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Abstract: Spatial processes exhibit nonstationarity in many climate and environ-

mental applications. Convolution-based approaches are often used to construct

nonstationary covariance functions in Gaussian processes. Although convolution-

based models are flexible, their computation is extremely expensive when the data

set is large. Most existing methods rely on fitting an anisotropic, but station-

ary model locally, and then reconstructing the spatially varying parameters. In

this study, we propose a new estimation procedure to approximate a class of non-

stationary Matérn covariance functions by local-polynomial fitting the covariance

parameters. The proposed method allows for efficient estimation of a richer class

of nonstationary covariance functions, with the local stationary model as a special

case. We also develop an approach for a fast high-resolution simulation with non-

stationary features on a small scale and apply it to precipitation data in climate

model outputs.

Key words and phrases: Climate model runs, conditional simulation, large datasets,

local likelihood estimation, nonstationary Matérn covariance function, polynomial

approximation.

1. Introduction

Gaussian random fields (GRFs) or Gaussian processes (GPs) for spatial data

have been called “the most valuable tools in the toolkit for geo-statistical mod-

eling” (Gelfand and Schliep (2016)). These tools are important because the

probabilistic distribution of a GRF can be fully determined by its first and sec-

ond moments. For convenience, GRFs are typically assumed to be stationary or

isotropic, which implies that the second moment is finite, the mean function is

constant, and a certain property of the covariance function is invariant. Never-

theless, nonstationarity often exists in spatial processes, such as between the land

and the ocean, or between mountains and plains. In general, the nonstationarity

exists in the mean and the covariance function. In this study, we assume that the

mean function is constant to focus on nonstationarity in the covariance function.

https://doi.org/10.5705/ss.202017.0536
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The existing literature provides various approaches to modeling nonstation-

ary covariance functions. We classify these approaches into six groups: 1)

basis function expansions (Nychka, Wikle and Royle (2002)); 2) deformation

approaches (Sampson and Guttorp (1992); Anderes and Stein (2008)); 3) dif-

ferential operator approaches (Jun and Stein (2008); Lindgren, Rue and Lind-

ström (2011)); 4) process convolution approaches (Higdon (1998); Paciorek and

Schervish (2006)); 5) predictive processes (Gramacy and Lee (2008)); and 6) treed

Gaussian processes (Banerjee et al. (2008)). Risser (2016) reviewed most of these

methodologies, emphasizing convolution-based methods. The convolution-based

model has become one of the most popular methods in spatial nonstationary

modeling, owing to its high flexibility. In particular, Paciorek and Schervish

(2006) derived a class of valid nonstationary Matérn covariance functions with

convolution models. They characterized nonstationarity by spatially varying pa-

rameters, which could be viewed as a function over space.

However, if we specify a nonstationary type using spatially varying parame-

ters, the number of parameters to be estimated will be proportional to the size

of the locations. Accuracy and efficiency in such an estimation are extremely

difficult to achieve. To address this problem, current methods assume that the

covariance function is local stationary (Paciorek and Schervish (2006); Anderes

and Stein (2011)) or weighted local stationary (Risser and Calder (2015a); Foued-

jio, Desassis and Rivoirard (2016)). Although these approximations simplified

the model fitting in many applications, they all rely on the assumption that the

spatially varying parameters are locally constant or that the process is stationary

in each subregion. Therefore, the approximation quality is significantly affected

by the choice of region partition, which is not an easy task. In general, an accu-

rate local fitting requires a reasonably large number of observations, which are

often collected over a large, and thus possibly nonstationary spatial region. A

smaller size subregion tends to be more stationary; however, there might not be

enough data to fit the model locally.

To avoid this problem, we propose a local estimation approach for nonsta-

tionary covariance functions based on a higher-order polynomial approximation

of the spatially varying parameters. Compared with the local stationary model,

our higher-order polynomial approximation allows for local nonstationarity and

incorporates local stationary and weighted local stationary models as special

cases. We also develop an efficient likelihood-based estimation method for model

fitting. Additionally, we show that each polynomial parameter measures the

degree of a certain type of nonstationarity.
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Fitted nonstationary models have many potential applications. We apply the

proposed method to precipitation data in North America from relatively coarse-

resolution climate model runs. With the fitted model, we perform high-resolution

simulations and generate nonstationary precipitation fields. High-resolution non-

stationary simulations are also challenging. Kleiber (2016) proposed combining

the approaches of circular embedding and deformation to achieve an exact simula-

tion. We propose a different approach using a sequentially conditional simulation.

Using a personal computer, it takes approximately 15 minutes to fit our model

using five runs of the general circulation model (GCM) data from 13× 30 = 390

locations and to perform one simulation at the scale of a regional climate model

(RCM) at 62× 210 = 13, 020 locations.

The remainder of our paper is organized as follows. Section 2 introduces

convolution-based nonstationary spatial covariance modeling and reviews exist-

ing estimation methods. Section 3 proposes our new estimation approaches. Sec-

tion 4 describes the interpretations, computational issues, and implied simulation

algorithms. Section 5 presents simulation studies to fit nonstationary Matérn

covariance functions. Section 6 applies our estimation and high-resolution em-

ulation approaches to precipitation data from climate model runs. Section 7

summarizes our main results and suggests directions for future work.

2. Nonstationary Covariance Function and its Estimation

2.1. Nonstationary spatial covariance function

A univariate Gaussian random field (GRF), {Z(s), s ∈ D}, defined on D ⊂
Rd, can be specified as

Z(s) = m(s) + Y (s) + ε(s), s ∈ D, (2.1)

where m(·) is the mean function, Y (·) is a spatially dependent and zero-mean

GRF with covariance function C(·, ·), and ε(·) ∼ N(0, τ2(·)) is the nugget effect

caused by measurement inaccuracy and environmental variability. Moreover,

m(·) is assumed to be a constant for simplicity, C(·, ·) = C(·, ·;θ0) has a para-

metric form with θ0 in Rd, and ε(·) and Y (·) are independent.

Equation (2.1) is a general representation that allows for nonstationarity.

Let θ = {θ0, τ} be a vector of all unknown parameters to be estimated, and let

C(·, ·;θ) be the covariance function that incorporates the nugget effect. When

assuming an isotropic covariance function, CI(·;θ), various classes (exponential,

Gaussian, Matérn, Cauchy, etc.) of covariance models are available in spatial

statistics (Cressie (2015)), with the Matérn function being the most popular.
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However, C(·, ·;θ), as a valid nonstationary covariance function, may not have a

closed form, in general, and may involve many spatially varying parameters that

require estimation. Based on kernel convolution (Higdon (1998)), Paciorek and

Schervish (2004), Stein (2005), and Paciorek and Schervish (2006) provided a

rich class of valid parametric nonstationary Matérn covariance functions on Rd:

CNS(si, sj ;θ) = τ(si)1[i=j](si, sj) + σ(si)σ(sj)|Σ(si)|1/4|Σ(sj)|1/4×∣∣∣∣Σ(si) + Σ(sj)

2

∣∣∣∣−1/2 (2
√
νQij

)ν
Kν

(
2
√
νQij

)
, (2.2)

where θ is a vector of unknown parameters, σ(si) is the spatially varying standard

deviation (squared root of the partial sill), Σ(si) is the d× d kernel matrix at si,

that controls the spatially varying local anisotropy (including the spatial range

and the direction of the anisotropy), Kν(·) is a modified Bessel function of the sec-

ond kind, ν is a smoothness parameter, and Qij = (si−sj)
T ((Σi + Σj)/2)−1 (si−

sj) is the Mahalanobis distance between si and sj . The smoothness parameter

can be spatially varying as well. For example, the model proposed by Stein (2005)

allows for nonstationarity in the smoothness by letting νij = (ν(si) + ν(sj))/2.

The covariance functions in Equation (2.2) were derived from kernel convolution

models (Higdon (1998)). The nonstationarity is controlled by the spatially vary-

ing parameters, θ(si) = {Σ(si), σ(si), τ(si), ν(si)}. Usually, kernel matrices are

obtained through spectral decomposition. For example, in the case of d = 2,

Σ(si) = Σi =

[
cos(φi) − sin(φi)

sin(φi) cos(φi)

][
λ1i 0

0 λ2i

][
cos(φi) sin(φi)

− sin(φi) cos(φi)

]
, (2.3)

where λ1i, λ2i > 0 are eigenvalues that represent spatial ranges and φi ∈ (0, π/2)

represents the angle of rotation.

Specifically, a GRF is stationary if and only if all of the spatially varying

parameters in Equation (2.2) are constant. The isotropic assumption holds if the

kernel matrix is a scalar matrix. In principle, all of the parameters could vary

spatially, suggesting that there are different types of nonstationarity. However,

allowing too many types of nonstationarity is not feasible in practice owing to

possible optimization and model identifiability issues (Anderes and Stein (2011)).

2.2. Likelihood-based covariance estimation

The maximum likelihood method is appropriate for estimating a GRF model

with a specified parametric nonstationary covariance function. Let Z(s) be

a GRF with mean m(s) and covariance function CNS(·, ·;θ), and assume that

m(s) = 0 for simplicity. Suppose that we observe Z(s) at n locations, s1, . . . , sn
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(the locations could be regularly or irregularly spaced). The random vector

Z = {Z(s1), . . . , Z(sn)}T follows an n-variate Gaussian distribution, that is,

Z ∼ Nn(0,ΣNS
n×n), where the (i, j)-th element of the nonstationary covariance

matrix, ΣNS, is CNS(si, sj ;θ(i, j)), i, j = 1, . . . , n. As a result, the corresponding

log-likelihood function is

`(θ; Z) = −1

2
log
∣∣ΣNS

∣∣− 1

2
ZT
(
ΣNS

)−1
Z− n

2
log(2π). (2.4)

By maximizing the likelihood function in Equation (2.4), we can derive the

maximum likelihood estimates (MLEs), θ̂. Note that the mean function is as-

sumed to be zero. If this is not the case, a restricted maximum likelihood method

is needed (Patterson and Thompson (1975); Risser and Calder (2015a)). In most

environmental studies, only one replicate is available. When independent repli-

cates are obtained, Equation (2.4) can be simply modified by summing the like-

lihoods for the replicates. However, the main difficulty is that the parameter

vector is spatially varying. Paciorek and Schervish (2006) first provided a solu-

tion by assuming that each nonstationary parameter varies slowly and regularly

over space; that is, θi ≈ θR(i), where R(i) indicates that location si falls within

subregion R(i), and θi = θ(si), where θ(si) indicates any nonstationary parame-

ter. By fitting a stationary model in each of m subregions, typically m� n, they

obtain θ̂R(1)
, . . . , θ̂R(m)

. Although the computational burden of this estimation is

significantly reduced, this result is not desirable, because both θ(·) and the fitted

surface are discontinuous when they fit spatial models to each subregion.

To overcome this problem, several groups recently proposed methods have

been proposed (Risser and Calder (2015a); Fouedjio, Desassis and Rivoirard

(2016); Li and Zhu (2016)) to smooth the local stationary estimates. For in-

stance, Risser and Calder (2015a) and Fouedjio, Desassis and Rivoirard (2016)

made θ(·) a discrete mixture of the parameters at representative locations, or

anchor locations as Fouedjio, Desassis and Rivoirard (2016) called them. The

final estimate of θ(si) is a smoothly weighted estimate. That is,

θ̂(si) =

m∑
k=1

w(si, sk)θ̂k, w(si, sk) =
K(si, sk)∑m
k=1K(si, sk)

, (2.5)

where m is the number of subregions, θ̂k is the local stationary estimator in

the k-th subregion with anchor location sk, w(si, sk) is a weight function, and

K(·) denotes a d-variate kernel function. The Gaussian kernel, K(si, sk) =

exp
(
−(‖si − sk‖2)/2h

)
, is the most commonly used kernel function, where h > 0

is the bandwidth parameter.
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Another popular approach to estimate θi is moving-window approach: fit a

stationary model locally in a small neighborhood of one location, si, and then

move to the next location in a new neighborhood. In this approach, only locations

in the neighborhood of si are used to estimate θi, whereas information from

locations far away from si is ignored. Anderes and Stein (2011) improved the

moving-window method by maximizing a weighted local likelihood function that

smoothly down-weights faraway locations. Although moving-window methods

improve the estimation in some sense, they are extremely difficult to fit when the

data set is large.

These approaches are all based on a local stationary or weighted local sta-

tionary assumption, implying that parameter estimates are constant in predefined

subregions or neighborhoods. For the sake of both model flexibility and inference

efficiency, we therefore extend the local stationary approach and propose a model

that allows for local nonstationarity. We do so by approximating the spatially

varying parameters with a local polynomial.

3. New Covariance Estimation Approaches

3.1. Local polynomial approximation of covariance parameters

Suppose that θ(s) is continuously differentiable, with the α-th differentia-

tion denoted by Dαθ. For a given location, s0 = (s01, . . . , s0d) ∈ D, a Taylor

expansion allows θ(s) to be expanded at s0, as follows (Königsberger (2013)):

θ(s) =
∑
|α|≤k

Dαθ(s0)

α!
(s− s0)α +

∑
|α|=k

hα(s)(s− s0)α, (3.1)

where lims→s0 hα(s) = 0. In particular, for any location s = (s1, s2) ∈ R2, the

first-order Taylor approximation of θ(·) at s0 = (s01, s02) is

θ(s1, s2) ≈ β0 + β1(s1 − s01) + β2(s2 − s02), (3.2)

where β0 = θ(s01, s02), β1 = ∂θ(s01, s02)/∂s1, β2 = ∂θ(s01, s02)/∂s2, and the

remainder is bounded by M/2(|s1 − s01| + |s2 − s02|)2, where M is the upper

bound of all second-order partial derivatives of θ(·).
Equation (3.2) includes local stationarity as a special case. If β1 = β2 = 0,

then θ(s1, s2) ≈ θ(s01, s02) = β0 is a constant in a small neighborhood centered

at s0, which implies local stationarity. The estimates of β0 can be obtained by

using the information in the neighborhood of s0. The type of estimator defined

in (2.5) is called a locally constant estimator or a Nadaraya–Watson estimator

for nonparametric fitting. It can be viewed as an estimator associated with order
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α = 0 in Equation (3.1). If we assume that α = 1, the local linear approximation

implies that θ(·) varies linearly. Therefore, by choosing a higher-order, we can

model more complex nonstationarity in θ(·).
Therefore, based on Equation (3.2), we propose a natural nonstationary

estimator of θ(si) at a location, si = (si1 , . . . , sid), as an extension of Equation

(2.5). For θ(si) of the form

θ(si) =

m∑
k=1

w(si, sk)

β0k +

d∑
q=1

βqk(siq − skq)

 , (3.3)

we estimate it by subsitituting in the MLE of each βqk, for q = 0, . . . , d, k =

1, . . . ,m.

The final estimation of θ(si) is approximated using kernel smoothing in order

to smooth the estimations with m different linear trends. The smoothing method

is not restricted. Thus many common approaches are viable, such as smoothing

spline and Kriging.

In principle, this model can be fitted to any order polynomial approximation

with other covariates included. However, for many real-world environmental

applications, the first-order model is usually sufficient because, in general, it

requires a large amount of local data to make inferences on more complicated

nonstationarity. Consequently, we consider only the first-order nonstationarity

and develop statistical inference methods.

3.2. Estimation procedures for nonstationary kernel matrix

In this subsection, we describe an algorithm for estimating the two-dimensional

(2D) spatially varying kernel matrix, Σ(si), characterized by three parameters,

θns(s) = {λ1(s), λ2(s), φ(s)}, as in Equation (2.3). Other parameters are set to

be stationary (constant) and are denoted by θs.

To estimate θns(s), we need to maximize the full likelihood, as in Equation

(2.4), with ΣNS specified as in Equations (2.2) and (3.3). To improve the com-

putational efficiency, we propose an independent likelihood estimation method

in which we assume the subregions are independent of each other. Here, we

estimate βk, k = 1, . . . ,m, for each subregion independently. The independent

log-likelihood is of the form

˜̀(β1, . . . ,βm; Z) = −1

2

m∑
k=1

log |ΣNS
k | −

1

2

m∑
k=1

ZTk (ΣNS
k )−1Zk −

n

2
log(2π), (3.4)

where ΣNS
k parameterized by βk is the covariance matrix and Zk is the data
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vector corresponding to the locations in the k-th subregion.

The independent likelihood method significantly improves the computational

efficiency, because the local fitting involves fewer parameters and the computation

can be easily parallelized. However, the method may be less accurate at boundary

locations.

For comparisons with other methods, we call the local stationary and weighted

local stationary estimators S0 and WS0 estimators, respectively, because they

correspond to constant (zero-order) approximations, and we call our estimator

the first-order nonstationary (NS1) estimator. The estimation procedure is as

follows:

1) Divide the region into m overlapping or non-overlapping subregions. De-

note the partial random vector that includes all locations in the k-th subregion

as Zk, k = 1, . . . ,m.

2) Select the anchor locations, s1, . . . , sm, corresponding to the m subregions.

Then, fit a local stationary model to obtain the stationary and local stationary

(S0) estimators θs and β0k = (βλ1

0k , βλ2

0k , βφ0k), k = 1, . . . ,m, by maximizing the

independent likelihood ˜̀(β01, . . . ,β0m,θs; Z).

3) Substitute the local stationary (S0) estimators into Equation (3.3) for each

spatially varying parameter. For example, denote λ1k(si) = β̂λ1

0k +
∑2

q=1 β
λ1

qk (siq−
skq). Then, estimate the slope parameters, β1k = (βλ1

1k , β
λ2

1k , β
φ
1k) and β2k =

(βλ1

2k , β
λ2

2k , β
φ
2k), k = 1, . . . ,m, by maximizing the independent likelihood ˜̀(β11,

. . . , β1m,β21, . . . ,β2m; Z, β̂01, . . . , β̂0m, θ̂s).

4) Smooth the estimators in steps 2 and 3 using Equation (3.3). For example,

λ̂1(si) =
∑m

k=1w(si, sk){β̂λ1

0k +
∑2

q=1 β̂
λ1

qk (siq − skq)}. Finally, the first-order non-

stationary (NS1) estimator of the kernel matrix is the approximate estimations

of all nonstationary parameters θ̂ns(si) at each location si.

4. Interpretations and Computations

4.1. Computational issues

With 2D data, six parameters can exhibit nonstationarity at a given anchor

location: three in the kernel matrix, one in the partial sill, one in the smoothness,

and one in the nugget effect. For both the full likelihood and the independent

likelihood methods, if we allow all of the six parameters to have first-order non-

stationarity, then the number of parameters to be estimated is 3×6×m. Usually,

m� n. The number of parameters to be estimated therefore increases with the

number of anchor locations m and is less than n.
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Obviously, the full likelihood method is more accurate than the independent

likelihood method, especially near the boundary between subregions. However,

this could lead to optimization issues because too many parameters need to

be optimized simultaneously. Using the independent likelihood approach, the

parameters can be optimized in parallel and locally. Instead of solving a high-

dimensional problem, we solve several lower-dimensional problems. Although our

method may not reach the global maxima, the optimization is more stable.

Step 2 estimates both the stationary and the nonstationary parameters. The

maximization is not trivial when the stationary parameters are unknown, but it

can be well fitted by the NSconvofit function in the R package convoSPAT.

Details of their algorithms can be found in Risser and Calder (2015a).

The weight function depends on the bandwidth, h. Because our method

relies on the NSconvofit function, we choose the same default bandwidth as in

the function, which is the square of half the distance between the two closest

anchor locations, (i.e., h = {‖s1 − s2‖/2}2). As a result, the local estimates

depend only on the data in the subregions with range 2
√
h, indicating the range

of high-density points in a Gaussian distribution. However, other choices can

be made using cross-validation, which we discuss in the Supplementary Material

(Section S1.1).

The optimization is performed using the optim function in R. With the

approximated Hessian matrix, we quantify the uncertainty of our estimations

using the asymptotic standard errors and the corresponding confidence intervals.

4.2. Covariates and degree of nonstationarity

When the same kernel function, K(·), and bandwidth parameter, h, as de-

fined in Equation (2.5), are selected, it is easy to see that θ̂(si) in Equation (3.3)

is a weighted local stationary estimator when β1k, . . . , βdk = 0. Moreover, in the

k-th subregion, β can be viewed as the regression parameters of the covariate 1

for q = 0, and of the covariates siq−skq for q = 1, . . . , d. Hence, our model can be

extended to include additional covariates in a similar way to the regression-based

nonstationary model proposed by Risser and Calder (2015b), with all parameters

identifiable.

Compared with the local stationary model, the additional parameters in

Equation (3.3), {βqk}dq=1 for k = 1, . . . ,m, have useful interpretations as mea-

surements of nonstationarity. To illustrate this, we first define the degree of

nonstationarity.

Definition 1. Let θ(s), s = (s1, . . . , sd) ∈ Rd, be a spatially varying parameter.



1218 LI AND SUN

Define the r-th order nonstationarity index of θ(s), denoted by Dr, as

Dr =
1

d

d∑
q=1

∣∣∣∣∣
∫
sq

∂rθ(s)

∂srq
dsq

∣∣∣∣∣ . (4.1)

In particular, we call D1 the trend-nonstationary index and D2 the wiggliness-

nonstationary index.

In Definition 1, large values of Dr are associated with stronger nonstation-

arity. For example, under stationarity, θ(s) is a constant at any location s. As

a result, we obtain Dr = 0, which indicates the smallest nonstationarity. In

contrast, if Dr is large and far from zero, then θ(s) deviates from the stationary

model along at least one direction of s. This definition gives an appropriate and

convenient measure for the degree of the r-th order nonstationarity.

Specifically, when r = 1 and d = 1, D1 is an overall measure of the slope.

When D1 increases, the spatially varying parameter, θ(s), changes at a faster

rate, and we expect a larger difference between θ(s1) and θ(s2) at two given

locations s1 and s2. To avoid confusion with the trend of θ(s) in s, we call

D1 the trend-nonstationary index. Similarly, the wiggliness-nonstationary index,

D2, is associated with how much these differences change. A related idea for

time-series modeling can be found in Das and Nason (2016).

Now, it is easy to see that the parameters of interest, {βqk}dq=1, k = 1, . . . ,m,

directly define the trend-nonstationary index, D1. In our model, when s ∈ [0, 1]

and m = 1, we have θ(s) ≈ β01 + β11(s− s1) and D1 =
∣∣∣∫ 1

0 dθ(s)/dsds
∣∣∣ ≈ |β11|.

In general, in the k-th subregion and assuming that s ∈ [0, 1]d, we propose

using an empirical estimator of D1, defined as D̂1k, to measure the nonstation-

arity. That is,

D̂1k =
1

d

d∑
q=1

|β̂qk|, k = 1, . . . ,m. (4.2)

4.3. Implication for high-resolution emulation

Estimation and emulation (simulation) are closely linked. Using the esti-

mated parameters, we can directly generate realizations at N new locations,

where N � n, after fitting our model at n observed locations, following the

method in Section 3.2. In the 2D situation, let {β̂θ0k}mk=1, {β̂θ1k}mk=1, and {β̂θ2k}mk=1

be the MLEs for a spatially varying parameter, θ(s). Then, θ(s) at an unknown

location, snew = {snew1 , snew2 }, is simply specified as
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θ̂(snew) =

m∑
k=1

w(snew, sk)

β̂θ0k +

2∑
q=1

β̂θqk(s
new
q − skq)

 , (4.3)

where sk = (sk1 , sk2) is the anchor location at the k-th subregion. Hence, the new

covariance matrix for snewi , i = 1, . . . , N , formed by the nonstationary Matérn in

Equation (2.2), will be of size N ×N .

Statistical simulations have a much lower computational burden than esti-

mations do. However, a simulation is challenging if we need to simulate high-

resolution realizations where N is very large. Early studies of high-resolution

simulation (Gneiting et al. (2006); Wood and Chan (1994)) typically focused on

stationary or isotropic situations. Only a few studies considered the fast sim-

ulation of nonstationary GRFs. Nychka et al. (2015) introduced an idea based

on Gaussian Markov random fields (GMRFs) and spatial autoregressive (SAR)

models for nonstationary processes. Kleiber (2016) proposed an efficient nonsta-

tionary simulation method based on spatial deformation. However, it is compu-

tationally expensive to estimate the deformation function before performing the

simulation.

We propose an efficient algorithm based on a sequentially conditional simula-

tion. The sequential Gaussian simulation has been widely used in geostatistical

simulations (Gotway and Rutherford (1994); Fredericks and Newman (1998)).

The idea is to simulate realizations only on a subset at a time. In our appli-

cation, we simulate one data set for a subregion. Then, the next subregion is

simulated, conditioning only on all or part of previously simulated subregions.

Further details can be found in the Supplementary Materials (Section S1.2).

5. Simulation Study

To investigate the performance of our estimation approach, we consider a

simple example where nonstationarity exists only in the variance (partial sill),

σ2(s). Let W (s) be a stationary GRF with a known covariance function, and let

σ(s) : Rd → R+ be an unknown function. Then, Z(s) = σ(s)W (s) defines a GRF

with a nonstationary variance. For simplicity, we consider the one-dimensional

(1D) case with gridded data, σ(s) : R→ R+. A similar example is examined by

Anderes and Stein (2011).

In our example, we set (τ, ν, λ) = (0, 1, 0.2) in Equation (2.2) and let σ(s) =

2 sin(s/0.15) + 2.8, s ∈ [0, 1]. Figure S8 in the Supplementary Material shows

one realization of Z(s) and its increments. The pattern matches the true curve
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Figure 1. Estimations of σ(s) = 2 sin(s/0.015) + 2.8 with 95% confidence intervals using
(a) local stationary model (S0) and weighted local stationary (WS0) model and (b) our
first-order nonstationary (NS1) model.

of σ(s) in Figure 1. Using the algorithm discussed in Section 3.2, we divide

the region evenly into four subregions and choose the anchor location as the

central point of each subregion. We generate 200 observations at equally spaced

locations, with 50 observations in each subregion. Here, only one parameter,

σ(s), is nonstationary.

As expected, in Figure 1, the estimation using our proposed model is the

closest of the models to the truth and the performance is much better than that

of the S0 and WS0 models. The corresponding mean squared errors (MSEs) for

S0, WS0, and NS1 are 0.54, 0.47, and 0.12, respectively. The more accurate

estimation using our method comes at the cost of the largest uncertainty, which

is especially significant at the boundaries. In contrast, at the center of each

subregion, the uncertainty is minimized.

Approximated confidence intervals give us a way to quantify the uncertainty

with one realization. To better measure the uncertainties, we repeated the sim-

ulation 100 times. In Table 1, we show the mean, standard error, and trend-

nonstationary index, D1, from 100 local stationary and slope estimators, β̂0 and

β̂1, respectively. We also calculate the MSEs of σ̂(s) from three models based on

the mean of 100 β̂0 and β̂1.

To visualize 100 estimated curves of σ(s), we employ functional boxplots (Sun

and Genton (2011)), as shown in Figure 2. Here, only WS0 and NS1 models are

compared because the S0 model performs worst. In the functional boxplot, the

black line indicates the most representative estimate of σ(s) from among the 100
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Table 1. Summary of results from 1,000 estimations. Definitions of columns: (1)–(2)

The mean (standard deviation) of the S0 estimators β̂0 and slope estimators β̂1; (3)
the empirical trend-nonstationary index in the k-th subregion based on the mean of
β̂0s, D̂1k; (4) the MSE of σ̂(s), MSENS1, calculated from the mean of β̂0 and β̂1 from
the NS1 model with the corresponding ratios of MSES0 and MSEWS0 to MSENS1; (5)
MSES0/MSENS1; (6) MSEWS0/MSENS1.

Subregion 1 2 3 4
σ(s) = 2 sin(s/0.015) + 2.8 (nonstationary case)

β̂0 4.19 (0.43) 3.92 (0.43) 1.38 (0.19) 2.24 (0.28)

β̂1 9.08 (6.18) −11.37 (5.49) −5.21 (1.97) 11.41 (2.98)

D̂1k 9.08 11.37 5.21 11.41
MSENS1 0.050

MSES0/MSENS1 9.397
MSEWS0/MSENS1 8.065

σ(s) = 2 (stationary case)

β̂0 2.01 (0.20) 2.01 (0.20) 1.99 (0.20) 2.00 (0.20)

β̂1 0.00 (1.96) −0.02 (1.99) −0.02 (1.42) −0.02 (1.69)

D̂1 0.00 0.02 0.02 0.02
MSENS1 6.463e−5

MSES0/MSENS1 0.942
MSEWS0/MSENS1 1.199

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

(a) Functional boxplot −− WS0

s

σ

Truth

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

(b) Functional boxplot −− NS1

s

σ

Truth

Figure 2. Functional boxplots of the 100 estimated curves of σ(s) based on (a) WS0
model and (b) NS1 model.

simulations, and the box (shaded area) shows the variability. We can see that

the NS1 model provides the most accurate estimates and outperforms the WS0

model.

The result can be understood in the following way. In general, σ(s) increases
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in the first subregion and decreases in the second one, but this change cannot

be captured by local constant estimators. If we divide the region into finer

subregions, then all of the methods perform better. When estimating σ(s), both

WS0 and NS1 estimate σ(s) as a weighted average of σ̂k. For the central location

in each subregion, the estimate is dominated by the corresponding σ̂k, but this is

not the case for the boundary locations. For example, when s falls in subregion

k, but close to subregion k′, the estimation is dominated by both σ̂k and σ̂k′ ,

although the observation at s contributes to σ̂k only.

When the true underlying GRF is stationary, we expect β̂1 to be close to zero.

Therefore, using the same setup, we simulate data from a stationary GRF with

σ(s) = 2. The estimation results in Table 1 clearly show that, under stationarity,

the estimated trend-nonstationary index, D̂1k, and the MSEs from all models in

each subregion are close to zero. The S0 model in this case gives the best result,

but our model provides a similar MSE. Hence, even if our NS1 model is designed

to estimate complex nonstationary GRFs, it can also provide satisfactory results

when the true model is stationary.

Additional simulation studies are conducted to investigate the sensitivity of

the estimation to region division and the computational time, as well as the

2D estimation with further nonstationary parameters. Detailed results can be

found in the Supplementary Material (Section S2). The simulation results show

that our model is less sensitive to region division than are the WS0 and S0

models. However, an appropriate region division is still crucial to achieving a

good estimation. In general, too few subregions lead to a poor estimation, while

too many subregions increase the estimation uncertainty. For example, in the

1D simulation, two subregions (m = 2) are not sufficient, but m = 4, 8, 10 are

helpful. However, the uncertainty increases too much when m = 8, 10, because

there are not enough data for the local fitting. In terms of the computations,

more subregions and fewer nonstationary parameters reduce the running time,

in general. For the same number of subregions, because our model has a greater

number of parameters to estimate, it requires more computational time than

the other two rough approximation methods do. However, it is faster than the

conventional moving-window method when the window size is the same as the

size of the subregion. In the 2D simulation study, our model still performs the

best, although the result is not as significant as in the 1D case.

6. Application to Climate Model Emulation

Our application focuses on estimating and simulating data products obtained
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from general circulation model (GCM) outputs. GCMs are useful for forecast-

ing weather and climate changes, but their resolution is too coarse to charac-

terize local patterns. A well-known technique used to produce high-resolution

realizations is downscaling (Wilby and Wigley (1997)), such as regional climate

model (RCM). Driven by GCM, RCM simulations can include more physical dy-

namics using local information, such as local humidity, wind speed, and other

atmospheric variables. However, local information is not always available. In

addition, the process to produce the downscaling data is based on physical ap-

proaches. These often involve solving complicated partial differential equations,

and thus are time consuming and cannot be completed on personal computers.

In contrast to the RCM, we use our efficient simulation methods to generate

high-resolution outputs at the RCM scale. In doing so, we hope that some of the

fine-scale statistical properties we observed from the RCM output, particularly

the local nonstationarity, can be reproduced. We call the downscaling outputs

runs, and our simulated outputs emulations. Without knowing the additional

local information, we cannot easily reproduce the complicated local and regional

features from RCM runs. However, we are able to reproduce some types of

covariance nonstationarity, such as the spatial range and variance.

In this study, we fit third-generation coupled global climate model runs from

the Canadian Centre for Climate Modeling and Analysis (CCCma CGCM3 T47,

Scinocca and McFarlane (2004)) and consider the corresponding RCM it drives:

Canadian RCM (CRCM Version 4.2.3, Shrestha et al. (2014)). The spatial reso-

lution for the GCM runs is about 3.75◦ for both latitude and longitude, whereas

the RCM runs have much finer resolutions with a 45 km horizontal mesh (less

than 1◦).

The data of interest are seasonal average precipitation rates for the period

1971 to 2000 in a rectangular region in which the longitude ranges from 157.71◦W

to 35.72◦W and the latitude ranges from 19.45◦N to 70.26◦N (see Figure S9

in the Supplementary Material). Spatially, there are 390 locations (longitude

× latitude = 30 × 13) for each GCM run. We first transform the data using

square-root transformations to reduce the non-Gaussianity. Then, we detrend

the transformed data by removing the 30-year average. Here, to examine the

different nonstationarities over time, we choose four reference periods, including

two years, a non-El Niño year (1971) and an El Niño year (1998), with two

seasons, summer (JJA) and winter (DJF), for each year. Figure S10 in the

Supplementary Material shows the preprocessed precipitation rate residuals in

summer 1971 from five GCM runs as our observations, and one RCM run as our
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Figure 3. Preprocessed precipitation rate residuals (mm/day): four RCM runs in four
reference periods.

benchmark. Figure 3 shows the preprocessed precipitation rate residuals from

the RCM runs in four percoids.

In this estimation procedure, we scale the coordinates down to [0, 1]2 and

divide the region equally into four subregions, as shown in Figure S4, with four

anchor locations chosen at the center of each subregion. We model (λ1, λ2, φ) in

the kernel matrix as spatially varying parameters and estimate these parameters,

along with others in the Matérn covariance function, treating the five GCM

runs as independent replicates. The estimation results of the two spatial ranges

(λ1, λ2) from the WS0 and NS1 models for the four periods of interest are shown

in Figure 4. To see the similarities with the RCM runs, we interpolate the

spatially varying parameters to the RCM scale using Equation (4.3).

Visually, a larger spatial range is associated with a more homogenous spatial

pattern of the observations. We observe that in the RCM run (Summer 1971), as

shown in Figure 3, the north and southeast regions are more homogenous. This

agrees with our estimation in Figure 4, where both regions show larger estimated

spatial range parameters.

By examing at the nonstationarity over time from the NS1 results in Figure

4, we see clear nonhomogeneity among seasons. In general, the spatial range is

greater during winter, indicating fewer rapid fluctuations over space, which is

comparable with the RCM runs. However, the nonstationarity of spatial ranges
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λ
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λ

Figure 4. Plots of the estimated spatial ranges, λ1, λ2, based on two models, WS0
and NS1, at four reference periods, 1971 summer, 1971 winter, 1998 summer, and 1998
winter.

is less sensitive among different years for a given season. We can only see the

larger spatial ranges out to sea along the Pacific Ocean in the United States and

Greenland in Figure 4, indicating that there is nonstationarity in the land–ocean

areas. Although the WS0 model also captures some of these characteristics, the

estimation is too rough to observe changes in the spatial range at a finer scale.

We also estimate the trend-nonstationary index, D1, defined in (4.2). Table 2
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Table 2. Estimated trend-nonstationary index, D̂1k, k = 1, . . . , 4.

Season 1971 Summer 1998 Summer

D̂λ1

1k (4.598, 0.855, 0.258, 1.156) (11.232, 1.570, 0.148, 1.185)

D̂λ2

1k (4.122, 0.332, 1.622, 2.525 ) (3.616, 0.056, 1.322, 3.382)
Season 1971 Winter 1998 Winter

D̂λ1

1k (0.696 , 0.647, 2.658, 1.891) (1.037, 0.155, 2.493, 4.156)

D̂λ2

1k (0.813 , 0.048, 2.601, 6.221) (0.777, 0.262, 2.279, 4.164)

Figure 5. Six independent emulations of the residuals of winter precipitation rate in 1998
from our high-resolution simulation method.

shows the values of D1k, k = 1, . . . , 4, which describe the changes in the spatially

varying parameters for each subregion in a given season. In terms of both spatial

ranges, λ1 and λ2, D̂11 tends to be higher in the summers and D̂14 is higher in

the winters.

We then implement the high-resolution simulation method to simulate the

precipitation data at the RCM scale, with a total of 13,020 locations (longi-

tude × latitude=210×62) during summer and 11,484 locations (longitude ×
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Figure 6. Empirical variograms of four local regions of RCM runs and our emulations.
The ranges of the four local regions are (a) from (19.45◦N, 130.00◦W) to (43.00◦N,
157.71◦W), (b) from (62.00◦N, 130.00◦W) to (70.26◦N, 157.71◦W), (c) from (19.45◦N,
35.72◦W) to (43.00◦N, 53.00◦W), and (d) from (62.00◦N, 53.00◦W) to (35.72◦W,
70.26◦N).

latitude=198×58) during winter. From west to east, we sequentially simulate

a subset, including around 10% of the locations for each step, conditioning on

around 20% of the simulated data in the previous step on the eastern boundary.

Our six independent emulations for the residuals of the winter precipitation rate

in 1998 are displayed in Figure 5.

Visually, from Figure 5, we can see that our emulations share common vari-

ance and spatial ranges with the RCM run for winter 1998. For instance, we

see similar variabilities overall and clusters in the coastal areas along the Pacific

Ocean and Greenland. Furthermore, we select four local regions in the corners

and show the empirical variograms based on the RCM runs and our emulations

in Figure 6. As shown, the variograms are significantly different in the local

regions, which is evidence of spatial nonstationarity. In addition, the variograms

of the RCM run can be viewed as a realization from our emulated ones. These

results suggest that our model can provide similar statistical properties to the

RCM, although the RCM run exhibits more local and regional features.
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7. Discussion

In this study, we have proposed a flexible method to model the spatially non-

stationary covariance function, including the local stationary and weighted local

stationary models as special cases. The proposed model allows more complex

nonstationary features, with interpretable parameterization that characterizes

the degree of nonstationarity. We have also developed an efficient estimation

approach and validated its performance using simulation studies. Motivated by

the computational issue of climate model downscaling, we have developed a fast

high-resolution simulation method. Compared with RCM runs from traditional

downscaling methods as the benchmark, our model captures similar spatial non-

stationarity in a more efficient way.

In contrast to the full likelihood method, which estimates parameters di-

rectly, our methodology approximates global nonstationary covariance parame-

ters by smoothing independently estimated local covariance parameters. In our

work, the fundamental theory is the Taylor approximation. Similar to a non-

parametric function estimation, we use a local polynomial representation for the

spatially varying parameter. This is also different from the usual local polyno-

mial estimator in a nonparametric regression model, where the approximation

is of the mean function itself. After estimating all unknown coefficients, we are

able to plot and visualize the estimated spatially varying parameter as a smooth

function in space.

Our methodology can be also embedded into the Bayesian hierarchical frame-

work, where the polynomial terms can be viewed as hyperparameters of the

spatially varying parameters. However, these parameters, which are in the co-

variance function, are usually very sensitive to the priors, and sampling from a

multilayer hierarchical model is computationally expensive.

In terms of high-resolution simulation, the method in Kleiber (2016) is more

efficient, using the circulate embedding technique. For example, in Section 3.3

of Kleiber (2016), simulating a realization at a grid of 120 × 98 = 11, 760 loca-

tions needs approximately 1 second, whereas around 15 minutes are required for

our methods. However, this technique needs to estimate a spatial deformation

function and then simulate data at regularly spaced locations. Therefore, it only

works for regularly spaced spatial data, while ours is suitable for both regularly

and irregularly spaced data.

For our future work, the nonstationarity index mentioned in Section 4.2 can

be further extended to build a nonstationarity test. The null hypothesis is just
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whether the slope parameters are zeros. This can be achieved either using a

likelihood ratio test based on the maximized likelihood ratio between WS0 and

NS1, or using the Wald test based on the estimations of slope parameters. Future

research is also needed to develop automatic and adaptive partitioning criteria.

Although our models are less sensitive to region partitioning than the weighted

local stationary model, using validation tools or the information from covariates

(see Risser et al. (2016)) could further help optimize the region partition.

Supplementary Materials

Section S1 provides further details on the computations. Section S2 mentions

more simulation studies. Section S3 includes additional figures. Section S4 gives

the R source code for the simulation studies and applications. Section S5 provides

the GCM and RCM data sources, including instructions on how to obtain related

data.
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