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Abstract: Estimating the covariance matrix of a high-dimensional matrix-variate is

an important issue. As such, many methods have been developed, typically based

on the sample covariance matrix under a Gaussian or sub-Gaussian assumption.

However, the sub-Gaussian assumption is restrictive and the estimate based on the

sample covariance matrix is not robust. In this study, we estimate the covariance

matrix of a high-dimensional matrix-variate using a transelliptical distribution and

Kendall’s τ correlation. Because the covariance matrix of a matrix-variate is com-

monly assumed to have a low-dimensional structure, we consider the structure of

the Kronecker expansion. The asymptotic results of the estimator are established.

Simulation results and a real-data analysis confirm the effectiveness of our method.

Key words and phrases: Kronecker product, latent covariance (correlation) matrix,

matrix-variate, robust estimate.

1. Introduction

Covariance matrices are widely used in statistical inferences, such as prin-

cipal components analysis (PCA), as well as in test statistics in multivariate

analyses. Thus, estimations of covariance matrices have attracted attention in

diverse fields, including bioinformatics (Jones et al. (2012)) and economics and fi-

nancial time series analyses, such as portfolio selection (Ledoit and Wolf (2001)),

risk management (Karceski and Lakonishok (1999)), and asset pricing (Engle, Ng

and Rothschild (2010)), among others. Because the sample covariance matrix is

singular when the dimension is larger than the sample size, the estimation prob-

lem is generally challenging, especially when the dimension is high. To estimate

the covariance matrix efficiently, some low-dimensional structures are often as-

sumed, such as sparsity or low rank. For vector-valued variates, many works have

estimated sparse or low-rank covariance matrices (Johnson, Jalali and Raviku-

mar (2011); Bickel and Levina (2008, 2009); Lam and Fan (2009); Rigollet and

Tsybakov (2012), etc.). For a detailed review on this topic, refer to Fan, Liao

and Liu (2015).
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With the rapid development of new technology, in many applications, re-

searchers often collect data for a matrix-variate {Xk ∈ Rp×q, 1 ≤ k ≤ n},
with Xk = (Xij,k)1≤i≤p,1≤j≤q ∈ Rp×q, such as nuclear magnetic resonance(NMR)

data (Wallbacks and Norden (2006)) and electroencephalograph (EEG) data (Se-

jnowski, Makeig and Delorme (2007)). Covariance matrix estimations for such

data are important in applications. Most works focus on the case in which both

p and q are fixed (Dutilleul (1999); Gupta and Nagar (1999)). In recent years,

researchers have begun focusing on the case in which p and q diverge under an ad-

ditional low-dimensional structure, such as sparsity and the Kronecker structure

(Leng and Pan (2017); Tsiligkaridis and Hero (2013), etc.).

When the dimensions p and q are large, to estimate the covariance matrix

of Xk efficiently, Tsiligkaridis and Hero (2013) considered the case where the

covariance matrix Σ = cov(vec(Xk)) has the following Kronecker form:

Σ =

r∑
i=1

Ai ⊗Bi, (1.1)

where Ai denotes a q× q linearly independent matrix, Bi denotes a p×p linearly

independent matrix, and r ≤ min{p2, q2}. Here, linear independence means

that vectors {vec(Ai), i = 1, . . . , r} are linearly independent, as are {vec(Bi), i =

1, . . . , r}. Because Σ is symmetric and positive semidefinite, equation (1.1)

imposes certain restrictions on Ai and Bi. For example, when r = 1, Ai and Bi
should be symmetric and positive semidefinite.

Model (1.1) with r ≥ 1 has applications in various fields, including video

modeling and classification, network anomaly detection, and Magnetoencephalog-

raphy(MEG)/EEG covariance modeling (Greenewald and Hero (2014a,c))

(Tsiligkaridis and Hero (2013)). For example, Greenewald and Hero (2014b) an-

alyzed a yeast metabolic cell cycle data set, where 9335 gene probes are sampled

approximately every 24 minutes for a total of 36 time points. The data include

about three different cell cycles. According to this study, the matrix Bi serves as

a spatial factor describing the dependencies among the genes. Matricx Ai with

dimension 36×36 serves as a temporal factor, describing the dependencies among

different time points. Because spatial and temporal dependency patterns may

vary between cell cycles, r represents the number of different dependence pat-

terns. The value of r estimated by Greenewald and Hero (2014b) is three, which

matches the number of cell cycles. Moreover, as pointed by Loan and Pitsianis

(1992), any pq× pq matrix M can be represented by (1.1) with sufficiently large

r. The covariance matrix in (1.1) with small r has a low dimension structure.
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Tsiligkaridis and Hero (2013) proposed a permuted rank-penalized least squares

(PRLS) estimator to estimate the covariance matrix with structure (1.1).

A special case of model (1.1) is given by Σ = A ⊗ B (i.e. r = 1). This has

been widely considered in low-dimensional cases with a normal matrix-variate

(Dutilleul (1999)), and in high-dimensional cases with a Gaussian assumption

on Xk and a sparsity assumption on both A and B (Leng and Tang (2012);

Tsiligkaridis, Hero III and Zhou (2012)).

However, the PRLS method (Tsiligkaridis and Hero (2013)), and many others

mentioned above, utilize the sample covariance matrix under the Gaussian or

sub-Gaussian assumption. As argued by Han and Liu (2014), this approach

has several disadvantages. (i) These estimates are not robust to outliers or a

heavy-tailed distribution. (ii) The theory of these methods relies heavily on the

Gaussian or sub-Gaussian assumption, which may not be realistic for many real-

world applications. Therefore, it is desirable to develop a robust estimate under

a weak assumption on the distribution.

In the traditional case of the vector-valued variable Y = (Y1, . . . , Yp)
> ∈ Rp,

several works (Liu et al. (2012); Han and Liu (2014, 2017)) have relaxed the

sub-Gaussian assumption, proposing a transelliptical family of distributions. Y

follows a transelliptical distribution if there exists a set of nonspecific strictly in-

creasing functions (f1, . . . , fp), such that (f1(Y1), . . . , fp(Yp)) follows an elliptical

distribution with the location parameter zero and the scale parameter Γ0, the

diagonal elements of which are one. Γ0 is called a latent generalized correlation

matrix (Han and Liu (2014)). Moreover, Liu, Lafferty and Wasserman (2009);

Liu et al. (2012) and Han and Liu (2014) introduced a latent covariance matrix,

denoted as Γ, in a margin-preserved nonparanormal distribution. Note that the

inverse function f−1
j exists because fj is a strictly increasing function in the above

definitions. Consequently, viewing the nuisance parameter (fj , 1 ≤ j ≤ p) as a

kind of contamination, Y can be viewed as a contaminated observation of some

elliptical or normal variable with correlation matrix Γ0, which is the parameter

of interest. Han and Liu (2014, 2017) developed their scale-invariant PCA based

on a robust estimate of Γ0.

In this study, we extend some of the ideas of Han and Liu (2014) to matrix-

variate, where we estimate the latent covariance matrix of matrix-variate Xk ∈
Rp×q. However, in contrast to Han and Liu (2014), we consider the case where

the latent covariance matrix has the structure given in (1.1). Our method is

also an extension of that of Tsiligkaridis and Hero (2013), relaxing the Gaussian

assumption. Both our method and that of Tsiligkaridis and Hero (2013) are
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two-step estimates but with different initial values.

Our study makes two major contributions to the literature. First, when r is

unknown in (1.1), we propose an estimator based on Kendall’s τ correlation. The

study of the statistical properties of the estimator is nontrivial. For vector-valued

variables, some works estimate the correlation matrix based on a nonparanormal

distribution and Kendall’s τ correlation (e.g., Liu et al. (2012); Han and Liu

(2014, 2017); Wegkamp and Zhao (2016)). Although Kendall’s τ correlation is

used in both these estimators and our proposed method, there are two significant

differences. (i) The works on vector-valued data (e.g., Liu et al. (2012); Han and

Liu (2014)) do not take into account the structure of (1.1). (ii) Our theoretical

analysis is quite different. Our proposed method involves a linear operator T
(see Section 2.3 for details), and we need to examine the error of T (R̂τ ) rather

than that of R̂τ , where R̂τ denotes the estimate of the correlation matrix based

on Kendall’s τ correlation. The main challenge is that T (R̂τ ) is asymmetric,

but the matrix concentration inequalities used to examine R̂τ are not applicable

here (Han and Liu (2017); Wegkamp and Zhao (2016)). Thus, we use a different

approach to establish the convergence rate.

Second, we study the statistical properties of our estimator when r is known

beforehand and r = 1. This case differs from that considered by Tsiligkaridis

and Hero (2013). In particular, for fixed r = 1, we obtain estimates of A and

B. The asymptotic results show that the estimator is effective, even when the

dimensions p and q have an exponential order of sample size n when the matrices

A and B are dense.

Notation. For any scalar a ∈ R, let a+ = max{a, 0}. For any integer m,

[m] = {1, . . . ,m}. 1m = (1, 1, . . . , 1)> ∈ Rm. For any vector v ∈ Rm, ‖v‖
denotes the Euclidean norm of v. For any m × m matrix M = (Mij), ‖M‖op
denotes the operator norm, ‖M‖max = maxi,j |Mij |, and ‖M‖F is the Frobenius

norm of M . ‖M‖∗ denotes the nuclear norm and ‖M‖∗ =
∑rkM

l=1 ϕl(M), where

rkM = rank(M) and ϕl(M) is the l-th largest singular value of M . diag(M)

denotes the vector consisting of the diagonal elements of M , and (diag(M))

denotes the diagonal matrix in which the diagonal elements are diag(M). tr(M)

denotes the trace of M . For any matrices M1,M2 ∈ Rm×n, M1 ◦M2 denotes the

Hadamard product of M1 and M2. For any set S, denote |S| as the cardinality

of S. In addition, for two series {an} and {bn}, an � bn means that 0 < c−1 ≤
lim
n
an/bn ≤ c <∞, for some constant c. For clarity, for any random vector Y =

(Y1, . . . , Yp) ∈ Rp, the Pearson correlation and Kendall’s τ correlation between

Yi and Yj are denoted as corr(Yi, Yj) and τ(Yi, Yj), respectively. In addition, the
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Pearson correlation matrix and Kendall’s τ correlation matrix of Y are denoted as

corr(Y) = (corr(Yi, Yj)) ∈ Rp×p and corrK(Y) = (τ(Yi, Yj)) ∈ Rp×p, respectively.

2. High-Dimensional Latent Covariance Matrix Estimation for Matrix-

Variates

2.1. Brief review of concepts

We first review several concepts related to transelliptical distributions (Fang,

Fang and Kotz (2002); Liu, Lafferty and Wasserman (2009); Liu et al. (2012);

Han and Liu (2014, 2017)).

Definition 1 (Elliptical distribution). A random vector Y = (Y1, . . . , Yp)
> ∈ Rp

follows an elliptical distribution if and only if Y has a stochastic representation:

Y
d
= µ + ξAU. Here, µ ∈ Rp , A ∈ Rp×q with q = rank(A), ξ ≥ 0 is a random

variable independent of U, and U ∈ Sq−1 is uniformly distributed on the unit

sphere Sq−1 in Rq. Letting Γ = AA>, we denote Y ∼ ECp(µ,Γ, ξ). Γ is called

the scatter matrix.

Definition 2 (Transelliptical family). A continuous random vector Y = (Y1, . . . ,

Yp)
> ∈ Rp follows a transelliptical distribution, denoted by Y ∼ TEp(Γ0, ξ; f1, . . . ,

fp), if there exist univariate strictly increasing functions f1, . . . , fp, such that

(f1(Y1), . . . , fp(Yp)) ∼ ECp(0,Γ0, ξ),

where ECp(0,Γ
0, ξ) denotes an elliptical distribution with diag(Γ0) = 1p. Here,

Γ0 is called a latent generalized correlation matrix. In particular, if the elliptical

distribution is replaced by the normal distribution N(0,Γ0) with diag(Γ0) = 1p,

this model is called the Gaussian copula model or nonparanormal model, and Γ0

is called a latent correlation matrix.

Definition 3 (Margin-preserved Nonparanormal Distribution). A random vector

Y = (Y1, . . . , Yp)
> ∈ Rp with means µ = (µ1, . . . , µp)

> and standard deviations

{σ(Y )
1 , . . . , σ

(Y )
d } is said to follow a margin-preserved nonparanormal distribution

MNPNp(µ,Γ, f) if and only if there exists a set of strictly increasing univariate

functions f = {fj}pj=1, such that f(Y) = (f1(Y1), . . . , fp(Yp))
> ∼ Np(µ,Γ), where

diag(Γ) = ((σ
(Y )
1 )2, . . . , (σ

(Y )
p )2)> ∈ Rp . We call Γ a latent covariance matrix.

In Definitions 2–3, f is unspecified and is unknown, in practice. Similarly to

the latent correlation matrix, if we view {fj}pj=1 as a kind of contamination, Y

is the contaminated observation of some normal variable with covariance matrix

Γ, which is the parameter of interest.
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Definition 4 (Kendall’s τ correlation). Let Y = (Y1, . . . , Yp)
> be a p-dimensional

random vector. Kendall’s τ correlation coefficient between Yi and Yj is defined

as

τ(Yi, Yj) := P ((Yi − Ỹi)(Yj − Ỹj) > 0)− P ((Yi − Ỹi)(Yj − Ỹj) < 0),

where Ỹ = (Ỹ1, . . . , Ỹp)
> is an independent copy of Y. Denote corrK(Y) =

(τ(Yi, Yj)) ∈ Rp×p as Kendall’s τ correlation matrix.

2.2. Estimate of latent correlation matrix for matrix-variates

In many applications, {Xk ∈ Rp×q, 1 ≤ k ≤ n} are contaminated or not

Gaussian. We examine a transelliptical distribution. Assume that vec(Xk) fol-

lows the transelliptical distribution TEpq(R, ξ; f), where f = (f11, . . . , fpq), or,

equivalently, the uncontaminated variables of vector

f(Xk) = (f11(X11,k), . . . , fp1(Xp1,k), . . . , f1q(X11,k), . . . , fpq(Xpq,k)) ∈ Rpq

follow an elliptical distribution with the Pearson correlation matrix R; that is,

R = corr(vec(f(Xk))) = (Ri,j) ∈ Rpq×pq.

For (is, js) ∈ [p]× [q], s = 1, 2, it is easy to see that

R(j1−1)p+i1,(j2−1)p+i2 = corr(fi1j1(Xi1j1,k), fi2j2(Xi2j2,k)).

The main idea of our robust estimate of the latent covariance matrix Σ comes

from the observation that Σ = DRD, where D = (diag(Σ))1/2 is the diagonal

matrix of the standard deviation and R is the correlation matrix. Naturally, a

robust estimate of Σ can be constructed by combining the robust estimate of R

and D.

To estimate the correlation matrix R, we consider Kendall’s τ correlation,

which is a robust measure for the relation between two variables. Recall Defi-

nition 4 on Kendall’s τ correlation matrix. We denote Kendall’s τ correlation

matrix as

T = corrK(vec(Xk)) = (Ti,j) ∈ Rpq×pq.

For (is, js) ∈ [p]× [q], s = 1, 2, T(j1−1)p+i1,(j2−1)p+i2 denotes the Kendall’s τ corre-

lation coefficient between variables fi1j1(Xi1j1,k) and fi2j2(Xi2j2,k). The relation-

ship between T(j1−1)p+i1,(j2−1)p+i2 and R(j1−1)p+i1,(j2−1)p+i2 is given as follows

(Han and Liu (2014)):

R(j1−1)p+i1,(j2−1)p+i2 = sin
(π

2
T(j1−1)p+i1,(j2−1)p+i2

)
.

This motivates us to construct a robust estimate of R, denoted as Rτ ∈ Rpq×pq,
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based on the estimate of T(j1−1)p+i1,(j2−1)p+i2 . Similarly to Han and Liu (2014),

we estimate T(j1−1)p+i1,(j2−1)p+i2 by

T̂(j1−1)p+i1,(j2−1)p+i2 =
2

n(n− 1)

∑
k1<k2

sign(Xi1j1,k1−Xi1j1,k2)sign(Xi2j2,k1−Xi2j2,k2),

where (is, js) ∈ [p] × [q], s = 1, 2. Then, T̂ = (T̂i,j) is the estimate of T.

Combining these, we estimate R by

R̂τ =
(

sin
(π

2
T̂i,j

))
= sin

(π
2

T̂
)
. (2.1)

2.3. Estimate of latent covariance matrix of matrix-variates

Similarly to Tsiligkaridis and Hero (2013), we assume that the latent co-

variance matrix Σ has the Kronecker structure given in (1.1). That is, Σ =∑r
i=1Ai⊗Bi, where Ai is a q×q linearly independent matrix, Bi is a p×p linearly

independent matrix, and r ≤ min{p2, q2}. We estimate the covariance matrix

under the nonparanormal distribution, that is, vec(Xk) ∼ MNPNpq(µ,Σ, f),

where f = (f11, . . . , fpq). Equivalently, vector f(Xk) ∼ N(µ,Σ), where f(Xk) =

(fij(Xij,k), 1 ≤ i ≤ p, 1 ≤ j ≤ q) ∈ Rpq and var(fij(Xij,k)) = var(Xij,k) for any

1 ≤ i ≤ p, 1 ≤ j ≤ q.
Note that MNPNpq(µ,Σ; f) is a special case of the transelliptical distribu-

tion. The main reason for the stronger assumption is that the standard deviation

is, in general, not invariant under the increasing function f .

Now, we turn to the robust estimate of D. Clearly, matrix D can be esti-

mated by the robust estimate of the standard deviation of each element of Xk.

Because D is a diagonal matrix, we denote the diagonal elements as a vector

D(d) = (σ11, . . . , σ1q, . . . , σp1, . . . , σpq)
>. Let ξij,0.5 denote the 0.5 quantile of the

distribution of Xij,k, for (i, j) ∈ [p]× [q]. A natural robust estimate for σij is the

median absolute deviation (MAD)-type estimate σ̂ij , defined as

σ̂ij = cij ·median{|Xij,k −Xmed
ij |, k = 1, . . . , n}, (2.2)

where Xmed
ij = median{Xij,k, k = 1, . . . , n} and c−1

ij is equal to the 0.5 quantile of

the distribution of |Xij,k − ξij,0.5|/σij , which can be written as a function of the

standardized variable X
(sv)
ij,k = (Xij,k − E(Xij,k))/σij . When the distribution of

X
(sv)
ij,k is known, cij can be calculated directly. For example, when Xij,k is normal,

we have cij =
√

1/χ2
0.5(1), where χ2

0.5(1) is the 0.5 quantile of a χ2 distribution

with degree of freedom one. We show later that the estimate σ̂ij is uniformly

consistent over (i, j) ∈ [p] × [q] under a mild assumption on the densities of the

marginal distributions.
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Remark 1. Here, we aim to give a robust estimate of the variance of σij . In

practice, when the distribution of X
(sv)
ij,k is unknown for some index (i, j), cij will

be unknown, and the MAD-type estimate cannot be used. In this case, many

other robust estimators can be used. Catoni (2012) proposed a robust estimator

of the variance that allows for heavy-tailed distributions with a bounded kurtosis.

Suppose that {Zk, 1 ≤ k ≤ n} are independently and identically distributed (i.i.d)

copies of some random vector Z = (z1, . . . , zp)
> ∈ Rp, with covariance matrix

Σ̌ = (σ̌ij). Assuming that the maximum of the fourth moment max1≤i≤pE(z4
i )

exists, Fan, Li and Wang (2017) proposed a robust approximate (RA) quadratic

loss function, and showed that the corresponding estimator ˆ̌σRAij has a good

convergence rate. Specifically, P (max1≤i,j≤p |ˆ̌σRA1≤i,j≤p− σ̌ij | ≥ 4v
√
a(log p)/n) ≤

2p2−a, where v is a constant and a > 2 (Fan, Li and Wang (2017)). Obviously,

by assuming max1≤i,j≤pE(X4
ij) and replacing p with p2, the estimator of Fan, Li

and Wang (2017) can be applied to our setting to construct the robust estimator

σ̂RAij .

Denote the estimate of D(d) as D̂(d) = (σ̂ij , 1 ≤ i ≤ p, 1 ≤ j ≤ q). Moreover,

R can be estimated as shown in the previous section. Combining these, we have

the following robust estimate of Σ:

Σ̂τ = D̂R̂τ D̂. (2.3)

To simplify the following argument, we first introduce the transformation oper-

ator T (·). For any N ∈ Rpq×pq, split N into blocks of sub-matrices of size p× p,
with q blocks in each row and q2 blocks in total. Denote N = (N(i, j))qi,j=1, where

N(i, j) ∈ Rp×p is a block in the ith row and the jth column. Define the permu-

tation operator T : Rpq×pq → Rq2×p2 by setting the ((i−1)q+ j)-th row of T (N)

equal to vec(N(i, j))> ∈ Rp2 . For further details on this transformation, refer to

Tsiligkaridis and Hero (2013). Moreover, we define T −1 : Rq2×p2 7→ Rpq×pq as

the inverse operator of T (·). Based on the definition of T (·), we have

T (Σ) =

r∑
i=1

vec(A>i )(vec(Bi))
>.

Because Ai and Bi are linearly independent, the above equation implies that the

matrix T (Σ) has rank r. When r is small, T (Σ) has a low-rank structure.

Note that we do not require that p = q. Although Σ is positive definite,

T (Σ) may not be positive semidefinite, even if p = q. To see this, we consider

a simple case where r = 1 and p = q. For any matrix M̃ = c · uv>, where u

and v are p2-dimensional vectors with ‖u‖ = ‖v‖ = 1 and c > 0 is a constant,
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we can show that M̃ is positive semidefinite if and only if u = v. In fact,

when u 6= v, for any vector w ∈ Rp2 such that w>(u + v)/2 = 0, we have that

w>u = w>(u − v)/2 = −w>(v − u)/2 = −w>v. Consequently, wT M̃w < 0.

In addition, when u = v, it is easy to see that M̃ is positive semidefinite. For

the matrix T (Σ) considered here, A>i is, in general, not equal to Bi. Therefore,

T (Σ) may not be positive semidefinite, in general.

To take the Kronecker structure into account, we consider the following

optimization problem:

Σ̂τ
T = arg min

S∈Rq2×p2
‖T (Σ̂τ )− S‖2F + λ‖S‖∗, (2.4)

where λ is the tuning parameter, which leads to the optimal solution

Σ̂τ
T =

min{p2,q2}∑
i=1

(
ϕ̂i(T (Σ̂τ ))− λ

2

)
+

uiv
>
i , (2.5)

where ϕ̂i(T (Σ̂τ )) is the i-th largest singular value of T (Σ̂τ ), and ui and vi are

the corresponding left and right eigenvectors, respectively. Then, the estimate of

Σ can be defined as

Σ̂τ
LR = T −1(Σ̂τ

T ),

where LR in the subscript of the estimator indicates that the low-rank Kronecker

structure in (1.1) has been taken into account. The tuning parameter λ can be

selected using the cross-validation (CV) method of Bickel and Levina (2009).

Finally, note that R itself may be of interest in many applications. In such

cases, the above procedure can be used to estimate R when the latent correlation

matrix R is assumed to have the Kronecker form given in (1.1). By replacing Σ̂τ

in (2.4) and (2.5) with R̂τ and denoting the optimal solution of (2.5) as R̂τ
T , we

obtain the estimate of R, denoted as R̂τ
LR = T −1(R̂τ

T ).

2.4. The special case of r = 1

We consider the special case of r = 1 in Σ or R. First, we consider Σ. Note

that Σ = A⊗B when r = 1. This special case has been studied by Leng and Tang

(2012), Leng and Pan (2017), and many others. Leng and Pan (2017) considered

the estimate when A and B are sparse. Here, we focus on the semiparametric

estimation and do not impose the sparsity assumption further. Clearly, this can

be extended to include the sparsity assumption in our setting. For identification,

we rewrite the model as

Σ = γ ·A⊗B, (2.6)
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where γ = ‖Σ‖F , A = (aij) ∈ Rq×q, and B = (bij) ∈ Rp×p, with ‖A‖F =

‖B‖F = 1. Let VA = vec(A>), VB = vec(B). Then, T (Σ) = γVAV
>
B , according

to the definition of T (·). Recall that Σ̂τ is the robust estimate of Σ obtained in

(2.3). We estimate (γ, VA, VB) by minimizing the following objective function:

(γ̂, V̂A, V̂B) = arg min
Θ
‖T (Σ̂τ )− dv1v

>
2 ‖2F ,

where Θ = {(d, v1, v2): d ∈ R, v1 ∈ Rq2 , v2 ∈ Rp2 , d > 0, ‖v1‖ = ‖v2‖ = 1}.
Obviously, the estimator γ̂ is the largest singular value of the SVD decomposition

of T (Σ̂τ ), and (V̂A, V̂B) represents the associated left and right eigenvectors,

respectively. Consequently, Σ in (2.6) can be estimated using

Σ̂τ
(rk=1) = T −1(γ̂V̂AV̂

>
B ). (2.7)

Let Â ∈ Rq×q and B̂ ∈ Rp×p be matrices such that vec(Â>) = V̂A and vec(B̂) =

V̂B. Then, Â and B̂ are estimates of A and B, respectively. In the next section,

we establish the asymptotic results of Â, B̂, and Σ̂τ
(rk=1).

Similarly to Σ, when R has the Kronecker structure with r = 1, it can be

estimated in the same way. Similarly to (2.6), denote

R = γ̃ · Ã⊗ B̃, (2.8)

where γ̃ = ‖R‖F , Ã = (ãij) ∈ Rq×q, and B̃ = (b̃ij) ∈ Rp×p, with ‖Ã‖F = ‖B̃‖F =

1. Recall the definition of R̂τ in (2.1). By replacing Σ̂τ with R̂τ in the above

procedure, we can estimate R in (2.8). Define VÃ and VB̃ in the same way as VA
and VB, respectively. Then, R can be estimated using

R̂τ
(rk=1) = T −1(ˆ̃γV̂ÃV̂

>
B̃

), (2.9)

where ˆ̃γ is the largest singular value of the SVD decomposition of T (R̂τ ), and

(V̂Ã, V̂B̃) denotes the associated left and right eigenvectors, respectively. In ad-

dition, let ˆ̃A ∈ Rq×q and ˆ̃B ∈ Rp×p such that vec( ˆ̃A>) = V̂Ã and vec( ˆ̃B) = V̂B̃.

Then, ˆ̃A and ˆ̃B are estimates of Ã and B̃, respectively.

3. The Asymptotic Properties of the Estimates

3.1. Asymptotic properties of ‖T (R̂τ )− T (R)‖op
To establish the bound of the estimator, we need to establish the upper

bound of the term ‖T (R̂τ ) − T (R)‖op. A related quantity is ‖R̂τ − R‖op, of

which the associated upper bound has been studied by Han and Liu (2017),

Mitra and Zhang (2014), and Wegkamp and Zhao (2016). However, ‖T (R̂τ ) −
T (R)‖op is quite different from ‖R̂τ −R‖op, because the former is no longer a
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symmetric matrix, and thus, the matrix concentration inequality used by Han

and Liu (2017) and Wegkamp and Zhao (2016) is not applicable. In fact, the

theoretical analyses of Han and Liu (2017) and Wegkamp and Zhao (2016) rely on

the matrix concentration inequality of Tropp (2012), where the candidate must

be square and symmetric.

Remark 2. Tropp (2012) considered the finite sequence {Wk} of random, self-

adjoint matrices with dimension d. Based on the matrix Laplacian transforma-

tion, Tropp (2012) derived a bound on the probability

P

(
λmax

(∑
k

Wk

)
≥ t

)
,

where λmax(·) denotes the algebraically largest eigenvalue of a self-adjoint ma-

trix. The following Proposition 1 of Tropp (2012) on the Laplace transformation

method plays a critical role in deriving the matrix concentration inequality.

Proposition 1 (Tropp (2012)). Let W be a random self-adjoint matrix. For all

t ∈ R,

P (λmax(W ) ≥ t) ≤ inf
θ>0
{e−θtE(tr(eθW ))}.

For further details, refer to Tropp (2012). This inequality is the key step in

the proof of Han and Liu (2017).

To simplify the argument, we first introduce some notations. Let Zk =

vec(Xk) ∈ Rpq, Ukk′ = sign(Zk − Zk′) ∈ Rpq, 1 ≤ k 6= k′ ≤ n, and Vkk′ =

vec(Ukk′U
>
kk′ − E(Ukk′U

>
kk′)). Recall that T = E(Ukk′U

>
kk′) and T̂ = 2(n(n −

1))−1
∑

1≤k 6=k′≤n U
>
kk′Ukk′ are Kendall’s τ correlation matrix for the population

and its estimate, respectively. According to the definition of R̂τ , we have R̂τ =

sin((π/2)T̂). Let

En := vec(T̂−T) = 2(n(n− 1))−1
∑

1≤k 6=k′≤n
Vkk′ ,

which is a U-statistic. Note that a>En is also a U-statistic. Based on the

asymptotic normality of U-statistics, under some conditions,
√
na>En will con-

verge in distribution to N(0,a>Wa), for any a ∈ Rp2q2 with ‖a‖ = 1, where

W = cov(Vkk′). By the tail probability of the U-statistic (Keener, Robinson and

Weber (1998); Borovskikh and Weber (2003)), because n is large, the tail proba-

bility of
√
na>En is similar to that of the normal distribution N(0,a>Wa) under

certain conditions. Assume that ‖W‖op < C <∞ for some constant C > 0 and

for any positive integers p and q. Then a>Wa is upper bounded by a constant.

To simplify the proof, we make the high-level assumption that
√
na>En has a
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tail probability similar to that of a sub-Gausssian variable.

(A1) (Tail probability) Assume that ‖W‖op < C < ∞ for any positive integers

p and q. In addition, assume that, when n is large, P (
√
na>En > t) ≤

C ′ exp(−t2/K2) for any positive t > 0, with t = o(n1/2), and any a ∈ Rp2q2 ,
with ‖a‖ = 1, where 0 < C,C ′,K <∞ are constants.

Han and Liu (2017) showed that if Zk ∼ TEpq(Ipq, ξ; f1, . . . , fpq), then

Zk satisfies the sign sub-Gaussian condition; that is, for any unit vector v,

E(exp(t〈Vkk′ , vv>〉)) ≤ ect
2

for any 0 < t < t0 for some t0. Barber and Ko-

lar (2018) proved that if Zk ∼ N(0,Σ), then sign(Zk) is sub-Gaussian, and a

similar inequality holds. In our setting, we need to consider aTVkk′ . Although

the results of Han and Liu (2017) and Barber and Kolar (2018) cannot be applied

directly, we expect that a similar inequality still holds under certain conditions.

Proposition 2. Suppose E(exp(ta>Vkk′)) ≤ ect
2

for any 0 < t < t0, where

t0 > 0 and c > 0 are constants. Then, assumption (A1) holds.

Theorem 1. Assume vec(Xk) follows a transelliptical distribution, denoted by

vec(Xk) ∼ TEp(R, ξ; f11, . . . , fpq). Under assumption (A1), we have

‖T (R̂τ )− T (R)‖op = Op

(√
p2 + q2 + log n

n
+
pq log(pq)

n

)
.

3.2. Asymptotic properties of Σ̂τ
LR and R̂τ

LR

To show the convergence of Σ̂τ
LR, we establish the rate of

‖D̂ −D‖max = sup
(i,j)∈[p]×[q]

|σ̂ij − σij |.

Let X
(0)
ij,k = cij |Xij,k − ξij,0.5|. Note that X

(0)
ij,k is different to X

(sv)
ij,k in Section 2.

Recall from (2.2) that c−1
ij is the 0.5 quantile of the distribution of |Xij,k −

ξij,0.5|/σij . Clearly, cij > 0 and

P (X
(0)
ij,k ≥ σij) = P

|Xij,k − ξij,0.5|
σij ≥ c−1

ij

≥ 1

2
,

P (X
(0)
ij,k ≤ σij) = P

|Xij,k − ξij,0.5|
σij ≤ c−1

ij

≥ 1

2
.

The above inequalities imply that σij is the 0.5 quantile of X
(0)
ij,k.

Suppose that the variables Xij,k and X
(0)
ij,k have densities denoted by fij(x)

and gij(x), respectively. Recall that ξij,0.5 and σij are the 0.5 quantiles of the
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distributions of Xij,k and X
(0)
ij,k, respectively, for (i, j) ∈ [p] × [q]. We make the

following assumption.

(A2) Assume that min
ij
{fij(ξij,0.5)∧gij(σij)} > c0 > 0 for some constant c0, where

a ∧ b = min{a, b}.

Lemma 1. Assume that (A2) holds and that n−1 log(max{p, q})→ 0. Then we

have

‖D̂ −D‖max = Op

(√
log(max(p, q))

n

)
.

Let ω
(1)
n =

√
(p2 + q2 + log n)/n + n−1pq log(pq). Based on Lemma 1 and

Theorem 1, we obtain the following convergence rate of Σ̂τ
LR in Theorem 2.

To simplify the notation, we denote ω
(2)
n = (n−1 log(max(p, q))1/2 and ω

(0)
n =

ω
(1)
n ‖D‖2max + ω

(2)
n ‖T (R)‖op‖D‖max.

Theorem 2. Suppose that vec(Xk) follows the margin-preserved nonparanormal

distribution in Definition 3. Under (A1) and (A2), taking λ > Cω
(0)
n for some

constant C > 0, we have, with probability tending to one,

‖Σ̂τ
LR −Σ‖2F ≤ inf

G∈Rq2×p2

rank(G)≤r

‖G− T (Σ)‖2F + r · (ω(0)
n )2.

Note that ‖T (R)‖F = ‖R‖F and that T (R) is a matrix of dimension q2×p2.

It is easy to see that ‖R‖F /min{p, q} ≤ ‖T (R)‖op ≤ ‖R‖F . In addition, because
√
pq ≤ ‖R‖F ≤ pq, ‖T (R)‖op can be as small as

√
pq/min{p, q}, which is O(1)

if p � q. If ‖T (R)‖op is small, such that ω
(2)
n ‖T (R)‖op ≤ ω

(1)
n , then from

Theorem 2, we have

r(ω
(0)
n )2 = O

(
r · [n−1(p2 + q2 + log n) + (n−1pq log(pq))2]

)
. Then, the inequality

in Theorem 2 can be written as

‖Σ̂τ
LR−Σ‖2F ≤ inf

G∈Rq2×p2

rank(G)≤r

‖G−T (Σ)‖2F +Cr ·

[
p2 + q2 + log n

n
+

(
pq log(pq)

n

)2
]
,

for some constant C > 0. When Σ has a low-rank structure, as in (1.1), then

the first term is zero and we get the convergence rate

‖Σ̂τ
LR −Σ‖2F = Op

(
r ·

[
p2 + q2 + log n

n
+

(
pq log(pq)

n

)2
])

.

On the other hand, when the normal distribution is assumed, Tsiligkaridis

and Hero (2013) obtained a convergence rate of order
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r ·max

{
p2 + q2 + logM0

n
,

(
p2 + q2 + logM0

n

)2
}
,

where M0 = max{n, p, q}. Therefore, the convergence rate of the robust estima-

tor is comparable to that of a normal distribution, although the semiparametric

estimate relaxes the assumption of normal distribution greatly.

Finally, when the latent correlation matrix R is of interest, we have the

following conclusion on the estimator R̂τ
LR obtained in the last paragraph of

Section 2.3. The proof is similar to Step 2 of the proof of Theorem 2. Thus, and

we omit it here.

Proposition 3. Under the assumption of Theorem 1, taking λ > Cω
(1)
n for some

constant C > 0, we have, with probability tending to one,

‖R̂τ
LR −R‖2F ≤ inf

G∈Rq2×p2

rank(G)≤r

‖G− T (R)‖2F + r · (ω(1)
n )2.

3.3. The asymptotic results for the case of r = 1

Now, we consider the asymptotic behavior of the estimators Σ̂τ
(rk=1) and

R̂τ
(rk=1) in Section 2.4 for the case of r = 1. We first consider Σ̂τ

(rk=1). Recall

that Σ = γ · A ⊗ B, where A ∈ Rq×q, B ∈ Rp×p, with ‖A‖F = ‖B‖F = 1 and

γ = ‖Σ‖F = ‖T (Σ)‖op. Furthermore, recall that vec(Â>) = V̂A, vec(A>) = VA,

vec(B̂) = V̂B, and vec(B) = VB. We have the following conclusions.

Theorem 3. Recall Σ in (2.6) and the estimate Σ̂τ
(rk=1) in (2.7). Under the

assumptions of Theorem 2, we have

‖Â− cA‖F = Op
ω

(0)
n

‖Σ‖F
, ‖B̂ − c′B‖F = Op

ω
(0)
n

‖Σ‖F
,

where c and c′ take values of 1 or −1, such that cV̂ >A VA ≥ 0 and c′V̂ >B VB ≥ 0.

In addition, we have

‖Σ̂τ
(rk=1) −Σ‖2F = Op

(
(ω(0)
n )2

)
.

Similarly to Theorem 3, we have the following conclusion for R̂τ
(rk=1), which

is the estimator of R in (2.8). The proof is similar to that of Theorem 3. Thus,

we omit it here.

Proposition 4. Recall R in (2.8) and the estimate R̂τ
(rk=1) in (2.9). Under the

assumption of Theorem 1, we have

‖ ˆ̃A− cÃ‖F = Op
ω

(1)
n

‖R‖F
, ‖ ˆ̃B − c′B̃‖F = Op

ω
(1)
n

‖R‖F
,



SEMIPARAMETRIC ESTIMATE OF COVARIANCE MATRIX 1549

where c and c′ take values of 1 or −1, such that cV̂ >
Ã
VÃ ≥ 0 and c′V̂ >

B̃
VB̃ ≥ 0.

In addition, we have

‖R̂τ
(rk=1) −R‖2F = Op

(
(ω(1)
n )2

)
.

We discuss the above results briefly. Let X = H>Y L ∈ Rp×q, where Y ∈
Rs1×s2 , with cov(vec(Y )) = Is1s2 , and H ∈ Rs1×p and L ∈ Rs2×q such that each

column of H and L has a unit `2 norm. Then,

cov(vec(X)) = corr(vec(X)) = L>L⊗H>H := A⊗B,

where A = L>L and B = H>H. Therefore, R = Σ and, consequently, ‖D‖max =

1. Let A = (aij), B = (bij), NA = {(i, j) : 0 < C−1 < |aij | ≤ C < ∞, 1 ≤ i, j ≤
q}, and NB = {(i, j) : 0 < C−1 < |bij | ≤ C < ∞, 1 ≤ i, j ≤ p}, for some

sufficient large constant C. We consider the following two cases: (i) A,B are

dense, such that |NA| � q2 and |NB| � p2; (ii) A,B are sparse, such that

|NA| � q and |NB| � p. Then, ‖R‖F = ‖Σ‖F = O(pq) for Case (i), and

‖R‖F = ‖Σ‖F = O(
√
pq) for Case (ii).

First, consider Σ. Recall that ‖Σ‖F = ‖T (Σ)‖op. Then, ω
(0)
n /‖Σ‖F =

ω
(1)
n /‖Σ‖F + ω

(2)
n . For Case (i), we have

ω
(1)
n

‖Σ‖F
� ω

(1)
n

pq
=

√
p2 + q2 + log n

np2q2
+

log(pq)

n
.

By Theorem 3 and the definition of ω
(2)
n , for Case (i), we have

‖Â− cA‖F = ‖B̂ − c′B‖F = Op(ω
(2)
n ) = Op

(√
log(max{p, q})

n

)
.

Therefore, we can handle the case of p and q being an exponential order of n. In

addition, for Case (ii), using a similar argument, it holds that

ω
(1)
n

‖Σ‖F
� ω

(1)
n√
pq

=

√
p2 + q2 + log n

n
+

√
pq log(pq)

n
.

Suppose that q and p are diverging. By Theorem 3, we get the following bound

for Case (ii):

‖Â− cA‖F = ‖B̂ − c′B‖F = Op

(√
pq log(pq)

n
+ ω(2)

n

)
.

Note that the convergence rate for Case (ii) can be worse than that of Case (i),

because p and q are large. The main reason is that we do not impose the sparsity

assumption here. Note that the error term ω
(2)
n is the result of estimating D, and

ω
(1)
n is the result of R. For the sparse case, without the sparsity assumption, the
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estimate on R is less efficient, which makes it possible for the estimation error

of R to be larger than that of D. Moreover, we have the following relative error

for Case (i):

1

‖Σ‖2F
‖Σ̂τ

(rk=1) −Σ‖2F = Op

(
p−2q−2(ω(1)

n )2 + (ω(2)
n )2

)
= Op((ω

(2)
n )2)

= Op

(
log(max{p, q})

n

)
.

Similarly, we obtain the relative error for Case (ii):

1

‖Σ‖2F
‖Σ̂τ

(rk=1)−Σ‖2F =Op((pq)
−1(ω(1)

n )2+(ω(2)
n )2) = Op

(
pq log2(pq)

n2
+ (ω(2)

n )2

)
.

Now, we discuss R, where the error involves only ω
(1)
n . Similarly to the

discussion above, for Case (i), we have

‖ ˆ̃A− cÃ‖F = ‖ ˆ̃B − c′B‖F = Op(n
−1 log(pq)),

which is better than Case (i) of Σ. In addition, for Case (ii), we have

‖ ˆ̃A− cÃ‖F = ‖ ˆ̃B − c′B̃‖F = Op

(√
pq log(pq)

n

)
,

which has the same rate as that of Case (ii) of Σ. Similarly, we have the following

relative error for Case (i):

1

‖R‖2F
‖R̂τ

(rk=1) −R‖2F = Op

(
p−2q−2(ω(1)

n )2
)

= Op

(
log2(pq)

n2

)
,

and the relative error for Case (ii):

1

‖R‖2F
‖R̂τ

(rk=1) −R‖2F = Op((pq)
−1(ω(1)

n )2) = Op

(
pq log2(pq)

n2

)
.

From the above discussion, we see that the relative error for Case (i) is much

better than that of Case (ii). The efficiency may be improved further by using

the penalized method with the `1 penalty in order to encourage the sparsity.

4. Simulation and Real-Data Analysis

4.1. Simulation setup

In this section, we compare our method with the PRLS estimator of

Tsiligkaridis and Hero (2013), which is a low-rank approximation of a sample

covariance matrix and is non-robust. We generate Xk ∈ Rp×q i.i.d. according to
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the following models. For simplicity, we set p ≤ q. Let

Xk =

r∑
i=1

H>i YkiLi, k = 1, . . . , n,

where Hi ∈ Rs1×p and Li ∈ Rs2×q, for 1 ≤ i ≤ r, are constant matrices, and Yki ∈
Rs1×s2 , for i = 1, . . . , r, are independent random matrices with cov(vec(Yki)) =

ci · Is1s2 , for some constant ci > 0. The distribution of Yki is specified later. For

this model, it is easy to see that

Σ = cov(vec(Xk)) =

r∑
i=1

c2
i (L
>
i ⊗H>i )(Li ⊗Hi) =

r∑
i=1

c2
iL
>
i Li ⊗HiH

>
i .

Therefore, Σ has the structure given in (1.1).

Example 1. Set r = 1 and Yk1 ∈ Rs1×s2 , with vec(Yk1) ∼ N(0, Is1s2), where

H1 = (hij) ∈ Rs1×p and L1 = (lij) ∈ Rs2×q, with hij = 0.5|i−j| and lij =

0.2|i−j|. Replace the first observation X1 with the contaminated observation

X̃1 = δ0I +X1, where I ∈ Rp×q = (Ip,0p×(q−p)). Take δ0 = 0, 10, 20, 50. Clearly,

when δ0 = 0, there are no outliers.

Example 2. Set r = 1 and Yk1 ∈ Rs1×s2 , where the elements of Yk1 are i.i.d.

variables with distribution t(3), a t-distribution with 3 degrees of freedom. Then,

H1 and L1 are the same as in Example 1. Obviously, we have cov(vec(Yk1)) =

3Is1s2 .

Example 3. Set r = 3. Yk1, H1, and L1 are the same as in Example 1. Yk2 and

Yk3 are i.i.d. copies of Yk1, for 1 ≤ k ≤ n. H2 = (h′ij) ∈ Rs1×p with h′ij = 0.4|i−j|,

L2 = (l′ij) ∈ Rs2×p with l′ij = 0.3|i−j|, H3 = (h′′ij) ∈ Rs1×p with h′′ij = 0.1|i−j|, and

L3 = (l′′ij) ∈ Rs2×p with l′′ij = 0.1|i−j|. Similarly to Example 1, we replace the

first observation X1 by the contaminated observation X̃1 defined in Example 1.

Example 4. Set r = 3. Yk1, for 1 ≤ k ≤ n, and H1 and L1 are the same as in

Example 2. For 1 ≤ k ≤ n, Yk2 and Yk3 are i.i.d. copies of Yk1, and H2, H3, L2,

and L3 are in the same as in Example 3.

We consider two cases: (s1, s2) is equal to (p, q) and (dp/4e, dq/4e) where

dae denotes the largest integer no more than a for any constant a ∈ R. In Ex-

amples 1 and 2, we assume that r = 1 is known. The robust estimator Σ̂τ
(rk=1)

is obtained as in Section 2.4. In addition, the nonrobust estimate, denoted as

Σ̂sam
(rk=1), is the rank-one Kronecker approximation of the sample covariance ma-

trix. For Examples 3 and 4, the robust estimator Σ̂τ
LR is obtained using the

approach in Section 2.3, and the nonrobust estimator is the PRLS estimator of
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Tsiligkaridis and Hero (2013), denoted as Σ̂prls. Then, r̂ is determined by the

tuning parameter λ, which is selected using the CV method of Bickel and Levina

(2009).

Because the nonrobust estimators, Σ̂prls and Σ̂sam
(rk=1), are derived from the

sample covariance matrix, to simplify the description, we denote Σ̂prls and Σ̂sam
(rk=1)

as Σ̂sam. Furthermore, the robust estimators (Σ̂τ
(rk=1) and Σ̂τ

LR) are denoted as

Σ̂rob. Let Err(rob) = Σ̂rob−Σ and Err(sam) = Σ̂sam−Σ. We compute the aver-

age of ‖Err(rob)‖F , ‖Err(rob)‖op, and ‖Err(rob)‖∞ over 100 replications, denoted

as Err
(rob)
F , Err

(rob)
2 , and Err

(rob)
∞ , respectively. Similarly, we compute those of

Err(sam) and define Err
(sam)
F , Err

(sam)
2 , and Err

(sam)
∞ in the same way.

4.2. Simulation results

(1). Simulation results on the estimate error. The simulation results on

(s1, s2) = (p, q) are presented in Tables 1–2, and those on (s1, s2) = (dp/4e, dq/4e)
are presented in the Supplementary Material, owing to limited space. For Ex-

ample 1, we see from Table 1 that for δ0 = 0, the nonrobust estimator outper-

forms the robust estimation. However, as δ0 increases, the performance of the

nonrobust estimator deteriorates, while that of the robust estimator improves.

Furthermore, for Example 2, as shown in Table 2, the robust estimator is slightly

better than the nonrobust estimator. For Example 3, it can be inferred from

Table 2 that the robust estimator is better than the nonrobust estimator when

δ0 is large. Lastly, for Example 4, the robust estimator is much better than the

nonrobust estimator.

Moreover, we compare the following two settings: (s1, s2) = (p, q) and

(s1, s2) = (dp/4e, dq/4e). For Examples 1 and 2, comparing Table 1 and Ta-

ble S1 in the Supplementary Material, we note that the two estimators show

similar performance under the two different values of (s1, s2). However, for Ex-

amples 3 and 4, comparing Table 2 and Table S2 in the Supplementary Material,

we find significant differences in the performance of the estimators under the two

different values of (s1, s2).

(2). Simulation results on the selection of rank. In our simulations, when r

is unknown, the tuning parameter λ in our method is selected following Bickel

and Levina (2009). To check the effectiveness of this method, we report in Tables

3–4 the simulation results on the rank selection for Examples 3 and 4, where the

true rank is three.

Set (n, p, q, s1, s2) = (100, 15, 15, 15, 15) in Example 3 and Example 4. Table
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Table 1. Simulation results for Examples 1 and 2 with s1 = p, s2 = q

n, p, q
Example 1

Example 2
δ0 = 0 δ0 = 10 δ0 = 20 δ0 = 50

Err
(rob)
F 0.0237 0.0265 0.0304 0.0436 0.0026

Err
(sam)
F 0.0098 0.0172 0.0324 0.1139 0.0029

Err
(rob)
2 0.0194 0.0215 0.0244 0.0345 0.0021

(100,15,15) Err
(sam)
2 0.0076 0.0140 0.0254 0.0875 0.0023

Err
(rob)
∞ 0.0046 0.0050 0.0055 0.0078 0.0005

Err
(sam)
∞ 0.0017 0.0032 0.0058 0.0189 0.0008

Err
(rob)
F 0.0156 0.0165 0.0175 0.0221 0.0008

Err
(sam)
F 0.0073 0.0094 0.0141 0.0419 0.0008

Err
(rob)
2 0.0114 0.0117 0.0123 0.0151 0.0006

(100,25,25) Err
(sam)
2 0.0048 0.0067 0.0099 0.0276 0.0005

Err
(rob)
∞ 0.0018 0.0019 0.0020 0.0025 0.0001

Err
(sam)
∞ 0.0007 0.0010 0.0016 0.0045 0.0001

Table 2. Simulation results for Examples 3 and 4 with s1 = p, s2 = q

n, p, q
Example 3

Example 4
δ0 = 0 δ0 = 10 δ0 = 20 δ0 = 50

Err
(rob)
F 0.3143 0.3151 0.3174 0.3210 0.6955

Err
(sam)
F 0.2329 0.2516 0.2958 0.7404 2.1451

Err
(rob)
2 0.1153 0.1159 0.1198 0.1255 0.2469

(100,15,15) Err
(sam)
2 0.0991 0.1099 0.1304 0.3306 1.7175

Err
(rob)
∞ 0.0116 0.0116 0.0124 0.0223 0.0436

Err
(sam)
∞ 0.0190 0.0216 0.0425 0.1753 0.6533

Err
(rob)
F 0.2238 0.2238 0.2254 0.2273 0.5238

Err
(sam)
F 0.1235 0.1247 0.1476 0.3444 2.3158

Err
(rob)
2 0.0647 0.0648 0.0652 0.0663 0.1465

(100,25,25) Err
(sam)
2 0.0368 0.0375 0.0446 0.1164 1.0147

Err
(rob)
∞ 0.0042 0.0043 0.0047 0.0081 0.0198

Err
(sam)
∞ 0.0066 0.0072 0.0142 0.0616 0.4079

3 reports the results for the event {r̂ = i}, with i = 1, 2, 3, and the event {r̂ > 3}
over 200 replications. From Table 3, we see that the method of Bickel and Levina

(2009) works well and the estimated r̂ is robust to outliers. For example, the

empirical probability of event {r̂ = 3} is 80% over 200 replications, in most of

the cases. In addition, Table 4 reports Err
(rob)
F , Err

(rob)
2 , and Err

(rob)
∞ with fixed
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Table 3. Rank estimation for Examples 3 and 4, where the true rank is three and
(n, p, q, s1, s2) = (100, 15, 15, 15, 15). We set the numbers of the estimated rank r̂ equal
to 1, 2, 3 and r̂ > 3 over 200 replications. The rank is selected correctly in most cases.

Example 3
Example 4

δ0 = 0 δ0 = 10 δ0 = 20 δ0 = 50
r̂ = 1 5 6 8 10 3
r̂ = 2 25 27 33 35 30
r̂ = 3 168 165 158 155 167
r̂ > 3 2 2 1 0 0

Table 4. Estimation error with fixed rank for Examples 3 and 4, where the true rank is
three and (n, p, q, s1, s2) = (100, 15, 15, 15, 15) .

Example 3
Example 4

rank δ0 = 0 δ0 = 10 δ0 = 20 δ0 = 50

Err
(rob)
F 0.3282 0.3582 0.3672 0.3884 0.7950

rank=1 Err
(rob)
2 0.1302 0.1392 0.1430 0.1461 0.3219

Err
(rob)
∞ 0.0212 0.0221 0.0233 0.0379 0.0786

Err
(rob)
F 0.2885 0.2919 0.2990 0.3106 0.7351

rank=2 Err
(rob)
2 0.1211 0.1222 0.1241 0.1286 0.2745

Err
(rob)
∞ 0.0114 0.0117 0.0137 0.0273 0.0579

Err
(rob)
F 0.2586 0.2607 0.2667 0.2983 0.6844

rank=3 Err
(rob)
2 0.1112 0.1127 0.1131 0.1256 0.2138

Err
(rob)
∞ 0.0109 0.0113 0.0134 0.0235 0.0391

rank=1,2,3, respectively. From Table 4, we see that rank=3 leads to the best

results. In addition, we see that Err
(rob)
F is affected most by the selection of the

rank, whereas Err
(rob)
∞ is least affected by the selection of the rank.

4.3. Real-data analysis

We apply our method to the Atlas of Gene Expression in the Mouse Ag-

ing (AGEMAP) database, which is a resource of gene expressions as a function

of age in mice, including expression changes for 8,932 genes in 16 tissues as a

function of age (Zahn et al. (2007)). There are four age states: 1, 6, 16, and

24 months. For each age state, researchers chose ten mice, with five for each

gender, yielding 40 observations in total. Similarly to Leng and Pan (2017) and

Yin and Li (2012), we select seven tissues, Cerebrum, Hippocampus, Kidney,

Lung, Muscle, Thymus, and Spinal cord (i.e., q = 7), and examine the genes
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related to the mitogen-activated protein kinase signaling pathway, long-term

potentiation, insulin signaling pathway, and vascular endothelial growth factor

signaling pathway, as documented at http://rgd.mcw.edu/rgdweb/pathway/

pathwayRecord.html?accid=PW:0000243&species=Mouse\sharpPathway. We

apply our method to males and females where the sample size is n = 20 for

each gender. According to Yin and Li (2012), there are 70 genes that are closely

related to aging. Because the sample size is small, we choose the first 30 genes

of the largest variance among these 70 genes for analysis. Therefore, for each

gender, we have (n, p, q) = (20, 30, 7).

We compare three different estimators: (i) the robust estimate of our pro-

posal; (ii) the PRLS estimator of Tsiligkaridis and Hero (2013), which is nonro-

bust; and (iii) the estimator of Leng and Pan (2017), who assume that Σ = A⊗B,

that is, r = 1 in (1.1). For our proposed method and the PRLS estimator, r is

estimated using the data rather than fixed, with the estimator denoted as r̂.

Heat maps of the covariance matrices for both males and females obtained by

three estimators are presented, respectively, in Figures 1–3, which are available

in the Supplementary Material. In all of these figures, the diagonal blocks from

the lower, left corner to the upper, right corner are associated with seven tissues.

According to Yin and Li (2012), genes associated with aging have depen-

dencies not only inside the same tissue, but also across different tissues. From

Figure 1, we observe a weak dependency between Hippocampus and Thymus

in males, and a clear dependency between Cerebrum and Thymus in females.

These observations coincide with those of Yin and Li (2012), where the authors

found that gene expressions in Thymus are related to those in Hippocampus,

Cerebrum, Spinal cord, Lung, and Kidney. Moreover, Lustig et al. (2007) in-

dicated that some genes chosen from Thymus express differently between male

and female mice, and that the patterns of dependency between the tissues are

different for males and females. These coincide with our results in plot (a) and

(b) in Figure 1.

From Figure 2, the PRLS estimator (Tsiligkaridis and Hero (2013)) also

reveals a clear dependency between Thymus and Lung. On the other hand, it

also shows a dependency between Thymus and Muscle for males, which is not

supported by the results of Yin and Li (2012).

In addition, the estimator of Leng and Pan (2017) in Figure 3 and the PLRS

estimator (Tsiligkaridis and Hero (2013)) show almost no, or very weak correla-

tions between different tissues for females, which is inconsistent with the findings

of Yin and Li (2012).

http://rgd.mcw.edu/rgdweb/pathway/pathwayRecord.html?accid =PW:0000243 & species = Mouse\sharp Pathway
http://rgd.mcw.edu/rgdweb/pathway/pathwayRecord.html?accid =PW:0000243 & species = Mouse\sharp Pathway
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5. Discussion

We have proposed a method for covariance matrix estimation for a high-

dimensional matrix-variate in the framework of a transelliptical distribution,

taking into account the Kronecker structure of the covariance matrix. Recall

that T = (Ti,j) is Kendall’s correlation matrix with estimate T̂ = (T̂i,j), and

R = (Ri,j) is the Pearson correlation matrix with robust estimate R̂τ = (R̂τ
i,j) =

(sin(π/2T̂i,j)). Denote R̂sam = (R̂sam
i,j ) as the sample correlation matrix. When

Xk follows a normal distribution, the sample Pearson’s correlation is asymptoti-

cally unbiased and reaches the Cramér-Rao lower bound as the sample size tends

to infinity (Xu et al. (2013)). Hence, R̂sam
i,j is, in general, more efficient than R̂τ

i,j

when Xk is normal.

Consider a bivariate normal distribution with a correlation coefficient ρ.

Let T̂ρ be the sample version of Kendall’s τ correlation. Let ρ̂K be the ro-

bust estimator of ρ, constructed from Kendall’s τ correlation, as above, that is,

ρ̂K = sin(π/2T̂ρ), and let ρ̂P denote the sample Pearson correlation. According to

Xu et al. (2013), the estimator ρ̂K has variance Var(ρ̂K) ≈ [π2(4−ρ2)/36]Var(T̂ρ)

,with

Var(T̂ρ) =
2

n(n− 1)

[
1− 4S2

1

π2
+ 2(n− 2)

(
1

9
− 4S2

2

π2

)]
,

where S1 = sin−1(ρ) and S2 = sin−1(ρ/2). Moreover, Xu et al. (2013) considered

the asymptotic relative efficiency, defined as

AREK(ρ)
4
= lim

n→∞

Var(ρ̂P)

Var(ρ̂K)
=

9(1− ρ2)

π2 − 36(sin−1(1/2)ρ)2
,

In particular, for ρ = 0, AREK(0) = 9/π2 and for ρ→ ±1,

AREK|ρ→±1 =
1

4

ρ
√

4− ρ2

sin−1(1/2)ρ

∣∣∣∣
ρ→±1

=
3
√

3

2π
≈ 0.8270.

This can be viewed as the price paid for the use of a robust estimate.

Supplementary Material

The Supplementary Material consist of two parts. The first part contains

the proofs of Proposition 2, Theorem 1, Lemma 1, Theorem 2 and Theorem 3

in the main text. The second part contains the simulation results for the case of

(s1, s2) = (dp/4e, dq/4e) for Examples 1–4 in Section 4, and Figures. 1–3 for the

real-data analysis in Section 5.
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