{det(Σ)}+

(
N

2

)
log(2π).

(4.3)

A practical choice of µ̄(s, t) is µ̄(s, t) = x(s, t)T β̄ols, where β̄ols = (XTX)−1

XT y is the least squares estimate of β. Then, Step I of the modified two-step

estimation procedure can be carried out as before. In Step II, however, we

minimize the negative log-likelihood function (4.3) with respect to β, θj , and σ2,

with ϕ(t) = ϕ̂(t) and λ = λ̂ held fixed. The resulting estimates are denoted as

β̂, θ̂j , and σ̂2.

4.2. Theoretical properties

Now, we consider the asymptotic properties of the parameter estimates ob-

tained from the modified two-step procedure above under additional regularity

conditions. First, we assume the following about the fourth moment of the esti-

mated mean function.

(A.11) As n → ∞, there exists a sequence cn → 0, such that E{µ̄(s, t) −
µ(s, t)}4 ≤ cn, for t ∈ [0, T ], where cn does not depend on s.

For the kernel-smoothing estimate µ̄(s, t), (A.11) can be verified to hold under

certain conditions (El Machkouri (2007)).

Theorem 3 establishes the consistency of the parameter estimates in Step I

of the modified estimation procedure for an unknown mean function µ(s, t).

Theorem 3. Under the assumptions of Theorem 1 and (A.11), we have

λ̂j
P−→ λj , (ϕ̂j , ϕj)

2 P−→ 1,

as n→∞.

For model (4.2), we establish the asymptotic properties of β̂ and θ̂j from

Step II, given λ, ϕj(t), and σ2. An additional regularity condition is assumed

about the design matrix, which is standard for spatial linear models (Mardia and

Marshall (1984)).

(A.12) The design matrix X has full rank p and is uniformly bounded in the

max norm, with limn→∞(XTX)−1 = 0.

Let `′′(β, β) = (∂2`(λ, ϕ(t), β, θj , σ
2))/(∂β ∂βT ) be the second-order deriva-

tive of `(λ, ϕ(t), β, θj , σ
2) with respect to β. The asymptotic normality of β̂ and
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θ̂j are established in Theorem 4.

Theorem 4. Under the assumptions of Theorem 2 and (A.12), we have(
H(β0)

1/2 Op×q
Oq×p H(ϑ0)

1/2

){(
β̂

ϑ̂

)
−

(
β0
ϑ0

)}
D−→ N(0, Ip+q),

as n → ∞, where H(β0) = E{−`′′(β0, β0)} is the information matrix for β and

Op×q denotes a p× q zero matrix.

The proof of the proposition and theorems above are provided in the Sup-

plementary Material. The Gaussian assumption can be readily relaxed in Theo-

rems 1 and 3, but not for Theorems 2 and 4.

5. Numerical Examples

5.1. Simulation study

A simulation study is conducted to investigate the finite-sample properties of

our spatio-temporal semiparametric covariance (SemiCov) method developed in

Sections 2–4. First, the covariates x(s, t) are generated from standard normal dis-

tributions with a cross-covariate correlation of 0.5, and the regression coefficients

are set to β = (4, 3, 2, 1, 0, 0, 0)T . Each covariate is standardized to have sample

mean zero and sample variance one and the response has a sample mean zero.

Thus, there is no intercept in this model. The spatio-temporal process is defined

as ε1(s, t) = ξ1(s)ϕ1(t) + ξ2(s)ϕ2(t), where ξ1(s) and ξ2(s) are independent zero-

mean stationary and isotropic Gaussian processes, with exponential covariance

functions λ1 exp(−d/r1) and λ2 exp(−d/r2), respectively, for the spatial distance

d, with λ1 = 2.5, r1 = 0.5, λ2 = 0.5, and r2 = 0.3. Moreover, ϕ1(t) = c1 cos(πt)

and ϕ2(t) = c2 sin(πt) are orthonormal functions on [0, 1], with normalization

constants c1 and c2, respectively. The number of sampling locations is set to

n = 50, 100, and 150, and the locations are randomly distributed within the

spatial domain R = [0, l]× [0, l], where l = 2−1n1/2. At each sampling location,

20 time points are set at ti = (2i − 1)/(2m), for i = 1, . . . ,m and m = 20. For

each sample size n, 100 data sets are simulated.

For each simulated data set, we apply our method to estimate the regres-

sion coefficients β, spatial parameters (r1, r2), eigenvalues (λ1, λ2), eigenfunctions

(ϕ1(t), ϕ2(t)), and measurement error variance σ2. We compare our method with

two alternative methods, namely, the ordinary least squares, which ignores both

spatial and temporal dependence (denoted as ALT1), and the functional data

analysis, which accounts for temporal, but not spatial dependence (denoted as
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ϕ

−
−

−

ϕ

Figure 1. The 95% pointwise simulation intervals for ϕ1(t) (left) and ϕ2(t) (right) using
our method. The true ϕ1(t) and ϕ2(t) are indicated as a gray solid line. The pointwise
simulation intervals for n = 50, 100, and 150 are indicated as black dotted, dashed, and
solid lines, respectively.

ALT2). Moreover, the prediction in space and time is performed using all three

approaches.

Figure 1 gives the 95% pointwise simulation intervals for the eigenfunctions

ϕj(t), defined as[
1

2

{
ϕ̂
(97)
j (t) + ϕ̂

(98)
j (t)

}
,
1

2

{
ϕ̂
(2)
j (t) + ϕ̂

(3)
j (t)

}]
,

where ϕ̂
(i)
j (t) is the ith largest value of {ϕ̂ij(t) : i = 1, . . . , 100}, and ϕ̂ij(t) is the

estimate of ϕj(t) from the ith simulated data set. The results show that the true

eigenfunctions are captured by the 95% pointwise simulation intervals. Moreover,

the intervals become narrower as the number of sampling locations n increases,

supporting the theory that the estimates of ϕ1(t) and ϕ2(t) are consistent.

Table 1 reports the mean and the standard deviation of the regression coef-

ficient estimates from 100 simulated data sets using the three approaches. The

regression coefficient estimates have a lower bias, and the standard deviations

become smaller as the number of sampling locations n increases. Moreover, both

our SemiCov method and the functional data analysis outperform the ordinary
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Table 1. The mean, and standard deviation (SD) of the regression coefficient estimates,
and the mean square prediction errors under the proposed SemiCov method, ALT1, and
ALT2, as well as the mean estimated standard deviation (SDm) under the SemiCov
method for sample sizes n = 50, 100, and 150.

n
Method β1 β2 β3 β4 β5 β6 β7 MSPE1 MSPE2

True Values 4.000 3.000 2.000 1.000 0.000 0.000 0.000 − −

50

SemiCov 4.001 3.000 1.997 0.996 0.006 −0.006 0.009 2.667 1.112
SD 0.043 0.044 0.045 0.048 0.042 0.043 0.041 1.006 0.177

SDm 0.045 0.045 0.045 0.045 0.045 0.045 0.045 – –
ALT1 4.005 3.005 1.996 0.992 0.006 −0.005 0.009 3.927 3.768

SD 0.086 0.077 0.087 0.076 0.081 0.082 0.076 1.703 0.744
ALT2 4.001 3.000 1.997 0.996 0.006 −0.007 0.009 3.917 1.114

SD 0.043 0.044 0.045 0.049 0.043 0.043 0.041 1.704 0.177

100

SemiCov 4.001 2.992 1.998 1.007 0.002 0.000 −0.001 2.610 1.106
SD 0.031 0.030 0.029 0.031 0.033 0.027 0.030 0.715 0.108

SDm 0.031 0.031 0.031 0.031 0.031 0.031 0.031 − −
ALT1 3.996 2.991 2.001 1.011 0.005 −0.005 0.004 3.720 3.775

SD 0.053 0.055 0.054 0.058 0.056 0.053 0.057 1.130 0.453
ALT2 4.001 2.992 1.998 1.007 0.002 0.000 −0.001 3.715 1.109

SD 0.031 0.030 0.029 0.032 0.033 0.027 0.030 1.133 0.108

150

SemiCov 4.001 3.004 1.997 0.997 −0.001 0.000 0.002 2.616 1.093
SD 0.027 0.026 0.025 0.027 0.032 0.024 0.027 0.600 0.105

SDm 0.025 0.025 0.025 0.025 0.025 0.025 0.026 − −
ALT1 4.005 3.007 1.991 1.001 −0.001 −0.007 0.005 3.836 3.847

SD 0.043 0.054 0.051 0.048 0.049 0.045 0.045 0.914 0.414
ALT2 4.001 3.004 1.997 0.997 0.000 0.000 0.002 3.830 1.095

SD 0.027 0.026 0.025 0.027 0.032 0.023 0.027 0.912 0.105

least squares in terms of yielding smaller standard deviations. This suggests that

incorporating spatio-temporal structures can greatly improve the estimation of

regression coefficients.

The standard errors of the regression coefficients, eigenvalues, and spatial

parameter estimates can be obtained using the information matrix in Theorem 4.

That is, for each simulated data set, define sd{β̂} = diag{H(β̂)−1}1/2, sd{λ̂} =

diag{H(λ̂)−1}1/2, and sd{ϑ̂} = diag{H(ϑ̂)−1}1/2, where β̂, λ̂, and ϑ̂ are the

estimates from the simulated data set, and H(β), H(λ) = E{−`′′(λ, λ)}, and

H(ϑ) are the information matrices for β, λ, and ϑ, respectively. From the 100

simulated data sets, the mean of the standard errors (SDm) is computed for our

SemiCov method and presented in Table 1. The results show that these means

are close to the nominal true standard deviations of the regression coefficient

estimates.
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Table 2. The mean and standard deviation (SD) of spatial-temporal coefficient estimates
under our method (SemiCov) for sample size n = 50, 100, and 150.

n
Method λ1 r1 λ2 r2 σ2

True Values 2.50 0.50 0.50 0.30 1.00

50
SemiCov 2.32 0.46 0.48 0.29 1.03

SD 0.63 0.20 0.10 0.11 0.08
SDm 0.65 0.18 0.12 0.12 0.05

100
SemiCov 2.31 0.47 0.52 0.32 1.02

SD 0.45 0.14 0.09 0.11 0.05
SDm 0.46 0.13 0.10 0.09 0.03

150
SemiCov 2.43 0.48 0.53 0.31 1.01

SD 0.36 0.10 0.08 0.07 0.03
SDm 0.41 0.11 0.08 0.07 0.03

For the prediction, we consider two scenarios. In Scenario 1, the prediction

is carried out for multiple time points t01, . . . , t0m at an unsampled location s0.

It is straightforward to show that the best linear unbiased prediction (BLUP) of

y(s0, t0) is

ỹ(s0, t0) = x(s0, t0)
T β̃ + cT0 Σ−1(y −Xβ̃),

where c0 is an N -dimensional vector with an ith element of cov{y(s0, t0), yi}, yi
is the ith element of y, Σ = cov(y), and β̃ = (XTΣ−1X)−1XTΣ−1y (Cressie

(1993)). Because Σ and c0 are usually unknown, the estimates of Σ and c0 are

substituted in, and an empirical best linear unbiased prediction is obtained.

To quantify the prediction error for the curve at location s0, we use the mean

integral squared error,

MISE(s0) =

∫ T

0
{ỹ(s0, t)− y(s0, t)}2dt.

In the simulation study, T = 1 and ti are evenly distributed and, thus, MISE(s0)

is estimated by m−1
∑m

i=1{ỹ(s0, t0i) − y(s0, t0i)}2. Moreover, we generate 5,

10, and 15 additional curves for sample sizes n = 50, 100, and 150, respec-

tively, and set them aside for prediction. Lastly, for the M unsampled curves

at s01, . . . , s0M , we define the first mean squared prediction error (MSPE1) as

M−1
∑M

i=1 MISE(s0i).

In Scenario 2, we predict missing time points at a sampling location si, for i =

1, . . . , n. For m unsampled time points t0i = (t0i,1, . . . , t0i,m)T at each location si,

we define a second mean squared prediction error (MSPE2) as (mn)−1
∑n

i=1

∑m
k=1

{ỹ(si, t0i,k)− y(si, t0i,k)}2. For the simulation, predictions are made at {(si, t0i) :

t0i = (0.25, 0.75)T , i = 1, . . . , n}.
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Figure 2. The mean squared prediction error (MSPE) for Scenario 1 (left) and Scenario 2
(right) under our method (SemiCov) and two alternative approaches (ALT1 and ALT2).

Table 1 shows the prediction performance for different sample sizes; the

associated box-plots for n = 100 are given in Figure 2. The results in Scenario 1

show that ALT2 outperforms ALT1, while our SemiCov method outperforms

both ALT1 and ALT2. This provides empirical evidence that incorporating the

spatial correlation between locations can substantially improve the predictions

at unsampled locations. In Scenario 2, our SemiCov method and ALT2 both

outperform ALT1, and our SemiCov method is slightly better than ALT2 for

predicting at sampled locations with missing time points.

Finally, Table 2 reports the mean, standard deviation (SD), and mean stan-

dard error (SDm) of the estimates of the spatio-temporal parameters. The means

of the parameter estimates approach the true values, and the standard deviations

become smaller as the sample size increases. Moreover, the mean standard error

of the spatio-temporal parameter estimates is fairly close to the nominal true

standard deviation. For our SemiCov method, the simulated data sets are fitted

with the number of eigenfunctions, J = 2.

5.2. Data example

This example examines precipitation data (in inches per 24-hour period) for
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Table 3. Precipitation data example without forward selection: Regression coefficient
estimates and mean squared prediction errors under our method (SemiCov) and two
alternative approaches (ALT1 and ALT2), along with the standard errors (SE) for our
SemiCov method.

Method Elevation Slope Aspect B1M B2M B3M B4M B5M
SemiCov 0.190 0.003 0.006 0.091 0.006 0.032 −0.208 0.019

SE 0.019 0.010 0.009 0.062 0.026 0.043 0.072 0.037
ALT1 0.046 0.047 0.010 −0.142 −0.079 0.052 −0.083 0.110
ALT2 0.101 0.026 0.018 −0.145 −0.031 0.091 −0.077 0.004

B6M B7M MSPE1 MSPE2

SemiCov 0.016 −0.002 0.143 0.085
SE 0.046 0.040 − −

ALT1 −0.011 −0.009 0.474 0.137
ALT2 0.115 −0.047 0.473 0.077

the period January to December, on a log-scale from 259 weather stations in

Colorado (Reich and Davis (2008); Chu, Zhu and Wang (2011)), as shown in

the left-hand panel of Figure 3. There are 10 covariates of interest, including

elevation, slope, aspect, and seven spectral bands from satellite imagery (B1M

through B7M). For model fitting, we use precipitation data for 10 months (ex-

cluding March and October) from 240 weather stations. Two types of prediction

are considered. First, predictions are made for the remaining 19 weather stations,

and the prediction results are summarized by MSPE1. Second, the March and

October precipitation data for the 240 weather stations are predicted, and the

results are summarized by MSPE2.

In the right-hand panel of Figure 3, the empirical variogram over spatial

and temporal lags suggests there is a spatio-temporal dependence for Colorado

precipitation data. A data analysis is performed using our SemiCov method and

two alternative approaches. For our SemiCov method, we choose the number of

components J = 2, such that
∑J

j=1 λ̂j/
∑n

j=1 λ̂j ≥ 80%, as suggested by Zhu,

Fan and Kong (2014). Furthermore, because there is multicollinearity among the

covariates, we apply a forward selection using AIC. The resulting model contains

two covariates, elevation and B4M. The results without the forward selection

are reported in Table 3, and those with the forward selection are reported in

Table 4. For the SemiCov method, there is strong evidence of an elevation and

B4M effect, while there is moderate evidence of an effect of B1M. When predicting

all time points at unsampled locations, our SemiCov method outperforms the two

alternative methods. On the other hand, for the prediction at the two time points

set aside at the sampling locations, both our method and the functional data
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Figure 3. Map of locations of 259 weather stations in the Colorado precipitation data
(left), and the empirical variogram over spatial and temporal lags (right).

Table 4. Precipitation data example with forward selection: Regression coefficient es-
timates and mean squared prediction errors under our method (SemiCov) and two al-
ternative approaches (ALT1 and ALT2), along with the standard errors (SE) for our
SemiCov method.

Method Elevation B4M MSPE1 MSPE2

SemiCov 0.203 −0.059 0.140 0.085
SE 0.018 0.013 − −

ALT1 0.054 −0.173 0.469 0.140
ALT2 0.101 −0.102 0.464 0.077

analysis outperform the ordinary least squares method, although the functional

data analysis is slightly better than our method in this case.

Supplementary Material

The Supplementary Material contains the proofs of Proposition 1 and The-

orems 1–4, as well as additional numerical studies.
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Brynjarsdóttir, J. and Berliner, L. M. (2014). Dimension-reduced modeling of spatio-temporal

processes. Journal of the American Statistical Association 109, 1647–1659.

Choi, I., Li, B. and Wang, X. (2013). Nonparametric estimation of spatial and space-time

covariance function. Journal of Agricultural, Biological, and Environmental Statistics 18,

611–630.

Chu, T., Zhu, J. and Wang, H. (2011). Penalized maximum likelihood estiamtion and variable

selection in geostatistics. The Annals of Statistics 39, 2607–2625.

Cressie, N. (1993). Statistics for Spatial Data. revised edition, Wiley, New York.

Cressie, N. and Huang, H. C. (1999). Classes of nonseparable spatio-temporal stationary covari-

ance functions. Journal of the American Statistical Association 94, 1330–1340.

Cressie, N., Shi, T. and Kang, E. L. (2010). Fixed rank filtering for spatio-temporal data.

Journal of Computational and Graphical Statistics 19, 724–745.

Cressie, N. and Wikle, C. K. (2011). Statistics for Spatio-temporal Data. Wiley, New York.

El Machkouri, M. (2007). Nonparametric regression estimation for random fields in a fixed-

design. Statistical Inference for Stochastic Processes 10, 29–47.

Fuentes, M., Chen, L. and Davis, J. M. (2008). A class of nonseparable and nonstationary

spatial temporal covariance functions. Environmetrics 19, 487–507.

Ghanem, R. G. and Spanos, P. D. (1991). Stochastic Finite Elements: A Special Approach.

Springer.

Ghosh, S. K., Bhave, P. V., Davis, J. M. and Lee, H. (2010). Spatio-temporal analysis of total

nitrate concentrations using dynamic statistical models. Journal of the American Statistical

Association 105, 538–551.

Gneiting, T. (2002). Nonseparable, stationary covariance functions for spacectime data. Journal

of the American Statistical Association 97, 590–600.

Gromenko, O. and Kokoszka, P. (2013). Nonparametric inference in small data sets of spa-

tially indexed curves with application to ionospheric trend determination. Computational

Statistics and Data Analysis 59, 82–94.

Gromenko, O., Kokoszka, P., Zhu, L. and Sojka, J. (2012). Estimation and testing for spatially

indexed curves with application to ionospheric and magnetic field trends. The Annals of

Applied Statistics 6, 669–696.

Harville, D. (2008). Matrix Algebra From A Statistician’s Perspective. Springer.
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