Supplementary materials for "The restricted consistency property of leave- n_{v}-out cross-validation for high-dimensional variable selection"

Yang Feng and Yi Yu
Columbia University and University of Bristol

The supplementary material includes all the technical details and additional simulation results.

A. 1 Additional lemmas and proofs

The following Lemma is adapted from Lalley (2013). It helps us to develop the asymptotic theory where N, the size of the candidate models, is allowed to diverge with the sample size.

Lemma 1 (Gaussian concentration). Let γ be the standard Gaussian probability measure on \mathbb{R}^{n} (that is, the distribution of a $\mathcal{N}\left(0, I_{n}\right)$ random vector), and let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be Lipschitz in each variable separately relative to the Euclidean metric, with Lipschitz constant c. Then for every $t>0$,

$$
\gamma\left\{\left|F-E_{\gamma}(F)\right| \geq t\right\} \leq 2 \exp \left(-\frac{t^{2}}{c^{2} \pi^{2}}\right)
$$

Lemma 2. With $p<n$, let $\tilde{\beta}$ be the MLEs of a generalized linear model. Assume the penalty function $p(\cdot)$ is separable, and assume Conditions $1-6$ hold. Furthermore, assume $n_{c} \rightarrow \infty$ and $n_{c} / n \rightarrow 0$ as $n \rightarrow \infty$, and the size of the splits K satisfies

$$
K^{-1} n_{c}^{-2} n^{2} \rightarrow 0
$$

Then, $C V\left(n_{v}\right)$ with K times subsampling is restricted model selection consistent.
Proof of Lemma 2. Due to the properties of generalized linear models with canonical parameter, we have

$$
E\left(y_{i} \mid \boldsymbol{x}_{i}\right)=\dot{b}\left(\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}\right), \quad \sigma_{i}^{2}=a(\phi) \ddot{b}\left(\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}\right), \quad i=1, \cdots, n
$$

and define $\sigma^{2}=(1 / n) \sum_{i=1}^{n} \sigma_{i}^{2}$. The target is to select the model that minimizes the loss

$$
\begin{equation*}
\tilde{\Gamma}_{\alpha}=\frac{1}{K n_{v}} \sum_{s \in \mathcal{S}}\left\{-\boldsymbol{y}_{s}^{\top}\left(X_{s}^{\alpha} \tilde{\boldsymbol{\beta}}_{s^{c}, \alpha}\right)+\mathbf{1}^{\top} b\left(X_{s}^{\alpha} \tilde{\boldsymbol{\beta}}_{s^{c}, \alpha}\right)\right\}, \tag{1}
\end{equation*}
$$

where \mathcal{S} represents the collection of validation sets in different splits and $\mathbf{1}$ is an all-one vector.

Denote $E_{\mathcal{S}}$ and vars as the expectation and variance with respect to the random selection of \mathcal{S}. By using the equality

$$
E_{\mathcal{S}}\left(\frac{1}{r} \sum_{s \in \mathcal{S}} a_{s}\right)=\binom{n}{n_{v}}^{-1} \sum_{s \in \text { all } s} E\left(a_{s}\right)
$$

rewriting 11, and denoting $\ell_{s}(\boldsymbol{\beta})=\boldsymbol{y}_{s}^{\top}\left(X_{s} \boldsymbol{\beta}\right)-\mathbf{1}^{\top} b\left(X_{s} \boldsymbol{\beta}\right)$ and $\ell_{n}\left(\tilde{\boldsymbol{\beta}}_{\alpha}\right)=\boldsymbol{y}^{\top}\left(X_{\alpha} \tilde{\boldsymbol{\beta}}_{\alpha}\right)-\mathbf{1}^{\top} b\left(X_{\alpha} \tilde{\boldsymbol{\beta}}_{\alpha}\right)$, we have

$$
\begin{aligned}
E_{\mathcal{S}}\left(\tilde{\Gamma}_{\alpha}\right) & =E_{\mathcal{S}}\left(-\frac{1}{K n_{v}} \sum_{s \in \mathcal{S}} \ell_{s}\left(\boldsymbol{\beta}^{o}\right)\right)+E_{\mathcal{S}}\left(\frac{1}{K n_{v}} \sum_{s \in \mathcal{S}}\left\{\ell_{s}\left(\boldsymbol{\beta}^{o}\right)-\left(\boldsymbol{y}_{s}^{\top}\left(X_{s}^{\alpha} \tilde{\boldsymbol{\beta}}_{\alpha}\right)-\mathbf{1}^{\top} b\left(X_{s}^{\alpha} \tilde{\boldsymbol{\beta}}_{\alpha}\right)\right)\right\}\right) \\
& +E_{\mathcal{S}}\left(\frac{1}{K n_{v}} \sum_{s \in \mathcal{S}}\left\{\left(\boldsymbol{y}_{s}^{\top}\left(X_{s}^{\alpha} \tilde{\boldsymbol{\beta}}_{\alpha}\right)-\mathbf{1}^{\top} b\left(X_{s}^{\alpha} \tilde{\boldsymbol{\beta}}_{\alpha}\right)\right)-\left(\boldsymbol{y}_{s}^{\top}\left(X_{s}^{\alpha} \tilde{\boldsymbol{\beta}}_{s^{c}, \alpha}\right)-\mathbf{1}^{\top} b\left(X_{s}^{\alpha} \tilde{\boldsymbol{\beta}}_{s^{c}, \alpha}\right)\right)\right\}\right) \\
& =E\left(-\frac{1}{n} \ell_{n}\left(\boldsymbol{\beta}^{o}\right)+\frac{1}{n}\left(\ell_{n}\left(\boldsymbol{\beta}^{o}\right)-\ell_{n}\left(\tilde{\boldsymbol{\beta}}_{\alpha}\right)\right)\right. \\
& \left.+\binom{n}{n_{v}}^{-1} \sum_{s \in \text { all }} \frac{1}{n_{v}}\left\{\boldsymbol{y}_{s}^{\top}\left(X_{s}^{\alpha} \tilde{\boldsymbol{\beta}}_{\alpha}-X_{s}^{\alpha} \tilde{\boldsymbol{\beta}}_{s^{c}, \alpha}\right)-\mathbf{1}^{\top}\left(b\left(X_{s}^{\alpha} \tilde{\boldsymbol{\beta}}_{\alpha}\right)-b\left(X_{s}^{\alpha} \tilde{\boldsymbol{\beta}}_{s^{c}, \alpha}\right)\right)\right\}\right) \\
& =-\frac{1}{n} E\left(\ell_{n}\left(\boldsymbol{\beta}^{o}\right)\right)+E\left(A_{\alpha 1}\right)+\binom{n}{n_{v}}^{-1} \sum_{s \in \text { all } s} E\left(A_{\alpha 2, s}\right) .
\end{aligned}
$$

For different $\alpha, E\left(\ell_{n}\left(\boldsymbol{\beta}^{\circ}\right)\right)$ stays the same, so we only need to focus on $A_{\alpha 1}$ and $A_{\alpha 2, s}$.
From Wilks' theorem, it is known that, if $\alpha \in \mathcal{A} \backslash \mathcal{A}_{c}$, as $n \rightarrow \infty$, we have $A_{\alpha 1} \xrightarrow{\mathcal{D}}$ $(1 / 2) \chi^{2}\left(k_{\alpha}\right)$, where $k_{\alpha}=d_{0}-d_{\alpha 0}, d_{\alpha 0}=\left|\left\{j: \beta_{j} \in \alpha \cap \alpha_{0}\right\}\right|$, i.e., k_{α} is the number of false negatives. This means $E\left(A_{\alpha 1}\right)=k_{\alpha}$; otherwise, $E\left(A_{\alpha 1}\right)=O(1 / n)$.

For any s,

$$
\begin{aligned}
& \mathbf{1}^{\top}\left(b\left(X_{s}^{\alpha} \tilde{\boldsymbol{\beta}}_{\alpha}\right)-b\left(X_{s}^{\alpha} \tilde{\boldsymbol{\beta}}_{s^{c}, \alpha}\right)\right)=\left(\dot{b}\left(X_{s}^{\alpha} \tilde{\boldsymbol{\beta}}_{\alpha}\right)\right)^{\top} X_{s}^{\alpha}\left(\tilde{\boldsymbol{\beta}}_{\alpha}-\tilde{\boldsymbol{\beta}}_{s^{c}, \alpha}\right) \\
& -\frac{1}{2}\left(\tilde{\boldsymbol{\beta}}_{\alpha}-\tilde{\boldsymbol{\beta}}_{s^{c}, \alpha}\right)^{\top}\left(X_{s}^{\alpha}\right)^{\top} \ddot{b}\left(X_{s}^{\alpha} \tilde{\boldsymbol{\beta}}_{\alpha}\right) X_{s, \alpha}\left(\tilde{\boldsymbol{\beta}}_{\alpha}-\tilde{\boldsymbol{\beta}}_{s^{c}, \alpha}\right)+o(1) .
\end{aligned}
$$

Define $u_{s^{c}}(\boldsymbol{\gamma})=\left(1 / n_{c}\right)\left(X_{s^{c}}^{\alpha}\right)^{\top}\left(\boldsymbol{y}_{s^{c}}-\dot{b}\left(X_{s^{c}}^{\alpha} \boldsymbol{\gamma}\right)\right)$, then $\tilde{\boldsymbol{\beta}}_{s^{c}, \alpha}$ is the solution to $u_{s^{c}}(\boldsymbol{\gamma})=0$. By Taylor expansion, we get

$$
\tilde{\boldsymbol{\beta}}_{\alpha}-\tilde{\boldsymbol{\beta}}_{s^{c}, \alpha}=\left(\dot{u}_{s^{c}}\left(\tilde{\boldsymbol{\beta}}_{\alpha}\right)\right)^{-1} u_{s^{c}}\left(\tilde{\boldsymbol{\beta}}_{\alpha}\right)(1+o(1)),
$$

where $\dot{u}_{s^{c}}\left(\tilde{\boldsymbol{\beta}}_{\alpha}\right)=-\left(1 / n_{c}\right)\left(X_{s^{c}}^{\alpha}\right)^{\top} \ddot{b}\left(X_{s^{c}}^{\alpha} \tilde{\boldsymbol{\beta}}_{\alpha}\right) X_{s^{c}}^{\alpha}$.

Define $D_{s, \alpha}=\ddot{b}^{1 / 2}\left(X_{s}^{\alpha} \tilde{\boldsymbol{\beta}}_{\alpha}\right) X_{s^{c}}^{\alpha}$, then

$$
\begin{aligned}
A_{\alpha 2, s} & =\frac{1}{n_{v}}\left(\boldsymbol{y}_{s}-\dot{b}\left(X_{s}^{\alpha} \tilde{\boldsymbol{\beta}}_{\alpha}\right)\right)^{\top} X_{s}^{\alpha}\left(\tilde{\boldsymbol{\beta}}_{\alpha}-\tilde{\boldsymbol{\beta}}_{s^{c}, \alpha}\right) \\
& +\frac{1}{2 n_{v}}\left(\tilde{\boldsymbol{\beta}}_{\alpha}-\tilde{\boldsymbol{\beta}}_{s^{c}, \alpha}\right)^{\top}\left(X_{s}^{\alpha}\right)^{\top} \ddot{b}\left(X_{s}^{\alpha} \tilde{\boldsymbol{\beta}}_{\alpha}\right) X_{s}^{\alpha}\left(\tilde{\boldsymbol{\beta}}_{\alpha}-\tilde{\boldsymbol{\beta}}_{s^{c}, \alpha}\right)+o\left(1 / n_{v}\right) \\
& =\frac{1}{n_{v}}\left(\boldsymbol{y}_{s}-\dot{b}\left(X_{s}^{\alpha} \tilde{\boldsymbol{\beta}}_{\alpha}\right)\right)^{\top} X_{s}^{\alpha}\left(\dot{u}_{s^{c}}\left(\tilde{\boldsymbol{\beta}}_{\alpha}\right)\right)^{-1} u_{s^{c}}\left(\tilde{\boldsymbol{\beta}}_{\alpha}\right)+o\left(1 / n_{v}\right) \\
& +\frac{1}{2 n_{v}}\left(\boldsymbol{y}_{s^{c}}-\dot{b}\left(X_{s^{c}}^{\alpha} \tilde{\boldsymbol{\beta}}_{\alpha}\right)\right)^{\top}\left(\ddot{b}\left(X_{s}^{\alpha} \tilde{\boldsymbol{\beta}}_{\alpha}\right)^{-1 / 2}\right) D_{s, \alpha}\left(D_{s, \alpha}^{\top} D_{s, \alpha}\right)^{-1} \\
& \times\left(\left(X_{s}^{\alpha}\right)^{\top} \ddot{b}\left(X_{s}^{\alpha} \tilde{\boldsymbol{\beta}}_{\alpha}\right) X_{s}^{\alpha}\right)\left(\left(X_{s^{c}}^{\alpha}\right)^{\top} \ddot{b}\left(X_{s}^{\alpha} \tilde{\boldsymbol{\beta}}_{\alpha}\right) X_{s^{c}}^{\alpha}\right)^{-1} \\
& \times D_{s, \alpha}^{\top}\left(\ddot{b}\left(X_{s}^{\alpha} \tilde{\boldsymbol{\beta}}_{\alpha}\right)^{-1 / 2}\right)\left(\boldsymbol{y}_{s^{c}}-\dot{b}\left(X_{s^{c}}^{\alpha} \tilde{\boldsymbol{\beta}}_{\alpha}\right)\right)(1+o(1)) \\
& =B_{\alpha}+C_{\alpha} .
\end{aligned}
$$

By plugging in the expansion form of $\dot{u}_{s^{c}}(\cdot)$ and $u_{s^{c}}(\cdot)$,

$$
B_{\alpha}=-\frac{1}{n_{v}}\left(\boldsymbol{y}_{s}-\dot{b}\left(X_{s}^{\alpha} \tilde{\boldsymbol{\beta}}_{\alpha}\right)\right)^{\top} X_{s}^{\alpha}\left(\left(X_{s^{c}}^{\alpha}\right)^{\top} \ddot{b}\left(X_{s^{c}}^{\alpha} \tilde{\boldsymbol{\beta}}_{\alpha}\right) X_{s^{c}}^{\alpha}\right)^{-1}\left(X_{s^{c}}^{\alpha}\right)^{\top}\left(\boldsymbol{y}_{s^{c}}-\dot{b}\left(X_{s^{c}}^{\alpha} \tilde{\boldsymbol{\beta}}_{\alpha}\right)\right)(1+o(1))
$$

From Conditions 5 and 6, straight calculations lead to

$$
E\left(B_{\alpha}\right)=0, \quad \operatorname{var}\left(B_{\alpha}\right)=d_{\alpha} a(\phi)\left(n_{c} n_{v}\right)^{-1 / 2}(1+o(1))
$$

For C_{α} we have,

$$
\begin{aligned}
C_{\alpha} & =\frac{1}{2 n_{c}}\left(\boldsymbol{y}_{s^{c}}-\dot{b}\left(X_{s^{c}}^{\alpha} \tilde{\boldsymbol{\beta}}_{\alpha}\right)\right)^{\top}\left(\ddot{b}\left(X_{s}^{\alpha} \tilde{\boldsymbol{\beta}}_{\alpha}\right)^{-1 / 2}\right) D_{s, \alpha}\left(D_{s, \alpha}^{\top} D_{s, \alpha}\right)^{-1} D_{s, \alpha}^{\top} \\
& \times\left(\ddot{b}\left(X_{s}^{\alpha} \tilde{\boldsymbol{\beta}}_{\alpha}\right)^{-1 / 2}\right)\left(\boldsymbol{y}_{s^{c}}-\dot{b}\left(X_{s^{c}}^{\alpha} \tilde{\boldsymbol{\beta}}_{\alpha}\right)\right)(1+o(1)) .
\end{aligned}
$$

Thus, after taking expectation we have,

$$
E\left(A_{\alpha 2, s}\right)=d_{\alpha} a(\phi) / n_{c}+o\left(1 / n_{c}\right) .
$$

If $\alpha \in \mathcal{A} \backslash \mathcal{A}_{c}$,

$$
\tilde{\Gamma}_{\alpha_{*}}-\tilde{\Gamma}_{\alpha}=\frac{1}{n}\left(\ell_{n}\left(\tilde{\boldsymbol{\beta}}_{\alpha_{*}}\right)-\ell_{n}\left(\tilde{\boldsymbol{\beta}}_{\alpha}\right)\right)+O\left(1 / n_{c}\right) .
$$

From Lemma 1 and Condition 3, by exploiting Gaussian concentration, $\forall \varepsilon>0$, we have

$$
R \cdot \operatorname{pr}\left\{n_{c}\left|\max _{\alpha \in \mathcal{A} \backslash \mathcal{A}_{c}}\right| \frac{1}{n}\left(\ell_{n}\left(\tilde{\boldsymbol{\beta}}_{\alpha_{*}}\right)-\ell_{n}\left(\tilde{\boldsymbol{\beta}}_{\alpha}\right)\right)\left|-E\left(\max _{\alpha \in \mathcal{A} \backslash \mathcal{A}_{c}}\left|\frac{1}{n}\left(\ell_{n}\left(\tilde{\boldsymbol{\beta}}_{\alpha_{*}}\right)-\ell_{n}\left(\tilde{\boldsymbol{\beta}}_{\alpha}\right)\right)\right|\right)\right|>\varepsilon\right\} \rightarrow 0
$$

The parallel result for $\alpha \in \mathcal{A}_{c}$ but $\alpha \neq \alpha_{*}$ holds similarly. Therefore, as $n \rightarrow \infty, \operatorname{pr}\left\{\hat{\alpha} \in \alpha_{*}\right\} \rightarrow$ 1.

A. 2 Additional numerical results

We conducted an additional simulation for the setting in Example 1(i) when $\rho=-0.5$ with the results summarized in Table 1 . In this case, $\mathrm{CV}\left(n_{v}\right)$ works very well compared with other methods and we skip the detailed discussion since the message is very similar to the cases of $\rho=0$ and $\rho=0.5$.

Table 1: Comparisons in linear regression with $\rho=-0.5$. Results are reported in the form of mean (standard error). FP, false positive; FN, false negative; PE, prediction error.

Method		$\rho=-0.5$	PE
Lasso	FP	FN	$1.01(0.01)$
CV $\left(n_{v}\right)$	$0.03(0.02)$	$0.02(0.01)$	$1.09(0.01)$
K-fold	$30.53(2.84)$	$0.00(0.00)$	$1.00(0.00)$
1SE	$1.54(0.21)$	$0.00(0.15)$	
AIC	$469.97(1.39)$	$0.00(0.00)$	$1.38(0.01)$
BIC	$2.18(0.17)$	$0.00(0.00)$	$1.12(0.01)$
EBIC	$0.91(0.10)$	$0.00(0.00)$	$1.13(0.01)$
SCAD	FP	FN	PE
CV $\left(n_{v}\right)$	$0.06(0.03)$	$0.01(0.01)$	$1.01(0.01)$
K-fold	$24.48(2.70)$	$0.00(0.00)$	$1.03(0.01)$
1SE	$0.30(0.09)$	$0.00(0.00)$	$1.08(0.01)$
AIC	$25.20(2.02)$	$0.05(0.03)$	$1.09(0.03)$
BIC	$0.70(0.09)$	$0.05(0.03)$	$1.10(0.03)$
EBIC	$0.16(0.04)$	$0.05(0.03)$	$1.11(0.03)$
MCP	FP	FN	PE
CV $\left(n_{v}\right)$	$0.02(0.01)$	$0.00(0.00)$	$1.01(0.01)$
K-fold	$4.76(0.82)$	$0.00(0.00)$	$1.02(0.01)$
1SE	$0.04(0.04)$	$0.00(0.00)$	$1.07(0.01)$
AIC	$77.29(0.96)$	$0.00(0.00)$	$1.15(0.01)$
BIC	$0.52(0.11)$	$0.00(0.00)$	$1.02(0.01)$
EBIC	$0.06(0.03)$	$0.00(0.00)$	$1.02(0.01)$

Bibliography

Lalley, S. P. (2013). Concentration inequalities. URL http://www.stat.uchicago.edu/\$\} sim\$lalley/Courses/386/Concentration.pdf

Department of Statistics, Columbia University
E-mail: yang.feng@columbia.edu
School of Mathematics, University of Bristol
E-mail: y.yu@bristol.ac.uk

