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The supplementary material includes all the technical details and additional simulation

results.

A.1 Additional lemmas and proofs

The following Lemma is adapted from Lalley (2013). It helps us to develop the asymptotic

theory where N , the size of the candidate models, is allowed to diverge with the sample size.

Lemma 1 (Gaussian concentration). Let γ be the standard Gaussian probability measure on

Rn (that is, the distribution of a N (0, In) random vector), and let F : Rn → R be Lipschitz in

each variable separately relative to the Euclidean metric, with Lipschitz constant c. Then for

every t > 0,

γ{|F − Eγ(F )| ≥ t} ≤ 2 exp

(
− t2

c2π2

)
.

Lemma 2. With p < n, let β̃ be the MLEs of a generalized linear model. Assume the penalty

function p(·) is separable, and assume Conditions 1 - 6 hold. Furthermore, assume nc → ∞
and nc/n→ 0 as n→∞, and the size of the splits K satisfies

K−1n−2
c n2 → 0.

Then, CV(nv) with K times subsampling is restricted model selection consistent.

Proof of Lemma 2. Due to the properties of generalized linear models with canonical parameter,

we have

E(yi | xi) = ḃ(x>i β), σ2
i = a(φ)b̈(x>i β), i = 1, · · · , n,

and define σ2 = (1/n)
∑n
i=1 σ

2
i . The target is to select the model that minimizes the loss

Γ̃α =
1

Knv

∑
s∈S

{
−y>s (Xα

s β̃sc,α) + 1>b(Xα
s β̃sc,α)

}
, (1)

where S represents the collection of validation sets in different splits and 1 is an all-one vector.
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Denote ES and varS as the expectation and variance with respect to the random selection

of S. By using the equality

ES

(
1

r

∑
s∈S

as

)
=

(
n

nv

)−1 ∑
s∈ all s

E(as),

rewriting (1), and denoting `s(β) = y>s (Xsβ)−1>b(Xsβ) and `n(β̃α) = y>(Xαβ̃α)−1>b(Xαβ̃α),

we have

ES(Γ̃α) =ES

(
− 1

Knv

∑
s∈S

`s(β
o)

)
+ ES

(
1

Knv

∑
s∈S

{
`s(β

o)−
(
y>s (Xα

s β̃α)− 1>b(Xα
s β̃α)

)})
+ES

(
1

Knv

∑
s∈S

{(
y>s (Xα

s β̃α)− 1>b(Xα
s β̃α)

)
−
(
y>s (Xα

s β̃sc,α)− 1>b(Xα
s β̃sc,α)

)})
=E

(
− 1

n
`n(βo) +

1

n

(
`n(βo)− `n(β̃α)

)
+

(
n

nv

)−1 ∑
s∈ all s

1

nv

{
y>s (Xα

s β̃α −X
α
s β̃sc,α)− 1>

(
b(Xα

s β̃α)− b(Xα
s β̃sc,α)

)})

=− 1

n
E(`n(βo)) + E(Aα1) +

(
n

nv

)−1 ∑
s∈ all s

E(Aα2,s).

For different α, E(`n(βo)) stays the same, so we only need to focus on Aα1 and Aα2,s.

From Wilks’ theorem, it is known that, if α ∈ A \ Ac, as n → ∞, we have Aα1
D→

(1/2)χ2(kα), where kα = d0 − dα0, dα0 = |{j : βj ∈ α ∩ α0}|, i.e., kα is the number of false

negatives. This means E(Aα1) = kα; otherwise, E(Aα1) = O(1/n).

For any s,

1>
(
b(Xα

s β̃α)− b(Xα
s β̃sc,α)

)
=
(
ḃ(Xα

s β̃α)
)>
Xα
s (β̃α − β̃sc,α)

− 1

2
(β̃α − β̃sc,α)>(Xα

s )>b̈(Xα
s β̃α)Xs,α(β̃α − β̃sc,α) + o(1).

Define usc(γ) = (1/nc)(X
α
sc)>

(
ysc − ḃ(Xα

scγ)
)
, then β̃sc,α is the solution to usc(γ) = 0. By

Taylor expansion, we get

β̃α − β̃sc,α =
(
u̇sc(β̃α)

)−1
usc(β̃α)(1 + o(1)),

where u̇sc(β̃α) = −(1/nc)(X
α
sc)>b̈(Xα

sc β̃α)Xα
sc .
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Define Ds,α = b̈1/2(Xα
s β̃α)Xα

sc , then

Aα2,s =
1

nv

(
ys − ḃ(X

α
s β̃α)

)>
Xα
s (β̃α − β̃sc,α)

+
1

2nv
(β̃α − β̃sc,α)>(Xα

s )>b̈(Xα
s β̃α)Xα

s (β̃α − β̃sc,α) + o(1/nv)

=
1

nv

(
ys − ḃ(X

α
s β̃α)

)>
Xα
s

(
u̇sc(β̃α)

)−1
usc(β̃α) + o(1/nv)

+
1

2nv

(
ysc − ḃ(X

α
sc β̃α)

)>(
b̈(Xα

s β̃α)−1/2)Ds,α(D>s,αDs,α)−1

×
(
(Xα

s )>b̈(Xα
s β̃α)Xα

s

)(
(Xα

sc)>b̈(Xα
s β̃α)Xα

sc
)−1

×D>s,α
(
b̈(Xα

s β̃α)−1/2)(ysc − ḃ(Xα
sc β̃α)

)
(1 + o(1))

= Bα + Cα.

By plugging in the expansion form of u̇sc(·) and usc(·),

Bα = − 1

nv

(
ys − ḃ(X

α
s β̃α)

)>
Xα
s

(
(Xα

sc)>b̈(Xα
sc β̃α)Xα

sc
)−1

(Xα
sc)>

(
ysc − ḃ(X

α
sc β̃α)

)
(1 + o(1)).

From Conditions 5 and 6, straight calculations lead to

E(Bα) = 0, var(Bα) = dαa(φ)(ncnv)−1/2(1 + o(1)).

For Cα we have,

Cα =
1

2nc

(
ysc − ḃ(X

α
sc β̃α)

)>(
b̈(Xα

s β̃α)−1/2)Ds,α(D>s,αDs,α)−1
D>s,α

×
(
b̈(Xα

s β̃α)−1/2)(ysc − ḃ(Xα
sc β̃α)

)
(1 + o(1)).

Thus, after taking expectation we have,

E(Aα2,s) = dαa(φ)/nc + o(1/nc).

If α ∈ A \ Ac,

Γ̃α∗ − Γ̃α =
1

n

(
`n(β̃α∗)− `n(β̃α)

)
+O(1/nc).

From Lemma 1 and Condition 3, by exploiting Gaussian concentration, ∀ε > 0, we have

R · pr

{
nc

∣∣∣∣ max
α∈A\Ac

∣∣∣ 1
n

(
`n(β̃α∗)− `n(β̃α)

)∣∣∣− E( max
α∈A\Ac

∣∣∣ 1
n

(
`n(β̃α∗)− `n(β̃α)

)∣∣∣)∣∣∣∣ > ε

}
→ 0.

The parallel result for α ∈ Ac but α 6= α∗ holds similarly. Therefore, as n→∞, pr{α̂ ∈ α∗} →
1.

A.2 Additional numerical results

We conducted an additional simulation for the setting in Example 1(i) when ρ = −0.5

with the results summarized in Table 1. In this case, CV(nv) works very well compared with

other methods and we skip the detailed discussion since the message is very similar to the cases

of ρ = 0 and ρ = 0.5.



4 Yang Feng and Yi Yu

Table 1: Comparisons in linear regression with ρ = −0.5. Results are reported in the

form of mean (standard error). FP, false positive; FN, false negative; PE, prediction

error.

Method ρ = −0.5

Lasso FP FN PE

CV(nv) 0.03(0.02) 0.02(0.01) 1.01(0.01)

K-fold 30.53(2.84) 0.00(0.00) 1.09(0.01)

1SE 1.54(0.21) 0.00(0.00) 1.15(0.01)

AIC 469.97(1.39) 0.00(0.00) 1.38(0.01)

BIC 2.18(0.17) 0.00(0.00) 1.12(0.01)

EBIC 0.91(0.10) 0.00(0.00) 1.13(0.01)

SCAD FP FN PE

CV(nv) 0.06(0.03) 0.01(0.01) 1.01(0.01)

K-fold 24.48(2.70) 0.00(0.00) 1.03(0.01)

1SE 0.30(0.09) 0.00(0.00) 1.08(0.01)

AIC 25.20(2.02) 0.05(0.03) 1.09(0.03)

BIC 0.70(0.09) 0.05(0.03) 1.10(0.03)

EBIC 0.16(0.04) 0.05(0.03) 1.11(0.03)

MCP FP FN PE

CV(nv) 0.02(0.01) 0.00(0.00) 1.01(0.01)

K-fold 4.76(0.82) 0.00(0.00) 1.02(0.01)

1SE 0.04(0.04) 0.00(0.00) 1.07(0.01)

AIC 77.29(0.96) 0.00(0.00) 1.15(0.01)

BIC 0.52(0.11) 0.00(0.00) 1.02(0.01)

EBIC 0.06(0.03) 0.00(0.00) 1.02(0.01)
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