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Abstract: It is important to have a clear understanding of the status of air pollu-

tion and to provide forecasts and insights related to air quality to both the public

and environmental researchers. Previous studies have shown that even a short-

term exposure to high concentrations of atmospheric fine particulate matter can be

hazardous to people’s health. In this study, we develop a spatio-temporal model

with space-time interaction for air pollution data (PM2.5). Along with the spatial

and temporal components, the proposed model uses a parametric space-time inter-

action component in the mean structure, as well as a random-effects component

specified in the form of zero-mean spatio-temporal processes. To apply the model,

we analyze air pollution data (PM2.5) from 66 monitoring stations across Taiwan.

Key words and phrases: Dynamical dependence, fine particulate matter, Lagrange

multiplier test, spatial dependence.

1. Introduction

The effects of air pollution on public health and vegetation, as well as on

human society and various ecosystems in general, have become critical issues.

Several epidemiological studies have established that particulate matter (PM) is

linked to a range of serious cardiovascular, respiratory, and visibility problems.

Detailed discussions can be found in Pope III et al. (1995), Jerrett et al. (2013),

Blangiardo, Finazzi and Cameletti (2016), and Thurston et al. (2016). In 1997,

taking the severe effects of PM into account, the US Environmental Protection

Agency (EPA) provided new regulations that established National Ambient Air

Quality Standards (NAAQS) for PM with an aerodynamic diameter of less than

2.5 microns. These standards are usually measured in units of micrograms per

cubic meter (µgm−3) (henceforth, denoted as PM2.5). According to the NAAQS,

the hourly average PM2.5 concentration should not be higher than 35 µgm−3.

However, in practice, levels often exceed this level. Our study data are obtained

from 66 monitoring stations in Taiwan, covering a period of 10 years (from 2006
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to 2015), and have median PM2.5 values slightly above 37 µgm−3. For additional

information, refer to Mayer (1999), who discussed how the air quality is deterio-

rating in various cities worldwide. Overall, there is a growing demand to identify

the main factors that contribute to air pollution.

A brief discussion on PM is in order. In general, PM2.5 contains parti-

cles either emitted directly or formed in the atmosphere from gaseous emissions.

Examples include sulfates formed from sulfur dioxide (SO2) emissions, nitrates

formed from NOx emissions, and carbon formed from organic gas emissions.

The rates of conversion of gases to particles are often reliant on regional and

temporal factors, including the topography, land cover, and seasonal climatic

variables. As a result, the PM2.5 concentrations are also affected by these vari-

ables. This increases the need for a spatio-temporal model that can be used to

assess air quality. A good model can provide better predictions, which will help

to determine an efficient strategy to combat air pollution.

The spatial and spatio-temporal modeling of air pollutants began in the

previous century. Elsom (1978) studied the spatial correlation fields for air pol-

lution in an urban area. Furthermore, various geostatistical space-time models

have been applied to examine the trends in deposits of atmospheric pollutants by

Eynon and Switzer (1983), Bilonick (1985), Rouhani and Hall (1989), and Vyas

and Christakos (1997), among others. Other earlier notable works in this regard

include those of Guttorp, Meiring and Sampson (1994), Haas (1995), and Carroll

et al. (1997). Most of these approaches rely on a spatio-temporal random field,

where the spatial or temporal dependencies are incorporated in either the mean

function or in the error process, and the parameters are estimated using frequen-

tist procedures. For a good discussion on geostatistical space-time models, see

Kyriakidis and Journel (1999).

In comparison, many 21st century studies on related problems use hierar-

chical Bayesian approaches for spatial predictions of air pollution. For example,

Sun et al. (2000) analyzed the PM10 (PM with a diameter less than 10 µgm−3)

concentrations in Vancouver and developed posterior predictive distributions us-

ing Bayesian techniques. Kibria et al. (2002), on the other hand, used a mul-

tivariate setup to analyze PM2.5 concentrations in Philadelphia, developing a

spatial prediction methodology in a Bayesian context in order to do so. For a

related problem, in order to predict PM10 concentrations in London, Shaddick

and Wakefield (2002) proposed a short-term space-time modeling technique.

In a hierarchical Bayesian setting, Sahu and Mardia (2005) modeled the spa-

tial structure using principal kriging functions and the time component using
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a random walk process in order to present a short-term forecasting analysis of

PM2.5 data on New York City. There are two other notable works. Sahu, Gelfand

and Holland (2006) used indicators for urban or rural sites to employ different

spatio-temporal processes in the error structure when modeling the PM2.5 series

of several states in the US Midwest. In a later work, Sahu, Yip and Holland

(2009) developed a space-time model that includes a spatially varying regression

term and an autoregressive term in the mean structure to analyze the ozone con-

centrations in eastern states of the United States. Berrocal, Gelfand and Holland

(2010) extended their earlier work to introduce a bivariate downscaler and, thus,

provide a flexible class of space-time assimilation models. In addition, Cameletti,

Ignaccolo and Bande (2011) compare available space-time models using data from

Piemonte, Italy.

In this study, we develop a new spatio-temporal model in order to determine

whether there is any space-time interaction in the behavior of PM2.5 concentra-

tions. Here, an interaction means that the temporal trends of pollution are more

similar for sites that are closer together on a spatial scale. An early study in this

regard is that of Wikle, Berliner and Cressie (1998), who developed a hierarchi-

cal Bayesian model that allows for an interaction in space and time. However,

with the exception of their study and a few other related works, there has been

little effort to quantify the space-time interactions in air pollution data, although

numerous studies have examined spatio-temporal modeling on the same topic, as

already discussed.

Note that the problem of identifying a space-time interaction is not specific

to air pollution data, and has been studied in several other fields, including

seismology, epidemiology, criminology, and transportation research. Meyer et al.

(2016) offer a good discussion on tests for space-time interactions in problems

related to medical studies. Here, the most popular techniques are the Knox test,

Mantel test, and space-time K-function analysis. These tests have test statistics

of the form T =
∑

j 6=i a
s
ija

t
ij , where asij and atij are measures of the spatial and

temporal adjacency, respectively, of events i and j. For further information on

space-time interactions and related problems from other fields, refer to Kulldorff

and Hjalmars (1999), Legendre, Cáceres and Borcard (2010), and Vanem, Huseby

and Natvig (2014), and the references therein.

Note that most of the studies described here focus on pollution issues in

different parts of Canada and the United States, despite this being a global

problem. As a result, few studies have analyzed air pollution data from countries
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in Asia or Africa. A noteworthy exception is the work of Al-Awadhi and Al-

Awadhi (2006), who used hierarchical Bayesian approaches to develop dynamic

linear models for air pollutants in Kuwait. They dealt with the temporal and

spatial effects independently, defining separate structures for the two processes.

In general, there is a dearth of research on pollution in Asia and Africa. Thus,

by focusing on Taiwan, we contribute to the literature in this regard.

The rest of the paper is organized as follows. Section 2 provides an ex-

ploratory analysis of the data under study. The proposed model, its properties,

and related results are described in Section 3. Section 4 discusses the results of

our data analysis. Section 5 provides concluding remarks and discusses possible

future work.

2. Preliminary Analysis

2.1. Data

Our PM2.5 data were collected from 71 official monitoring stations across

Taiwan. However, for five of those stations, we were not able to obtain the

information necessary for the covariates considered here; thus, we excluded these

stations from the study. The remaining 66 monitoring stations are irregularly

located in space, spread across the country with some concentrations around big

cities or industrial areas. The minimum and maximum pairwise distances of these

stations are 0.58 km and 366.7 km, respectively; the arithmatic mean is 140.7

km. A major feature of our study is that we consider a space-time interaction

as a property of a region, rather than that of an individual station. Thus, we

divide the data into several clusters, based on the latitude and longitude of the

stations. Figure 1 shows the locations of the 66 stations. The concentration of

the stations on the west coast is understandable because it is the most populated

area of Taiwan. The colors on the map indicate different regions (clusters) in our

study.

Our temporal data are obtained on an hourly basis for a period of 10 years,

from January 1, 2006, to December 31, 2015. However, the sampling frequencies

vary across stations and sites, and some values are missing. Moreover, because we

are mainly interested in identifying space-time interactions in the air pollution

data, a lower temporal resolution is both desirable and simpler. Thus, in our

analysis, we aggregate the hourly data into weekly averages based on all available

measurements within a week. Note that this is a common practice when working

with monitoring data, as discussed in Smith, Kolenikov and Cox (2003). In order
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Figure 1. The locations and clustering of the 66 monitoring stations in Taiwan.

to maintain continuity in the time scale, we consider the whole set of 3,652 days

(from 2006 to 2015), which we divide into 522 weeks. Hence, the total number

of data points considered in this study is 66× 522 = 34,452.

To begin, we present an exploratory analysis on the data. As in several

related studies, we convert the PM2.5 values to a square root scale and base our

study on the transformed data. This type of transformation is common when

working with air pollution data, as discussed in Smith, Kolenikov and Cox (2003).

Time series plots of the transformed PM2.5 values for three stations are displayed

in Figure 2.

Next, we decompose the time series data for Xinying into three components:

seasonal, trend, and the residuals. It is evident (see Figure 3) that there is a

decreasing trend, which appears to be a linear component with a small slope.

The graph in Figure 4 shows the overall means and variances of the trans-

formed PM2.5 observations for various stations and months. The top, left panel

describes the variances against the means of the stations. The top, right panel

shows the same, but for different months. The bottom two plots show the behav-

ior of the means and variances, respectively, corresponding to different months.

From the top two plots, it is clear that the variance increases in a nonlinear

manner as the mean increases. On the other hand, the bottom, left plot estab-

lishes that there is seasonality in the data, which is expected for most related time

series problems. Moreover, interestingly, the bottom, right plot of the variance
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Figure 2. Time series plots of
√

PM2.5 observations for three stations: Guanshan, Nan-
tou, and Xinying.

Figure 3. Decomposition of the
√

PM2.5 observations for Xinying. The four panels show
the original series, seasonality, trend, and residuals, respectively.
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Figure 4. (Top left) Sample variances versus means of the weekly
√

PM2.5 observations
for 66 stations; (Top right) means versus variances of the

√
PM2.5 observations for 12

months; (Bottom left) means of the
√

PM2.5 observations corresponding to different
months; (Bottom right) variances of the

√
PM2.5 observations corresponding to different

months.

corresponding to the months suggests that the variance is not homoskedastic. In

fact, it varies seasonally, motivating us to consider the heteroskedastic nature of

the error variance in the Gaussian process of the proposed model.

We also show a heat map (Figure 5) of the weekly average of the PM2.5

observations across all locations. In the map, we show the averages per season.

It is evident that the spatial pattern of the weekly averages changes according to

the season, motivating us to consider a space-time interaction coefficient in the

model, as described in Section 3.

2.2. Covariates used in the study

For each station, along with the observations of PM2.5, data were collected

on temperature, relative humidity, and wind speed and direction. Similarly to

the air pollution observations, these data were collected on an hourly basis for

the period January 1, 2006, to December 31, 2015. However, we aggregate the

values per week and use these values as covariates in our study.
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Figure 5. Seasonal heat map of the PM2.5 levels in Taiwan.

First, we examine the relationships between the pollution data and relative

humidity and temperature. Our exploratory analysis suggests that air pollution

is not significantly affected by temperature, but is more dependent on humidity,

where there is a slight decrease in pollution with an increase in relative humid-

ity. The Spearman correlation coefficients between the transformed PM2.5 and

humidity and temperature are −0.326 and −0.254, respectively. Relevant plots

are provided in the online Supplementary Material.

Wind speed is another variable that may affect air pollution. The data on

wind speed and wind direction were available on an hourly basis. The behavior

of the wind speed and direction varies widely by location as shown in the box

plots in Figure 6. These plots show clearly that the wind speed range varies

markedly by location, whereas there is little variation in the mean. Naturally,

in order to account for the effect of the wind, unlike the previous covariates, we

cannot employ the weekly average. Instead, we use the maximum daily wind

speed for each week. Furthermore, for most weeks, the maximum wind speed

occurred on the same day in all locations, justifying our choice of the maximum

rather than the average as a measure. The sample correlation coefficient between

the transformed PM2.5 and the maximum wind speed is −0.146.
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Figure 6. Box plots of the wind speed for 66 stations.

3. Methods

3.1. Covariates used in the study

The proposed model is inspired by that of Sahu, Gelfand and Holland (2006).

The key feature of our model is that it accounts for possible space-time interac-

tions in air pollution data. We describe the model in a general setup, and then

discuss the Taiwan data in Section 4.2.

Suppose the data are collected for n locations and over T consecutive time

points. Let us denote the square root of the PM2.5 at time tj and location si by

Z(si, tj), for i = 1, . . . , n and j = 1, . . . , T . Then, we assume that the overall

mean value varies by location, and we subtract the location-wise means from

the actual transformed PM2.5 values to obtain the mean-adjusted values, which

we denote by Y (si, tj). For convenience, we drop the subscripts whenever they

are not needed. In the proposed model, we consider the following hierarchical

structure:

Y (s, t) := U(s, t) + ε(s, t), (3.1)

where U(s, t) describes a spatio-temporal process, and ε(s, t) denotes a white

noise process that accounts for measurement errors and other variability not

addressed by U(s, t). We assume the white noise process follows a heteroskedastic

N(0, σ2t ) distribution independently, where σ2t is chosen to reflect a season. On

the other hand, U(s, t) assumes the following structure:
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U(s, t) := µ(s, t) + v(s, t), (3.2)

where µ(s, t) is the mean of the U(s, t) process, and v(s, t) denotes a zero-mean

spatio-temporal process.

The aforementioned mean function is an additive combination of the effects

of the covariates, the seasonal effects, and a spatio-temporal interaction effect.

To capture the effects of the available covariate information, we consider a term

of the form Bα, where B is the design matrix for p covariates. The population

density, temperature, humidity, number of factories, number of cars, and so on,

can be taken as covariates for the analysis. The seasonal variation is captured by

introducing indicators for different seasons. Throughout this study, we consider

monthly indicators, but the method can be applied to other cases too. In general,

let J be the number of seasons in a year.

The spatio-temporal effect used in the mean structure allows us to test for

space-time interaction, if any. In principle, the effect is described as a linear

function of the form γ0 + γst, thereby allowing us to test whether the γs values

are the same across locations. However, this would increase the complexity and

computational burden significantly when there are many sites. To address this

issue, we make a logical assumption that the coefficients γs for locations that are

close to each other are the same, and that it should be a characteristic of a region

rather than a station. Thus, based on their coordinates, we divide the stations

into clusters, and employ γk for all stations in the kth cluster. The number of

clusters used is based on the number of locations we have. If n, the number

of locations, is five or less, we do not use clustering. For n > 5, we use [
√
n]

clusters ([n] denotes the integer part of n) to divide the locations into regions.

In practice, we use the k-means clustering method, based on the latitude and

longitude, for this purpose.

Furthermore, we use an intercept-free model; thus, along with the response

variable, we subtract the overall means of the covariates from the respective

observations. Therefore, the mean structure of the process can be described as:

µ(s, t) = c(s, t)′α+

J∑
j=2

βj m(t, j) +

K∑
k=1

γk r(s, k)t. (3.3)

In the above, c(s, t) is a column vector containing the values of the covariates, and

m(t, j) and r(s, k) are indicators for the season and location region, respectively,

where J and K are the seasonality and the number of regions, respectively.

That is, m(t, j) = 1 if time t is in the jth season, and zero otherwise. Similarly,

r(s, k) = 1 if location s is in the kth region, and zero otherwise. For identifiability
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purposes, we take β1 = 0. Note that because we use mean-adjusted values for

the response and the covariates, we do not have an intercept term in the model.

On the other hand, we scale down the time points (t) to equi-spaced points in

the interval [0, 1].

The term v(s, t) in Equation (3.2) can be treated as a spatially varying tem-

poral trend. By averaging over different sites in a region, we obtain the adjust-

ment to the regional trends; averaging over time helps us to obtain the adjustment

at the temporal scale. For convenience, we consider a separable structure for the

covariance of this process. Moreover, we assume that the locations in different

clusters are independent of each other. In particular, the covariance between

v(s1, t1) and v(s2, t2) when s1, s2 are in the same cluster is taken as the product

of the spatial dependence and the temporal dependence, which we express as

Cov(v(s1, t1), v(s2, t2)) = σ2v ρ(‖s1 − s2‖ , φs) · ρ(‖t1 − t2‖ , φt) · I{s1, s2 ∈ Ck},
(3.4)

where ρ(x, d) denotes the exponential covariance function e−dx, and Ck denotes

a particular cluster. The distance functions ‖s1 − s2‖ or ‖t1 − t2‖ are taken as

the Euclidean distance between two points.

Throughout the paper, Y denotes the vector of N = nT data points, ar-

ranged first by cluster, then by time points and sites. Thus, if {s1, s2} form a clus-

ter, then the first few observations will be Y (s1, t1), Y (s2, t1), Y (s1, t2), Y (s2, t2),

and so on. The vector v = (v(si, tj)) is formed in a similar way. We denote

the full covariance matrix of v by Σv. Note that Σv is a block diagonal ma-

trix, where each block corresponds to the covariance matrix of a cluster of lo-

cations, taking the form σ2v(Σt ⊗ Σs), such that Σt(i, j) = ρ(‖ti − tj‖ , φt) and

Σs(i, j) = ρ(‖si − sj‖ , φs). Furthermore, note that when the sampling design

considers equally spaced time points, the common spacing being dt, we can write

Σt(i, j) = ψ|i−j|, where ψ = e−φtdt .

On the other hand, as mentioned before, we entertain a heteroskedastic error

function for ε(s, t). The exploratory analysis suggests that the variances differ by

season; thus, we assume ε(s, t) ∼ N(0, σ2m(t)), where m(t) denotes the season that

applies to time t. If we use ε to denote the vector of ε(s, t), arranged similarly

to Y and v, then the above discussion implies that ε ∼ N(0, σ2D), where D

is a diagonal matrix, such that the diagonal element corresponding to ε(s, t) is

σ2m(t)/σ
2. We denote these parameters by τ21 , . . . , τ

2
J , where τ2i is the variance

parameter associated with the ith season. In addition, we set τ21 = 1 to avoid

any potential identifiability problem.
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Now, to write the full model in vector-matrix notation, recall that Y is the

observed vector of the dependent variable, and v and ε denote the corresponding

vectors of the zero-mean spatio-temporal process and the Gaussian error process,

respectively. We can write the mean function as the sum of c(s, t)′α, m′t(βj), and

r′st(γk), where mt and rst are the column vectors corresponding to the parameter

vectors (βj)2≤j≤J and (γk)1≤k≤K , respectively. Then, denoting the vector of all

the parameters by θ, and letting X be a design matrix such that each row is of

the form X(s, t)′ = (c(s, t)′,m′t, r
′
st), the model can be written as:

Y = Xθ + v + ε, (3.5)

where v ∼ N(0, σ2vΣv) and ε ∼ N(0, σ2D). It is evident that there are (p+J+K)

components in the parameter vector θ if we consider p+1 covariates andK regions

for the locations. On the other hand, we write the two variance components σ2

and σ2v as being equal. Here, the estimate of σ2 suggests the variance explained

by the spatio-temporal process, and the estimates of the diagonal elements of D

tell us how much is explained by the pure error process.

Finally, the best estimates for φs and φt are obtained using a cross-validation

scheme. The validation scheme considers predictions for the sites at some time

points, and obtains the mean squared error for those predictions. In this study,

for every site, we take the first 90% of the time points under consideration (e.g.,

in case of weekly data for 10 years, we consider the first 9 years or 470 weeks)

for model fitting, and then make predictions for the last 10% (52 weeks for the

aforementioned data) to determine which combination of (φs, φt) works best. The

possible choices for φs in the study were (0.001, 0.005, 0.01, 0.025, 0.05, 0.075, 0.1,

0.25, 0.5, 0.75), and the choices for φt were (0.25, 0.5, 0.75, 1, 1.25, 1.5). To deter-

mine the optimal choice, we identify the combination with the smallest mean

squared error of the predictions, which is calculated as follows. For each site si,

denote the validation time points by t1, . . . , tb and the predictions by Ŷ (si, tj),

for i = 1, . . . , n; j = 1, . . . , b. Then, for each of the 5× 4 = 20 combinations, the

prediction mean squared error is computed as:

MSE =
1

nb

n∑
i=1

b∑
j=1

{Y (si, tj)− Ŷ (si, tj)}2. (3.6)

The prediction procedure is discussed in Section 3.3.

3.2. Testing for interaction and parameter estimation

A two-stage procedure is adopted in our method to ensure better results.

First, we use an appropriate hypothesis-testing technique to detect whether there
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is a space-time interaction present in the data. Following that, an iterative

estimation method is executed to identify the effect of the factors that lead to a

higher pollution level.

Test for interaction:

The model described in Equation (3.5) allows us to test for a space-time

interaction. The model includes no interaction term if γ1 = · · · = γK = 0. We

employ the Lagrange multiplier (LM) test for this purpose. If θ̂0 denotes the

maximum likelihood estimate of θ under the null hypothesis (the above condi-

tion), then the LM test statistic is defined by U ′(θ̂0)I
−1(θ̂0)U(θ̂0), where U(·) is

the first derivative of the log-likelihood and I(·) is the information matrix.

Recall that the main advantage of the LM test or the score test is that,

unlike the Wald test or the likelihood ratio test, it does not require an estimate of

the information under the alternative hypothesis or an unconstrained maximum

likelihood. The LM test uses only the assumptions in the null hypothesis to

obtain the maximum likelihood estimates. Then, it calculates the value of the

test statistic (which follows a chi-squared distribution with appropriate degrees

of freedom) to make a decision.

Once we perform the LM test, we can decide which model to use. Here, we

use the full model (3.5) if the decision is to reject the null hypothesis that there

is no space-time interaction.

Parameter estimation:

Next, to estimate the parameters, we employ the generalized least squares

techniques, with some modifications. Observe that the proposed model can be

expressed as Y = Xθ + ε, where ε ∼ N(0, σ2Ω), such that Ω = Σv +D. This is

in the setup of a generalized least squares problem. Furthermore, note that the

number of unknown parameters in the error covariance matrix Ω is J+2, namely

σ2, τ22 , . . . , τ
2
J ;φs, φt. Because we obtain the optimal choices for the last two

parameters using a cross-validation procedure, we need to estimate J additional

variance parameters from the model.

From a practical point of view, it is more important to identify those cases

where air pollution is hazardous to people’s health and to the environment, rather

than those that are less harmful. According to the standards set by the EPA,

the average for PM2.5 should not exceed 35 µgm−3. Thus, while minimizing the

sum of the squared residuals, we place more weight on those where the actual

PM2.5 values are greater than 35. Thus, the loss function we need to minimize
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is of the form

L =

n∑
i=1

T∑
j=1

w(si, tj)ê(si, tj)
2. (3.7)

Here, w(si, tj) should be higher for Z(si, tj) ≥
√

35. We take it to be (1 +

2/ logN) for Z(si, tj) ≥
√

35, and (1 − 2/ logN) otherwise, where N = nT . An

attractive feature of this method is that the weights approach one as N → ∞;

thus, the importance will be approximately equal on all observations for a very

large sample size. On the other hand, ê(si, tj) is the standardized residual for

location si and time tj . Note that it can be written as Ω̂−1/2ε̂/σ̂ = Ω̂−1/2(Y −
Xθ̂)/σ̂. Thus, assuming that Ω̂ and σ̂ are known, we can say that minimizing

L is equivalent to minimizing (Y −Xθ)′Ω̂−1/2W Ω̂−1/2(Y −Xθ) with respect to

θ. Here, W is a diagonal matrix, with the diagonal elements being the same

as w(si, tj). It is evident that the minimizer is θ̂ = (XTV X)−1(XTV Y ), where

V = Ω̂−1/2W Ω̂−1/2. In light of the above discussion, we propose the following

procedure to estimate the parameters for the model:

1. Set τ̂2j = 1 for j = 1, . . . , J .

2. Evaluate Ω̂ and V = Ω̂−1/2W Ω̂−1/2.

3. Compute θ̂ = (XTV X)−1(XTV Y ) and set ε̂ = Y −Xθ̂.

4. Compute σ̂2 = ε̂T Ω̂−1ε̂/N , where N = nT is the total number of observa-

tions.

5. Let ε̂j be the error corresponding to the jth season, for j = 1, . . . , J .

6. For j = 2, . . . , J , note that εj ∼ N(0, σ2(Σ
(j)
v + τ2j I)), where Σ

(j)
v is the

submatrix of Σv corresponding to the jth month.

7. Use optimization methods to compute the MLE τ̂2j using the above.

8. Repeat steps 2 to 7 until convergence.

In the above procedure, in order to reduce the computational burden, we

exploit the block-diagonal structure of the matrix Ω. Note that if each block of

Ω is denoted by Bi, then Ω−1/2 can be written as a block diagonal matrix, where

the blocks are B
−1/2
i . Using this, and writing W and X following the above

steps, we substantially reduce the computational burden in the estimation.

The following theorem describes the asymptotic properties of the above es-

timators. The proof of the theorem is provided in the online Supplementary

Material.
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Theorem 1. The estimate θ̂ obtained from the above procedure is consistent, in

the sense that, as the number of locations (n) and the number of time points

(T ) approach infinity, θ̂ → θ, in probability. Furthermore,
√
nT (θ̂ − θ) →

N(0, σ2Q−1), where Q is the limit of (X ′Ω−1X)/nT as n, T →∞.

3.3. Prediction

To make a new prediction for site s′ at time t′, we use the parameter estimates

obtained from the method mentioned in the previous section. Let X(s′, t′) denote

the new set of covariate vectors, similarly to Section 3.1. Then, Ŷ (s′, t′) =

X(s′, t′)′θ+ε(s′, t′). Thus far, to assign the clusters, we use techniques similar to

the one-nearest-neighbor technique in k-means clustering; that is, the location s′

is assigned to the cluster it is closest to in terms of the distance from the center.

Next, in view of the fact that Ω is not a constant multiple of the identity

matrix, we cannot simply assume that the prediction error is going to be inde-

pendent of the sample disturbances. The prediction procedure has to take the

dependence into account.

If ε is the error vector corresponding to the original data, let us denote

Cov[ε(s′, t′), ε] by η, which is an nT -dimensional column vector. It is evident

that η and Ω depend on the values of φs, φt, σ
2, and τ2j , for j = 1, . . . , J . We use

the estimates of these parameters to obtain η̂ and Ω̂. Then, following Goldberger

(1962), we can say that the best linear unbiased predictor is

Ŷ (s′, t′) = X(s′, t′)′θ̂ +
1

σ̂2
· η̂′Ω̂−1(Y −Xθ̂). (3.8)

Following the above, we add the mean adjustment (recall that we are using

an intercept-free approach) using the historical overall mean of the station. In

the case of a new location, we use the overall mean of the sites from the cluster to

which it is assigned. Finally, we transform the predictions to obtain the estimate

of the actual air pollution measurement.

To obtain a prediction interval, we use the asymptotic results for the dis-

tribution of θ̂ (cf. Theorem 1). Assuming that the variance components are

known, note that the asymptotic variance of Ŷ (s′, t′) − Y (s′, t′) is of the form

(nT )−1σ2ζ ′Q−1ζ, where Q is the limit of (X ′Ω−1X)/nT and ζ = X(s′, t′) −
X ′(σ2Ω)−1η. Then, using the estimates obtained from our method, the squared

standard error of the prediction can be estimated as ŜE = σ̂2ζ̂ ′(X ′Ω̂−1X)−1ζ̂ +

σ̂2/m. The second term (m is an appropriate constant) is added because of the

mean adjustment, which is done using the overall mean estimate for the existing

sites in the data. Hence, if Ẑ denotes the mean-adjusted predictions, we can
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evaluate the 100(1−α)% prediction interval as (Ẑ(s′, t′)± zα/2× ŜE)2. Here, zα
denotes the 100α% upper quantile for the standard normal distribution.

4. Detailed Analysis

4.1. Simulation studies

To begin, we present simulation studies to show that our methods are capable

of capturing a space-time interaction that might be present in our empirical

application of interest.

We perform the simulation experiment in three stages, first with a linear

space-time interaction term, and then with two nonlinear types of interactions.

Throughout this study, we consider the weekly average of the air pollution data.

Then, for various time intervals, we evaluated the type-I error and the power

for different values of n. In the simulation study, we considered three different

values of T : 52 (1 year), 104 (2 years), and 261 (5 years). We worked with

different numbers of locations (n = 10, 20, 50) to understand how the proposed

method performs as the amount of data increases. For n locations, the xy-

coordinates were generated randomly from a (0, n2)× (0, n2) grid. The values of

the variance parameters σ2, τ2j (see Section 3.1) were generated from an inverse-

gamma distribution with parameters (4, 3). All coefficients in the model were

simulated from independent normal distributions with mean zero and standard

deviation one. Finally, we used φs = 0.1, φt = 0.75 for the covariance matrix of

the spatio-temporal process w(s, t).

For the case of a linear space-time interaction, the observations (square root

of the PM2.5 data) were obtained from model (3.5). However, for the first non-

linear case, we replaced the linear term with the quadratic term (t/T )2, and

assumed that the space-time interaction coefficients are negative. This type of

interaction is common, and usually the coefficients are not big in magnitude. We

wanted to observe whether a linear approximation is capable of capturing this

type of interaction as well. Then, we consider another nonlinear case, where the

interaction term is sin(2πt/T ). This example addresses cases where the interac-

tion can be an oscillatory function of time. The results for the three scenarios

are displayed in Table 1, based on 500 iterations of the simulation.

While the type-I error remains under control across all scenarios, the power

improves significantly for 20 or more locations. In addition, this is true for both

the linear dependence and the nonlinear dependence. The power also increases

with the sample size in all cases. The results confirm that the proposed testing
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Table 1. Results when the time-dependence is linear, quadratic, or oscillatory. 5% critical
values and 500 iterations are used.

Type I error Power
Interaction Number of locations 10 20 50 10 20 50
Linear Weekly (1 year) 0.052 0.050 0.048 0.224 0.512 0.786

Weekly (2 years) 0.056 0.058 0.042 0.312 0.578 0.820
Weekly (5 years) 0.054 0.044 0.046 0.428 0.702 0.868

Quadratic Weekly (1 year) 0.058 0.046 0.046 0.232 0.394 0.678
Weekly (2 years) 0.048 0.042 0.062 0.268 0.478 0.714
Weekly (5 years) 0.058 0.050 0.066 0.358 0.500 0.794

Oscillatory Weekly (1 year) 0.062 0.028 0.032 0.440 0.686 0.900
Weekly (2 years) 0.032 0.056 0.050 0.586 0.820 0.902
Weekly (5 years) 0.038 0.040 0.040 0.542 0.708 0.960

procedure does not have large size distortions and, as expected, fares well for

larger sample sizes.

We further extended the simulation studies to see how the proposed method

behaves for larger data. To this end, we concentrated on weekly data from three

years (157 observations for each site) and used different values for n, ranging

from 10 to 50. The results of 500 iterations for various cases are shown in Figure

7. It is evident that, when the dependence on time is linear, the proposed testing

procedure fares well for a large number of sites. The procedure also works well

for the nonlinear case as its power increases, reaching more than 0.8 when the

number of locations is 50.

Next, we show that the parameter estimation process works well in terms

of identifying the effect of the factors. In this example, we used 20 different

locations, two covariates (humidity and temperature), and simulated data from

our model to obtain weekly averages for five years (divided into 12 seasons). Thus,

the number of observations in the data were 20×261 = 5,220. We then estimated

the parameters using the procedure described in Section 3.2. In Figure 8, the

true values and the estimates of all the parameters in the model are plotted. We

can see that most points lie along the line y = x (displayed in the figure), showing

that the estimates are not too different from the true values. This confirms that

the proposed iterative estimation procedure is reliable.

Finally, to illustrate that our method works well in predicting the pollution

level, we simulate data for 20 stations for six years. Then, we use data for

five years from 19 stations to train our model. Then, we use the model to

make predictions for the sixth year of the 20th station. This is displayed in
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Figure 7. Type-I error (left) and power (right) for a linear (black), quadratic (red),
and sinusoidal (green) interaction term, corresponding to different number of locations.
T = 157 (three years) and 500 iterations are used for all cases.

Figure 8. True and estimated values for the parameters of the model, where data are
generated for 20 locations and five years.

Figure 9. In general, the forecasts are close to the original values. However, it is

more interesting to note that the predictions are usually higher than the original
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Figure 9. True value and predicted PM2.5 observations for one station and one year.
The model was trained using data generated for 19 locations and five years.

values whenever the actual values are above 35 µgm−3. Recall from our earlier

discussion that the method is aimed at finding significant factors and using their

contribution to predict higher pollution levels. We can see that, even with 20

stations and five years, the model performs well.

4.2. Model selection

The first task when implementing the proposed method is to choose proper

decay parameters and to identify whether any space-time interaction exists. For

the decay parameters, we searched a two-dimensional array to determine which

combination gives the least mean-squared error (refer to Equation (3.6)). The

choices for φs were (0.001, 0.005, 0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75), and

those for φt were (0.25, 0.5, 0.75, 1, 1.25, 1.5). We used nine years and 64 stations

to train the model; the rest were used for validation purposes.

We found that the combination of φs = 0.05 and φt = 0.75 yielded the

best results for our data. To put this into perspective for the actual spatial

and temporal scales, we can say that these choices correspond to a significant

correlation in an approximate range of 60 km and a time span of four weeks. On

the other hand, the LM test returned a p-value less than the level of significance

(0.05), establishing that a space-time interaction effect is indeed present in the

data. Thus, the model we decide to fit for our empirical analysis is the same as

that given in Equation (3.5) shown below for ease of reference:
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Table 2. Estimates of the overall location mean parameters.

Parameter Estimate Standard error Confidence interval
α1 (Humidity) −0.0370 0.0008 (−0.0387,−0.0353)
α2 (Temperature) 0.0226 0.0024 (0.0174, 0.0278)
α3 (Wind speed) −0.1022 0.0038 (−0.1105,−0.0939)
β2 (February) 0.0186 0.0259 (−0.0321, 0.0692)
β3 (March) 0.0593 0.0269 (0.0066, 0.1121)
β4 (April) −0.3770 0.0302 (−0.4362,−0.3178)
β5 (May) −1.1663 0.0355 (−1.2358,−1.0968)
β6 (June) −1.8376 0.0396 (−1.9151,−1.7600)
β7 (July) −1.9948 0.0416 (−2.0764,−1.9133)
β8 (August) −1.6383 0.0409 (−1.7186,−1.5581)
β9 (September) −1.0437 0.0393 (−1.1206,−0.9668)
β10 (October) −0.4823 0.0341 (−0.5491,−0.4155)
β11 (November) −0.3396 0.0299 (−0.3982,−0.2809)
β12 (December) 0.0379 0.0258 (−0.0127, 0.0885)

Y (s, t) = c(s, t)Tα+

12∑
j=2

m(t, j)βj +

K∑
k=1

r(s, k) γkt+ v(s, t) + ε(s, t),

for s = 1, . . . , n; t = 1, . . . , T. Recall that c(s, t) describes the covariates in the

study, and we use relative humidity, temperature, and wind speed in the analysis.

Furthermore, T = 522 and n = 66 and, thus, the number of clusters (K) is taken

to be eight.

4.3. Parameter estimates

Next, we fitted the above model to our Taiwan data to obtain the parameter

estimates. In this application, we have 22 parameters in the mean structure

and 12 more in the variance structure. In what follows, we provide a step-

by-step discussion for these estimates. Table 2 shows the coefficient estimates

corresponding to the covariates and the estimates of the seasonal effects.

From the table, almost all of the estimates show a significant effect. The

PM2.5 is higher whenever the humidity is less and the temperature is higher.

In addition, as expected, a higher wind speed reduces the amount of pollution

significantly. On the other hand, there exists a strong seasonal pattern. The

winter months (from December to February) do not show a significant change in

pollution. March shows a significant increase, whereas the PM2.5 decreases over

the summer months, especially between June and August. This is understand-

able, given the geographical location and climate pattern of Taiwan. It is more
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Figure 10. Estimates of the space-time interaction terms for different regions.

likely to rain in summer in Taiwan, and the wind tends to be strong and from

the south-east with possible typhoons. On the other hand, the winter months

tend to be dry, with wind from the north-west.

We then plotted the space-time interaction coefficients to see how they are

spread across the country. Figure 10 shows these estimates on a spatial scale.

We found that all regions showed significantly negative estimates for the space-

time interaction coefficients, with the extent of the interaction varying by region.

In an absolute sense, it is lowest for stations Hengchun (denoted by black) and

Guanshan (denoted by light blue), and is highest for stations around Taipei

(gray), Taichung (yellow), Taoyung (blue), and Kaohsiung (red). This is under-

standable, because Hengchun is at the southern tip of Taiwan, and Guanshan is

less populated without heavy industry. On the other hand, the most significant

stations are around the four largest cities in Taiwan.

The estimates of the variance parameters by month are shown in Figure 11.

The estimates show an oscillatory behavior across months, and the magnitudes

of the variances range between 0.4 and 1. These estimates explain the extent

of the heteroskedasticity in the PM2.5 process in our model. For the spatio-

temporal process, the variance σ2 was estimated at 0.7974, which is more than

most variance terms of the white noise. This indicates that the white noise

process explains less variability in the data, and that the spatio-temporal process
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Figure 11. Estimates of the variance term by month.

Figure 12. (Left) Histogram and (Right) QQ plot of the standardized residuals.

is more significant in this regard.

4.4. Model diagnostics

In this section, we discuss the behavior of the residuals to show that the pro-

posed model fares well in capturing the effects of Taiwan PM2.5 data. Standard

statistical procedures reveal that there is no particular pattern in the residuals,

establishing that the residuals can be assumed to be uncorrelated. Furthermore,

we found that the standardized residuals are more or less evenly distributed

across months, showing that we have resolved the issue of heteroskedasticity.

These plots are available in the Supplementary Material.

Next, the left panel of Figure 12 shows that the histogram follows an approx-

imately normal shape, which is corroborated by the QQ plot presented in the

right panel of the same figure. Consequently, the introduction of heteroskedas-

ticity and the spatio-temporal process works well for the data under study.
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Figure 13. ACF plots of the standardized residuals, corresponding to two sample stations.

We also provide the autocorrelation functions (Figure 13) for the residuals

corresponding to two particular stations: Guanyin and Tucheng. They show

that the time dependence has been resolved, and that there is not a lot of time-

dependency left in the residuals.

4.5. Prediction

Finally, we check the predictive ability of the proposed model using cross-

validation techniques. For this, we use 90% of the available data (from 2006

to 2014, for 64 stations) and predict the PM2.5 levels for the year 2015 for all

stations. This provides us with a detailed view of the out-of-sample predictive

performance, in both the temporal and the spatial sense.

In order to evaluate how good the predictions are, we calculated the root

mean squared error for the observations, yielding a value of approximately 6.785.

In order to understand the effect of the space-time interaction term in our model,

we also measured the predictive ability of the same model, but without the inter-

action component. In that case, the root mean squared error was approximately

37% more than that of the proposed model.

In Figure 14, we show the forecast, along with the prediction interval for two

stations. It is clear that the performance of the proposed model is satisfactory.

In general, our method tends to overestimate the pollution level, owing to the

weighted scheme of the method. However, the forecasts are usually inside the

prediction interval, showing that the method works well for prediction purposes.
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Figure 14. True value and predicted PM2.5 observations, along with the prediction
interval, for two stations and one year.

5. Conclusion

We have developed a new spatio-temporal modeling technique for identify-

ing a space-time interaction. Our simulation studies and data analysis confirm

that the method performs well. In particular, we have shown that the estimates

obtained using the proposed method are consistent. Furthermore, we used stan-

dard diagnostic techniques to establish that the model assumptions are reason-

able. This modeling technique can successfully detect and estimate a space-time

interaction in air pollution data. Furthermore, because of the weighting scheme

we use in the method, it has the potential to predict a higher level of pollution

with more precision. This is useful from a practical point of view.

We finish with some comments on possible future studies. An important

potential future direction of this work is to consider a more generalized framework

in the spatio-temporal process. In particular, we consider a separable structure

for the spatial and temporal dependence, a condition that can be relaxed to

address a more general setup. Moreover, in the aforementioned data analysis

example, it was found that the maximum wind speed at each location plays an

important role in the level of air pollution, while there is a significant space-

time interaction effect as well. Taken together, these points raise an important

question: how much of an effect does the wind flux, calculated from the wind

speed, wind direction, and the coordinates of a location, have on pollution?

Answering this question requires knowing about the physical behavior of the
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wind. This process can be incorporated into the model to develop more efficient

techniques.

Another important aspect of this topic is to identify the effect of air pollution

on human life. Pollution is responsible for many respiratory and cardiovascular

diseases; thus, it is crucial that we use appropriate modeling techniques for such

problems. This will potentially have a significant impact on the health sciences.

Supplementary Materials

The proof of Theorem 1 and additional empirical data analyses are available

in the online Supplementary Material.
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