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S1 Details of Computations

S1.1 The Bandwidth Selection

The weight function depends on the choice of bandwidth, h. Typically, h

is selected by cross-validation (CV) or generalized cross-validation (GCV).

The options are various and details can be found in Wand and Jones (1994).

For example, we can either leave one pair of locations or one subregion out

at a time; we can also minimize the sum of squared prediction errors (SSPE)

for either spatially varying parameters or for covariance functions. Here,

we prefer the option employed by Kleiber and Nychka (2012). They imple-
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mented a leave-one-out cross-validation (LOOCV) process for each location

pair by minimizing the SSPE for the covariance functions in the multivari-

ate case. The univariate SSPE is
∑n

k,l=1

{
ĈNS
l,k (sk, sl)− ĈNS

−l,−k(sk, sl)
}2

,

where ĈNS
l,k (sk, sl) is the estimated covariance function of CNS(sk, sl) and

ĈNS
−l,−k(sk, sl) is the predicted estimate at the location pair (sk, sl) based on

the remaining locations, s 6= sk, sl.

This option is preferable since it contains more location pairs and is

not affected by the choice of spatially varying parameters. However, this

procedure could be quite time consuming and tends to underestimate the

bandwidth. In Gaussian kernels, h is the variance of the Gaussian distri-

bution. We therefore choose the bandwidth to be the square of half of the

distance between the two closest anchor locations, i.e., h = {‖s1− s2‖/2}2,

so that the local estimates depend only on the data in the subregions with

range 2
√
h, indicating the range of high density points in a Gaussian dis-

tribution.

S1.2 Sequentially Conditional Simulation

We are generating data from a multivariate Gaussian distribution with co-

variance matrix of size N ×N . It generally requires a Cholesky decomposi-

tion of the covariance matrix, which takes O(N3) running time, and it takes
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two hours to simulate one spatial field with 13,000 locations on a personal

laptop. Therefore, we propose to use a more scalable method that simulates

observations from the Gaussian random fields sequentially. The sequential

Gaussian simulation has been widely used in geostatistical simulations Got-

way and Rutherford (1994); Fredericks and Newman (1998). The idea is

to simulate realizations only on a subset at a time. In our application, we

simulate one dataset for a subregion, then the next subset are simulated

conditional only on all or a part of the previous simulated one.

Specifically, we propose a computationally efficient algorithm with se-

quentially conditional simulation methods. Let X be the l1× l2 data matrix

observed on a grid, where N = l1 × l2. First, we separate the region into J

blocks of equal size by columns such that X = (X1, . . . ,XJ) is ordered from

left to right. Since X1 can be simulated unconditionally, for k = 2, . . . , J ,

Xk|X′k−1 ∼ Nnk
(ΣT

k−1,kΣ
−1
k−1,k−1X

′
k−1,Σk,k − ΣT

k−1,kΣ
−1
k−1,k−1Σk−1,k), where

X′k−1 is partial or all columns of Xk−1 closest to Xk and Σk,l is the covari-

ance matrix between two random matrices.

Thus, we can simulate X2 conditionally on X′1. For k > 2, to simu-

late Xk, instead of conditioning on all X1, . . . ,Xk−1, we condition only on

X′k−1. Here, we only need to invert Σk−1,k−1, it indicates that the size of

the conditioning set determines the computational cost. By choosing X′k−1
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with a small size, this simulation method is nearly as fast as generating

Xk unconditionally from Σkk. In Vecchia’s method (Vecchia, 1988; Katz-

fuss and Guinness, 2017), the conditioning set is chosen to be the nearest

neighbors. In our application, we consider 20% (2%/10%) of the neigh-

bors, on the boundary. We can use a larger conditioning set, however, the

computation will become more expensive.

S2 Further Simulation Studies

S2.1 Computation Time

In this subsection, we would like to compare the exact computation time

between various 1) non-stationary models, 2) numbers of subregions, and

3) numbers of non-stationary parameters. all comparisons are made based

on the same scenario as the 1D simulation study in Section 5, except for

the test variable(s).

1. It is not easy to compare different methods if different techniques are

employed. First, few of them mention the exact time of the estimations

and the data size varies. Second, there are many different fundamental

theories, it is not fair to compare them since existing nonstationary

models are not all about nonstationary Matérn and all the methods
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require the choice of certain tuning parameters.

However, it is possible to make comparisons among the approaches

based on non-stationary Matérn covariance function (Paciorek and

Schervish, 2006). In the main manuscript, our model is compared with

two rough approximation methods (S0 and WS0) and conventional

moving window method (moving window S0), which is mentioned in

the last two paragraphs of Section 2.2. The following table shows the

running time of those methods, based on the same scenario in the 1D

simulation study in Section 5. The comparison is relatively fair since

the region division and the number of non-stationary parameters are

the same. As we can see, for the same number of subregions, since

our model has more parameters to estimate, it requires more compu-

tational time than the other two rough approximation methods, but

much faster than the conventional moving window method when the

window size is the same as the size of the subregion.

Model S0 WS0 NS1 Moving-window S0

Running time (sec) 1.122517 1.1969 2.054463 51.42817

2. Since the smoothing step is very fast, the total computation time is

nearly equal to T =
∑m

i=1 ti, where m is the number of subregions
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and ti is the computational time for each subregion. When m in-

creases, ti will decrease since the sample size or the number of loca-

tions gets smaller in each subregion. Typically, more subregions result

in shorter computational time T , as the reduced sample size in each

subregion saves the computational cost more significantly. However,

the estimation will become less accurate. Based on the same setting

in the 1D simulation, The following table shows the running time for

m = 2, 4, 8, 10, and the results support our argument.

# of subregions 2 4 8 10

Running time (sec) 3.571554 2.054463 1.656103 1.629547

3. Increasing the number of non-stationary parameters implies that more

parameters need to be estimated, which will affect both the accuracy

and efficiency. Again, using the same setting as in the 1D simulation,

the following table shows the running time when we also consider dif-

ferent numbers of nonstationary parameters: 1) σ only, 2) σ and λ, 3)

σ, λ and η. It can be seen that when the number of spatially varying

parameters increases, the estimation becomes slower. Besides, when

too many parameters are required to be estimated, the optimization

often fails to achieve the global maximum.
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# of nonstationary parameter 1 2 3

Running time (sec) 3.571554 7.516602 9.151497

Similarly, the degree of nonstationarity refers to the order. Higher

order of the nonstationarity increases the number of parameters dra-

matically, and thus increases both the computation and uncertainty.

Actually, the comparisons between WS0 (zero-order) and NS1 (first-

order) can be viewed as the comparisons for different degrees of non-

stationarity.

S2.2 Sensitivity to Region Division

Using the same setting as 1D simulation, we show the estimation results for

m = 2, 4, 8, 10, and compare with WS0 and S0 models. From the Response

Fig. 1-4, our model is less sensitive than WS0 and S0 models. However, a

good estimation still heavily depends on the correct division. When m = 2,

indicating an inappropriate division, all of three methods are not well fitted.

When m = 4, 8, 10, the true curve always situates inside the 95% CI of our

estimation, whereas WS0 and S0 models can obtain a good estimation only

after m = 8. However, WS0 and S0 have smaller uncertainties than NS1

model, especially when m is large. The reason is that our NS1 model has

more parameters, so that our estimation requires more data in the local
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fitting.

In general, too few subregions lead to a poor estimation while too many

will increase the estimation uncertainty. For example, in the 1D simulation,

two subregions (m = 2) are not enough, while m = 4, 8, 10 are helpful.

However, the uncertainty increases too much when m = 8, 10, since there

are not enough data in local fitting.
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Figure S1: Estimations of σ(s) with 95% confidence intervals for m = 2 using (a) local stationary

model (S0) and weighted local stationary (WS0) model and (b) our first-order non-stationary (NS1)

model

As we briefly mentioned in Section 7 and in the Supplement (Section

S2.2), this problem is not well solved neither in our paper nor in the related

works. To make it consistent, we equally divide the region by four in our

paper. In practice, the decision should be made by some exploratory anal-

yses. However, it is hard to visualize the covariance behavior from the raw
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(a) Local Stationary Estimations, m=4
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Figure S2: Estimations of σ(s) = 2 sin(s/0.015) + 2.8 with 95% confidence intervals for m = 4 using

(a) local stationary model (S0) and weighted local stationary (WS0) model and (b) our first-order

non-stationary (NS1) model
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(a) Local Stationary Estimations, m=8
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Figure S3: Estimations of σ(s) = 2 sin(s/0.015) + 2.8 with 95% confidence intervals for m = 8 using

(a) local stationary model (S0) and weighted local stationary (WS0) model and (b) our first-order

non-stationary (NS1) model

data, since it measures the second-order property and there are different

types of stationarity. Therefore, other exogenous information regarding the
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(a) Local Stationary Estimations, m=10
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Figure S4: Estimations of σ(s) = 2 sin(s/0.015) + 2.8 with 95% confidence intervals for m = 10

using (a) local stationary model (S0) and weighted local stationary (WS0) model and (b) our first-order

non-stationary (NS1) model

heterogeneity of the spatial might be helpful for determining the partition.

In principle, each subregion should be small enough to be homogeneous but

large enough to have enough data for estimation.

In fact, based on the Taylor theorem, the spatially varying parameter

as a function over space can be expanded as a polynomial function up to

an infinitely small error. If we can correctly estimate the coefficients for

all polynomial terms, the region division does not matter. However, we

only recommend use linear approximation without going for higher order

polynomials but with a reasonable number of subregions. This is because

there are computational issues due to estimating too many parameters, and

the uncertainty also increases dramatically when considering higher order
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polynomials.

Future research is needed for developing automatic and adaptive parti-

tioning criteria. It could make use of some validation tools or the informa-

tion from covariates (see Risser et al. 2016).

S2.3 Estimation of Non-stationary Kernel Matrix

Our second example is to estimate the non-stationary kernel matrix Σ(s),

characterized by {λ1(s), λ2(s), φ(s)}, s ∈ [0, 1]2. Here, s is gridded and

the true spatially varying parameters are chosen to be the transformed

quadratic functions, where the transformations depend on the constraints of

the parameters. Other parameters are set to be constant, i.e., (σ2, τ 2, ν) =

(1, 0.1, 2). Figure S6(a) shows the contour-image plots of the spatially vary-

ing parameters and the corresponding covariance matrix.

Specifically, λ1(s) = exp{−3 − 6(s1 − 0.5)2 − 7(s2 − 0.5)2}, λ2(s) =

exp{−5+6(s1−0.5)2−4(s2−0.5)2}, φ(s) = π
2

[
exp{(s1−0.5)−2(s2−0.5)+(s2−0.5)2}

1+exp{(s1−0.5)−2(s2−0.5)+(s2−0.5)2}

]
.

Since λ1 and λ2 represent the squared spatial ranges, we choose λ1(s0) = −3

and λ2(s0) = −5 at the center, s0 = (0.5, 0.5), to allow the effective range

(the distance at which the correlation reduce to 0.05) to be reasonable.

Figure S5(a) shows how these parameters bring non-stationarity to the

corresponding covariance function. We select five reference locations on
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the four sides and the center. For each chosen location, we calculate the

covariance between the location with all others, and the contour-image plots

show the covariances. If a covariance function is stationary, the contours

at reference locations will present an homogeneous pattern, where the four

contours on the sides are able to combine into the one in the center. In our

example, however, the contours are apparently non-homogeneous and thus

the generated random process is non-stationary.
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Figure S5: Contour-image plots of the covariance between the contour center and the

other points, where the contour center is selected at five reference locations.

We simulate 8000 observations from zero-mean GRFs at 400 locations

with 20 independent replicates. Our NS1 estimates are obtained following
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the algorithm in Section 4, whereas the S0 and WS0 estimates are imple-

mented using the convoSPAT package. With four subregions, i.e. m = 4,

we have 3× 3× 4 + 3 = 39 parameters to estimate in our model. However,

since we separate the optimization as mentioned in Section 4.1, at most six

parameters are optimized simultaneously.

(a) Setup of parameters
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Figure S6: (a): The contour-image plots of three parameters, (λ1, λ2, φ), of the kernel

matrix and the corresponding covariance matrix. (b): The contour-image plots of the

corresponding estimations based on three models.

Similarly, we repeat the estimation 100 times. In Table 1, we show the

the mean, standard error, and the nonstationarity index, D1, of 100 esti-

mations for each non-stationary parameter. In addition, we also calculate

the MSEs based on the mean of 100 estimations. To visualize it, Figure
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S6(b) shows the mean estimates of each spatially varying parameter for the

three methods. It can be seen that, similar to the 1D simulation study, our

method gives more accurate estimation in terms of MSEs but with larger

uncertainty for the estimators. The difference is less significant than 1D

case since more parameters are estimated together.
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Figure S7: the ellipse-contour plots of the true and estimated kernel matrix at five

reference locations.

Furthermore, to validate the estimations of the corresponding kernel

matrices of size 2×2, we choose five reference locations and draw the contour

ellipses as shown in Figure S7. In general, our model has a better fit with
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the kernel matrix corresponding to the location at the center, whereas the

borders are more difficult to estimate. Even so, wherever the location is,

our NS1 model never performs worse than the WS0 model with regard to

the contour ellipses. Therefore, for spatial problem with overall or local

trend-non-stationarity, our model is a better solution.
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Table 1: Summary of results from 100 estimations. Definitions of columns: (1)-(2) the mean (standard

deviation) of the S0 estimators β̂0 and slope estimators β̂1 and β̂2, respectively; (3) the empirical trend-

nonstationarity index in the k-th subregion D̂1k; (4) the mean squared error MSENS1 of λ̂1(s),λ̂2(s),

and φ̂(s), calculated from the mean of β̂0s, β̂1s, and β̂2s from the NS1 model; (5) MSES0/MSENS1; (6)

MSEWS0/MSENS1.

Subregion 1 2 3 4

log{λ1(s)}
β̂0 -3.59 (0.31) -3.82 (0.44) -3.70 (0.35) -4.01 (0.35)

β̂1 1.95 (0.64) -0.16 (0.65) 0.36 (0.50) -2.47 (0.85)

β̂2 2.53 (0.73) 0.16 (0.64) -0.38 (0.53) -2.68 (0.76)

D̂1 2.24 0.16 0.37 2.57

MSENS1 0.360

MSES0/MSENS1 1.585

MSEWS0/MSENS1 1.570

log{λ2(s)}
β̂0 -4.57 (0.32) -4.58 (0.43) -4.63 (0.35) -4.64 (0.33)

β̂1 -2.06 (0.71) 0.29 (0.69) -0.09 (0.54) 2.37 (0.61)

β̂2 1.75 (0.70) -0.15 (0.68) -0.02 (0.56) -1.85 (0.71)

D̂1 1.91 0.22 0.05 2.11

MSENS1 0.148

MSES0/MSENS1 2.331

MSEWS0/MSENS1 2.900

logit{φ(s)}
β̂0 0.46 (0.17) 0.73 (0.25) -0.52 (0.21) -0.30 (0.35)

β̂1 0.40 (0.96) 0.50 (0.52) 0.03 (0.30) 0.05 (1.43)

β̂2 -2.20 (0.84) -0.52 (0.47) -0.10 (0.26) -1.43 (1.31)

D̂1 1.30 0.51 0.06 0.74

MSENS1 0.042

MSES0/MSENS1 529.105

MSEWS0/MSENS1 11.363
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S3 Additional Figures
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Figure S8: (a) A realization and (b) its increment of a GRF, Z(s) = σ(s)W (s), s ∈ [0, 1],

where W (s) is a zero-mean stationary GRF with a Matérn covariance function with

parameters (τ, ν, λ) = (0, 1, 0.2) and σ(s) = 2 sin(s/0.15) + 2.8.
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Figure S9: The region of interest with the subregions numbered. The whole region

includes most of the North America in a rectangular area from (19.45◦N, 157.71◦W) to

(70.26◦N, 35.72◦W)

Figure S10: Preprocessed 1971 summer precipitation rate residuals (mm/day): five GCM

runs and one RCM run over the region shown in Figure S9.
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S4 R Source Codes

The R codes used in this study can be found on the website:

https://github.com/aleksada/Nonstationary-estimation/tree/master.

The R codes of the 1D and 2D simulation studies are stored in 1d.simulation.Rmd

and 2d.simulation.Rmd, respectively.

The R codes of the application are stored in application.Rmd.

S5 GCM and RCM Data and Related Source

The data used in the application can be also found on the website:

https://github.com/aleksada/Nonstationary-estimation/tree/master

The related RCM runs can be downloaded from:

http://www.cccsn.ec.gc.ca/?page=dd-gcm

The related GCM runs can be downloaded from:

http://climate-modelling.canada.ca/data/cgcm3/cgcm3.shtml
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