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Abstract: This study provides a useful test for parametric single-index regression

models when covariates are measured with errors and validation data are available.

The proposed test is asymptotically unbiased, and its consistency rate does not

depend on the dimension of the covariate vector. The proposed test behaves like

a classical local smoothing test with only one covariate, and retains the omnibus

property against general alternatives. This suggests that the proposed test can

potentially alleviate the difficulty associated with the curse of dimensionality in

this field. Furthermore, a systematic study is conducted to investigate the effect

of the ratio between the sample size and the size of the validation data on the

asymptotic behavior of these tests. Lastly, simulations are conducted to examine

the performance in several finite sample scenarios.
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1. Introduction

Consider a nonparametric regression model with measurement errors where

the response variable Y , a p-dimensional unobservable predicting covariate X,

and its observable cohort vector W are related to each other by the relations

Y = µ(X) + ε, W = X + U. (1.1)

Here p is known, U is independent of ε and X, E(ε|X) = 0, and E(U) = 0.

This is the so-called nonparametric errors-in-variables (EiV) regression model.

The monographs of Fuller (2009), Cheng and Van Ness (1999), and Carroll et al.

(2006) contain many real-data examples that employ this model.

Here, the problem of interest is to test a parametric single-index regression

model for a regression function. That is, for a known real-valued link function g,

we wish to test

H0 : P (µ(X) = g(βT

0X, γ0)) = 1, for θ0 = (β0; γ0) ∈ Rp+d,
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versus H1 : H0 is not true.

A motivation for considering the above testing problem is that, in practice, model

checking prevents incorrect conclusions being drawn as a result of an improper

model being used. Hart (2013) described several tests for the lack-of-fit of a

parametric regression model in the classical regression set up where X is ob-

servable. Since the mid 1990s, there has been a significant increase in research

activities in this area, as summarized in the recent review by González-Manteiga

and Crujeiras (2013).

It is well known that a naive application of inference procedures that are

valid in a classical regression, where we replace X by W , often yields inefficient

inference procedures for EiV models; see, for example, Fuller (2009) and Carroll

et al. (2006). An alternative approach adopted in the literature is that of cali-

bration, where the original regression relationship is transferred to the regression

E(Y |W ) relationship between the response Y and the cohort W . Zhu, Cui and

Ng (2004) established a sufficient and necessary condition for the linearity of

E[Y |W ] with respect to W when g(βT

0x, γ0) = βT

0x. They proposed a score-type

lack-of-fitness test based on this fact. This testing procedure has been extended

to polynomial EiV models by Cheng and Kukush (2004) and Zhu, Song and Cui

(2003) independently. Hall and Ma (2007) proposed a test based on deconvolu-

tion methods, assuming that the distribution of the measurement error vector U

is known. Zhu and Cui (2005) proposed a test for a general linear model βT

0h(x),

where h is a vector of known functions. Song (2008) proposed a test for βT

0h(x)

based on a deconvolution kernel density estimator. Koul and Song (2009) de-

veloped an analog of the minimum distance tests of Koul and Ni (2004) to fit a

parametric form to the regression function for the Berkson measurement error

models. Koul and Song (2010) developed tests to fit a parametric function to

the nonparametric part of a partial linear regression Berkson measurement error

model. All of these works, with the exception of Hall and Ma (2007) and Song

(2008), employ the calibration methodology and test to fit the parameter form

of the regression function E[Y |W ] implied by H0.

However, there are no valid tests for a parametric model under general con-

ditions in which the distributions of X and U may not be known. This is largely

because of the difficulty of estimating the calibrated regression function and some

of the other underlying functions involved in the construction of a test statistic.

However, it is possible to circumvent some of these difficulties when validation

data are available. Stute, Xue and Zhu (2007) used validation data and the em-



AN ADAPTIVE TEST FOR EIV MODELS 1513

pirical likelihood methodology to develop confidence regions for some underlying

parameters. Song (2009) developed a test for general EiV models with the assis-

tance of validation data, without assuming any knowledge of the distributions of

X or U . Dai, Sun and Wang (2010) constructed a test using validation data for

the same model as that of Zhu and Cui (2005). Xu and Zhu (2014) considered a

nonparametric test for partial linear EiV models with validation data.

In the classical regression setup, it is known that a common property of

lack-of-fit tests used to check a parametric regression model based on the non-

parametric smoothing methodology is that the rate of consistency of the test

statistics is n−1/2h−p/4. That is, the null distribution of a suitably centered and

scaled test statistic multiplied by n1/2hp/4 has a weak limit. Furthermore these

tests can detect local alternatives distinct from the null at the rate n−1/2h−p/4.

When p is greater than or equal to two, this rate can be very slow. Consequently,

for moderate sample sizes, local smoothing tests cannot maintain the significance

level well and have low power, even for p = 2 or 3. See, Zheng (1996) and Koul

and Ni (2004), among others, for further information. We expect this to hold for

various local smoothing tests in the EiV setup as well.

The main goal of this study is to propose tests of a dimension-reduction na-

ture when validation data are available and that do not suffer from the aforemen-

tioned slow rate of consistency. As such, we proceed as follows. First, we discuss

the sufficient dimension-reduction (SDR) technique described in Cook (2009), Li

and Yin (2007), and Carroll and Li (1992). The goal is to derive a technique that

reduces the dimension of X to a one-dimensional projection βT

0X under the null

hypothesis, where β0 denotes the projection direction in model (1.1), and to BTX

automatically under the alternative, where B is a p×q orthonormal matrix, with

q to be specified. Second, based on the dimension reduction, we construct a test

with a consistency rate of n−1/2h−1/4 when the size N of the validation data is

proportional to or larger than the sample size n. When N is much smaller than

n, the consistency rate can be slower. Therefore, the third goal is to investigate

the relationship between the asymptotic behavior of the tests and the size of the

validation data set. In Section 3, a systematic study is performed to analyze

three scenarios: N/n → λ as min(n,N) → ∞, where λ = 0, ∞, or 0 < λ < ∞.

Furthermore, when validation data are used during the construction procedure

to define the nonparametric kernel estimate of E(Y |W ) in order to derive the

residuals, the resulting test has a bias term going to infinity as n→∞. Thus we

also consider a bias correction.

To efficiently employ the SDR theory of Cook (2009) or Cook and Li (2002),
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we consider the following alternatives: for all x ∈ Rp, and for some p × q or-

thonormal matrix B with an unknown q ≤ p and for an unknown function G,

H̃1 : µ(x) = G(BTx).

For the case of no measurement errors in the covariates, Guo, Wang and Zhu

(2016) proposed a dimension-reduction model-adaptive approach to circumvent

the dimensionality problem. To implement this methodology, we need to esti-

mate the matrix B up to a q×q orthonormal matrix C. For simplicity, we assume

ε is only related to BTX. A number of methods have been proposed in the liter-

ature for this purpose. Examples include the sliced inverse regression (SIR) of Li

(1991), sliced average variance estimation (SAVE) of Cook and Weisberg (1991),

minimum average variance estimation (MAVE) of Xia et al. (2002), contour re-

gression (CR) of Li, Zha and Chiaromonte (2005), directional regression (DR) of

Li and Wang (2007), discretization-expectation estimation (DEE) of Zhu et al.

(2010), and the average partial mean estimation (APME) of Zhu, Zhu and Feng

(2010). However, when measurement errors are present, the above methods need

to be modified in order to consistently estimate B up to a q × q orthonormal

matrix C. Here we extend the DEE to address this issue.

In this study, we construct an adaptive-to-model test. The proposed test

is based on the test of Zheng (1996). We adapt the method as follows: 1) use

the validation data to estimate the conditional expectation E[g(βT

0X, γ0)|bT0W ],

where b0 = β0/‖β0‖; 2) estimate θ0 = (β0; γ0) and b0 under the null hypothesis;

3) derive an estimator of the target matrix B up to a q × q orthogonal matrix

C. A key ingredient in our method is that the estimator of B can adaptively

converge to the direction b0 under the null hypothesis or to a matrix under the

alternative hypothesis. As mentioned above, the test statistic is asymptotically

biased. To reduce the bias, we propose a bias-correction method, which we use

to construct another test.

The paper is organized as follows. Section 2 describes the construction of the

test statistic and provides a brief review of a widely used dimension-reduction

method. The asymptotic properties of the test statistic under the null and alter-

native hypotheses are described in Section 3. Section 4 discussed the findings of

our simulation study that compares the proposed test with that of Song (2009).

The assumptions are relegated to the Appendix and all proofs are contained in

the Supplementary Material. Furthermore, the proposed test can be readily ex-

tended to handle a multi-index model, where β is a p× q1 matrix, without much

difficulty. Thus, we focus only on the single-index case.
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Before closing this section, we describe some of the notation used in this

paper. The sample is denoted by {(yi, wi), i = 1, . . . , n} and the validation data

are denoted by {(w̃s, x̃s), s = 1, . . . , N}. The two data sets are assumed to be

independent of each other. Throughout this paper, →p denotes convergence in

probability and →D denotes convergence in distribution. All limits are taken as

n ∧N →∞, unless otherwise specified.

2. Methodology Development

2.1. Test construction: A model-adaptive strategy

In this subsection, we describe the construction of the test statistic, which

consists of three components.

1) Model adaptation. Note that the primary data set does not have observable

covariates X, but has W instead. The implementable hypotheses should relate

to (Y,W ). A natural idea is to use a calibrated regression function E(Y |W ).

However, this function will not necessarily have the same dimension-reduction

structure as that in the original null hypothesis. Note that the regression function

g(βT

0X, γ0) depends on X only through a linear combination βT

0X. Thus, when

W is used, we consider the conditional expectation E(Y |βT

0W ). However, we still

call it a calibration regression function. Write r(u, θ) := E[g(βTX, γ)|bTW = u],

where θ = (β; γ) and b = β/‖β‖. Then, the hypotheses change as follow: for

θ0 in the original null hypothesis, with b0 = β0/‖β0‖, and the matrix B in the

original alternative hypothesis H̃1,

H0 : P{E[Y |bT0W ] = r(bT0W, θ0)} = 1,

versus

H1 : P{E[Y |BTW ] = r(bTW, θ)} < 1, for all θ ∈ Rp+d .

In general, the null hypothesis H0 is not equivalent to the original null hypothesis

H0. However, as in Song (2008), when the family of densities fbT0 U (bT0w − ·) is a

complete family over the parameter bT0w ∈ R, the equivalence can hold. Further-

more, for the dimension reduction, we need to determine the dimension-reduction

structure of the original hypothetical and alternative models. Li and Yin (2007)

investigated the equivalence of these two dimension-reduction structures with

respect to X and ΣXWΣ−1W W , respectively. Thus, b0 and B under the null and

alternative hypotheses can be identified by the SDR theory, leading to the model

adaptation property of the test constructed below.

2). Test statistic construction. Let e = Y − r(bT0W, θ0). In the spirit of the
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conditional moment-based test (see Zheng (1996)), we have

E[eE[e|bT0W ]fbT0W (bT0W )] = E[E2(e|bT0W )fbT0W (bT0W )] = 0,

and under H1, E[E2(e|BTW )fBTW (BTW )] > 0. To obtain residuals for the

construction of the test statistic, we assume the availability of validation data

(w̃s, x̃s), s = 1, . . . , N , which are used to estimate the function r. Let M(·) be a

kernel function, let v ≡ vN be a bandwidth sequence, and set Mv(·) = v−1M(·/v).

Then, an estimator of r(bT0W, θ0) is

r̂(b̂T0w, θ̂0) =

∑N
s=1Mv(b̂

T

0w − b̂T0w̃s)g(β̂T

0 x̃s, γ̂0)∑N
s=1Mv(b̂T0w − b̂T0w̃s)

,

where b̂0 is β̂0/‖β̂0‖ and θ̂0 = (β̂0; γ̂0) is a consistent estimator of θ0 = (β0; γ0),

the construction of which is presented in Section 2.2. Define the residuals

ei = yi − r(bT0wi, θ0), êi = yi − r̂(b̂T0wi, θ̂0), i = 1, . . . , n.

To estimate the conditional expectation of e, given BTW or bT0W , we need an

estimator B̂(q̂) of B that is consistent for b0 under the null and for B under the

alternative. This model adaptation property of B̂(q̂) enables the test statistic to

adapt to the model, thus alleviating the curse of dimensionality. This estimator

is specified later.

To proceed further, let K be another kernel function and let h ≡ hn be

another bandwidth. The analog of the Zheng (1996) test statistic in the current

setup is based on an estimator of E[eE[e|BTW ]fBTW (BTW )] (also E[eE[e|bT0W ]

fbT0W (bT0W )], automatically), given by

Ṽn =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

êiKh(B̂(q̂)Twi − B̂(q̂)Twj)êj . (2.1)

3). Bias correction. The technical details in Supplementary Material show

that Ṽn has a non-negligible asymptotic bias diverging to infinity. The main

reason for this is the dependence between the residuals êi and êj for i 6= j

when all validation data are used to estimate the function r. There are two

ways to correct for this bias. One is to center the test statistic using a suitable

estimator of the bias. However, we propose a block-wise estimation approach to

asymptotically eliminate the bias. Assume N is a positive even integer. We halve

the overall validation data set and use the two halves to construct two estimators

of the regression function r. This results in two sets of residuals, as follows. Let

r̂(1)(b̂
T

0w, θ̂0) =

∑N/2
s=1 Mv(b̂

T

0w − b̂T0w̃s)g(β̂T

0 x̃s, γ̂0)∑N/2
s=1 Mv(b̂T0w − b̂T0w̃s)

, (2.2)
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r̂(2)(b̂
T

0w, θ̂0) =

∑N
s=N/2+1Mv(b̂

T

0w − b̂T0w̃s)g(β̂T

0 x̃s, γ̂0)∑N
s=N/2+1Mv(b̂T0w − b̂T0w̃s)

,

êi(1) := yi − r̂(1)(b̂T0wi, θ̂0), êi(2) = yi − r̂(2)(b̂T0wi, θ̂0), i = 1, . . . , n.

Use these residuals to define the test statistic

Vn =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

êi(1)Kh(B̂(q̂)Twi − B̂(q̂)Twj)êj(2) (2.3)

to perform the test. We prove that the asymptotic bias of Vn vanishes, but its

asymptotic variance becomes larger than that of Ṽn. Note that Ṽn and Vn are

nonstandardized; the standardizing constants are specified in Section 5.

2.2. Parameter estimation

To adaptively estimate B and b0, the key is to derive an estimator of B up

to a q × q orthonormal matrix C, without depending on the assumed models

under the null and alternative hypotheses. Using measurement errors, Carroll

and Li (1992) extended the SIR method (Li (1991)) to an EiV regression model.

Lue (2004) extended the principal Hessian directions (pHd, Li (1992)) method

to the surrogate problem. Li and Yin (2007) established a general invariance law

between the surrogate and the original dimension-reduction spaces when X and

U are jointly multivariate normal. If X or U is not normally distributed, they

suggested an approximation based on the results of Hall and Li (1993). See also

Zhang, Zhu and Zhu (2014).

Guo, Wang and Zhu (2016) found that the DEE of Zhu et al. (2010) works

well in cases without measurement errors. Unlike SIR or SAVE, the implemen-

tation of DEE does not require the selection of the number of slices. Hence, we

adopt a DEE method for EiV models when SIR is used. Write SY |X as the central

subspace that is the intersection of all column spaces spanned by the columns of

B that make Y conditionally independent of X, given BTX; that is, Y⊥⊥X|BTX.

This means that identifying SY |X is equivalent to identifying a base matrix B̃

that is equal to BCT for a q × q orthogonal matrix C. Note that the function

G is unknown in the alternative. We can rewrite G(BTX) as G̃(B̃TX). In other

words, identifying B̃ is sufficient to identify the model. To prevent notational

confusion, we write B̃ = B in the reminder of this paper.

To extend DEE to a setting with measurement errors, we first give a very

brief review. Assume that Cov(X) is the identity matrix. SIR-based DEE uses

the matrix Λ = E{Cov(E(X|Ỹ (T )))} as the target matrix, where Ỹ (t) = I(Y ≤
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t), t ∈ R and T is an independent copy of Y . The eigenvectors associated

with the nonzero eigenvalues of this matrix form the base matrix B. We use

surrogate predictors Cov(X,W )Σ−1W W to replace X, where Cov(X,W ) and Σ−1W
are estimated from the validation data. Carroll and Li (1992) pointed out that

SIR with surrogate predictors can produce consistent estimators of SY |X . In

other words, all steps of the estimation are the same as those in the setup without

measurement errors.

After constructing an estimate Λn,n of Λ, we can obtain an estimate B̂(q̂) of

B, which consists of the q̂ eigenvectors of Λn,n with nonzero eigenvalues, where

q̂ is defined as follows, using the BIC-type criterion proposed by Zhu, Miao and

Peng (2006). Let λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p be the eigenvalues of the matrix Λn,n, in

descending order. An estimate q̂ of q is given by

q̂ = arg max
l=1,...,p

{
n

2
×
∑l

i=1{log(λ̂i + 1)− λ̂i}∑p
i=1{log(λ̂i + 1)− λ̂i}

− 2×Dn ×
l(l + 1)

2p

}
,

where Dn is a sequence of constants that do not depend on the data. Here, we

take Dn = n1/2. The following consistency results are obtained from Zhu et al.

(2010).

Proposition 1. Suppose the assumptions in Zhu et al. (2010) hold and N/n→ λ.

Then, the following hold:

(1). Under H0, P (q̂ = 1)→ 1. Moreover,

B̂(q̂)−B0 = Op(n
−1/2), 0 < λ ≤ ∞, (2.4)

= Op(N
−1/2), λ = 0,

where B0 = ±b0 is the dimension-reduction direction under H0.

(2). Under H1, P (q̂ = q) → 1, B is a p × q orthonormal matrix and B̂(q̂) − B
satisfies (2.4).

This proposition states the consistency and adaptation properties of the es-

timate B̂(q̂). Theoretically, the estimate B̂(q̂) makes the proposed test adaptive

to the underlying model and helps to establish the omnibus property. We can

see from the theoretical results that this estimation does not affect the proper-

ties of the test statistic asymptotically. However, for the finite sample perfor-

mance, if B̂(q̂) is not sufficiently close to the true value, the empirical power is

affected. This is because the underestimation of q by q̂ results in B̂(q̂) having

fewer columns, which may cause the test to not be omnibus, in practice. Ob-

taining an accurate estimate of q in finite samples is an important issue, but is

beyond the scope of this study.
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There are various estimators of θ0 for EiV models available in the literature.

Here, we focus on the estimator proposed by Lee and Sepanski (1995) for EiV

regression models. Then, we have the following proposition.

Proposition 2. Suppose the assumptions for Proposition 2.2 in Lee and Sepanski

(1995) hold.

(1). Suppose H0 holds and N/n→ λ. Then, for 0 < λ ≤ ∞,
√
n(θ̂0−θ0) = Op(1),

whereas for λ = 0,
√
N(θ̂0 − θ0) = Op(1).

(2). Suppose the following sequence of local alternatives holds, where Cn → 0:

H1n : µ(x) = g(βT

0x, γ0) + CnG(BTx).

Then

θ̂0 − θ0 = CnH(θ0) +Op(n
−1/2) +Op(N

−1/2) + op(Cn),

where

H(θ0) =

{
E

[
∂g(βT

0X, γ0)

∂θ
W̄ T

]
E−1[W̄W̄ T]E

[
∂g(βT

0X, γ0)

∂θT
W̄

]}−1
×
{
E

[
∂g(βT

0X, γ0)

∂θ
W̄ T

]
E−1[W̄W̄ T]

}
E[W̄G(BTX)],

and W̄ is a vector of polynomials of W . See the Supplementary Material for

further details on W̄ .

3. Asymptotic Distributions

3.1. Limiting null distribution

In this section, we establish the asymptotic null distribution of the proposed

test statistic Ṽn in (2.1) and Vn in (2.3). Recall that B0 = ±b0. Therefore, define

Z = BT

0W, η = g(βT

0X, γ0)− r(bT0W, θ0),
σ2 = var(ε), ξ2(Z) = E[η2|Z]. (3.1)

where θ0 = (β0; γ0) is the true parameter under the null hypothesis and b0 =

β0/‖β0‖. Write Z as Z̃, where W is replaced by the validation data W̃ . To

proceed further, we need to define

zi = BT

0wi, gi = g(βT

0xi, γ0), ri = r(bT0wi, θ0), ηi = gi − ri. (3.2)

Write z̃s, g̃s, r̃s, and η̃s for the entities in (3.2), where wi is replaced by the

validation data w̃s. When θ0 and B0 are replaced by their estimators θ̂0 and

B̂(q̂), respectively, in the above definitions, we write ẑi, ĝi, r̂i, and η̂i for zi, gi,

ri, and ηi, respectively. Similarly, we write ˆ̃zs, ˆ̃gs, ˆ̃rs, and ˆ̃ηs for z̃s, g̃s, r̃s, and
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η̃s, respectively. We also need to define

µ =
K(0)E[ξ2(Z)]

Nh
,

τ1 = 2

∫
K2(u)du

∫
(σ2 + ξ2(z))2f2Z(z)dz,

τ2 =

∫
K2(u)du

∫
(σ2 + ξ2(z))ξ2(z)f2Z(z)dz,

τ3 = 2

∫
K2(u)du

∫
(ξ2(z))2f2Z(z)dz, (3.3)

where σ2 and ξ2(·) are defined in (3.1) and fZ is the density of Z. Consistent

estimates of τi, for i = 1, 2, 3, under H0 are given by

τ̂1 =
2

n(n− 1)

n∑
i=1

n∑
j 6=i

1

hq̂
K2

(
ẑi − ẑj
h

)
ê2i ê

2
j ,

τ̂2 =
1

nN

n∑
i=1

N∑
s=1

1

hq̂
K2

(
ẑi − ˆ̃zs
h

)
ê2i ˆ̃η2s ,

τ̂3 =
2

N(N − 1)

N∑
s=1

N∑
t6=s

1

hq̂
K2

(
ˆ̃zs − ˆ̃zt
h

)
ˆ̃η2s ˆ̃η2t . (3.4)

We are now ready to state the first theorem.

Theorem 1. Suppose H0 and the conditions (f), (g), (r), (W), (e), (K), (M),

(h1), and (h3) hold, and that N/n→ λ, for 0 < λ ≤ ∞. Then, nh1/2
(
Ṽn−µ

)
→D

N(0, τ̃), where

τ̃ = τ1 +
2

λ
τ2 +

1

λ2
τ3, 0 < λ <∞,

= τ1, λ =∞.

Here, consistent estimators of µ and τ under H0 are given by

µ̂ =
1

N2h
K(0)

N∑
s=1

ˆ̃η2s ,

ˆ̃τ = τ̂1 +
2

λ
τ̂2 +

1

λ2
τ̂3, 0 < λ <∞,

respectively, where τ̂i is defined as in (3.4). Let T̃n := nh1/2 ˆ̃τ−1/2
(
Ṽn− µ̂

)
. Then,

T̃n is asymptotically standard normal. The test T̃n rejects H0 whenever T̃n > zα,

where zα is the upper 100(1−α)% quantile of the standard normal distribution.

The next result gives the asymptotic null distribution of Vn in (2.3). The

result shows that Vn does not have an asymptotic bias.
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Theorem 2. Under the conditions of Theorem 1, nh1/2Vn →D N(0, τ), where

τ = τ1 +
4

λ
τ2 +

2

λ2
τ3, 0 < λ <∞,

= τ1, λ =∞,

where τi, for i = 1, 2, 3, is defined as in (3.3).

To standardize Vn, we use the following consistent estimate of τ for the case

0 < λ <∞:

τ̂ =
2

n(n− 1)

n∑
i=1

n∑
j 6=i

1

hq̂
K2

(
ẑi − ẑj
h

)
ê2i(1)ê

2
j(2)

+
4

λnN

n∑
i=1

N∑
s=N/2+1

1

hq̂
K2

(
ẑi − ˆ̃zs
h

)
ê2i(1)

ˆ̃η2s

+
4

λnN

n∑
i=1

N/2∑
t=1

1

hq̂
K2

(
ẑi − ˆ̃zt
h

)
ê2i(2)

ˆ̃η2t

+
16

λ2N2

N/2∑
t=1

N∑
s=N/2+1

1

hq̂
K2

(
ˆ̃zs − ˆ̃zt
h

)
ˆ̃η2s ˆ̃η2t ,

where s and t are the indices of the two sets of validation data, and η̂t or η̂s
is estimated by the other half of validation data. That is, ˆ̃ηt = g(β̂T

0 x̃t, γ̂0) −
r̂(2)(b̂

T

0w̃t, θ̂0), t = 1, . . . , N/2 and ˆ̃ηs = g(β̂T

0 x̃s, γ̂0) − r̂(1)(b̂T0w̃s, θ̂0), s = N/2 +

1, . . . , N, where r̂(1) and r̂(2) are defined as in (2.2). The standardized test statistic

is

Tn = τ̂−1/2nh1/2Vn, 0 < λ <∞,
= τ̂

−1/2
1 nh1/2Vn, λ =∞,

where τ̂1 is defined as in (3.4). According to Slutsky’s theorem, Tn is asymptoti-

cally standard normal. For the significance level α, the null hypothesis is rejected

when Tn > zα.

Remark 1. A significant feature of this test is that we need only use the stan-

dardizing sequence nh1/2, which is the same as that used in the classical local

smoothing tests when X is one-dimensional. This shows that the test has a much

faster convergence rate to its limit than those of some of the classical tests that

have a rate of order nhp/2. This helps to maintain the significance level in finite

samples when its asymptotic null distribution is used to determine the critical

values.
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When N/n→ λ = 0, the standardizing constant will be different because of

the estimate r̂ of the function r(·).

Theorem 3. Suppose H0 and the conditions (f), (g), (r), (W), (e), (K), (M),

(h2), and (h5) hold and N/n→ 0. Then, Nv1/2{Ṽn− µ̃} →D N(0, τ̃), Nv1/2Vn
→D N(0, τ), where µ̃ = (vN)−1

∫
M2(u)duE[ξ2(Z)], τ := 2τ̃ , and

τ̃ = 2

∫ (∫
M(u)M(u+ u′)du

)2

du′
∫

(ξ2(z))2f2Z(z)dz.

3.2. Asymptotic power

In this section, we assume 0 < λ ≤ ∞ and investigate the asymptotic prop-

erties of Vn under various alternatives. Consider a sequence of alternatives

H1n : µ(x) = g(βT

0x, γ0) + CnG(BTx), x ∈ Rp, (3.5)

where G(·) satisfies E(G2(BTX)) <∞ and β0 is a vector in span(B). When Cn is

a nonzero constant, H1n is a global alternative, and when Cn = n−1/2h−1/4 tends

to zero, H1n specifies the local alternatives of interest. Note that the asymptotic

properties of B̂(q̂) and θ̂0 = (β̂0; γ̂0) affect the behavior of the test statistic Vn.

The asymptotic results of θ̂0 are illustrated in Proposition 2. Thus, we discuss

the result for the consistency of q̂ and B̂(q̂) here.

Theorem 4. Suppose the conditions in Zhu et al. (2010) hold. Under H1n of

(3.5) with Cn = n−1/2h−1/4 → 0, P (q̂ = 1)→ 1 and B̂(q̂)−B0 = Op(Cn), where

B0 = ±β0/‖β0‖.

This theorem indicates that q̂ and B̂(q̂) are no longer consistent for q and B

in (3.5).

Theorem 5. Under the alternatives given in (3.5), the following results hold:

(i) Suppose (f), (g), (r), (G), (W), (e), (K), (M), (h1), and (h6) hold. Under

the global alternative with fixed Cn ≡ C, Vn/τ̂ tends to a positive constant.

(ii) Suppose (f), (g), (r), (G), (W), (e), (K), (M), (h1), and (h4) hold. Under

the local alternatives H1n with Cn = n−1/2h−1/4, nh1/2Vn →D N(∆, τ), where τ

is given in Theorem 2 and

∆ = E

[
{E[G(BTX)|Z]− E

[
∂g(βT

0 x̃s, γ0)

∂θT

∣∣∣∣Z]H(θ0)}2fZ(Z)

]
.

Remark 2. The result (i) implies the consistency of Tn against the global alter-

natives and (ii) shows that the test can detect local alternatives distinct from the

null at a rate of order n−1/2h−1/4. In contrast, the classical methods can only

detect the alternatives that converge to the null at a rate of order n−1/2h−p/4.
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4. Numerical Studies

This section presents four simulation studies that examine the performance

of the proposed test Tn. For comparison purposes, we consider the tests of Zheng

(1996) (TZhn ) and Song (2009) (TSn ). We adapt Zheng’s test to the EiV settings,

which are the same as those in our test, except that BTW is replaced by the

original W . This is a typical local smoothing test. The test proposed by Song

(2009) is a score-type test and is designed for EiV models with validation data.

In the simulation Study 1, B is equal to b0, and thus, the models are

parametric single-index. In addition, we run simulation studies for the test T̃n
of Theorem 1 when 0 < λ < ∞ and report the results in the Supplementary

Material. The purpose of Study 2 is to confirm that the proposed test Tn is

not a directional test. Here, we assume B = (β0, β1), with β0 ⊥ β1, under the

alternative hypothesis. Study 3 examines the finite-sample performance when

N < n and N > n. Study 4 considers four nonlinear models. All simulations

are based on 2,000 replications.

Throughout the simulation studies, X is taken to be multi-normal with mean

zero and covariance matrices Σ1 = Ip×p and Σ2 = (0.3|i−j|)p×p. The regression

model error ε follows a standard normal distribution, whereas the measurement

error U ∼ N(0, 0.5). The kernel function is K(u) = (15/16)(1 − u2)2I(|u| ≤ 1),

which is a second-order symmetric kernel, and M(u) = K(u).

Bandwidth selection. Because the tests involve bandwidth selection in the

kernel estimation, we run a simulation to empirically select the bandwidths for the

three tests in the comparison. Furthermore, because maintaining the significance

level is important, we select bandwidths such that the tests have empirical sizes

close to the significance level and retain the use when the dimensionality changes.

To this end, we use a simple model, µ(x) = βT

0x, β0 = (1, 1, . . . , 1)T/
√
p, for p = 2,

to select these bandwidths and to check whether they can be used if p = 8. In

our test, there are two bandwidths. We adopt h = c1n
−1/(4+q̂), which is the

optimal rate for the kernel estimation, and determine the constant c1. Similarly,

for the kernel estimator of the function r(bT0W, θ0), we choose the bandwidth

v = c2(N/2)−2/5, because we devide the validation data set of size N in two.

For T̃n, v is c2N
−2/5. In the selection process, we try different bandwidths

to investigate their impact on the empirical size. In addition, to reduce the

computational burden, we set c1 = c2 = c.

We compute the empirical size at every equal grid point c = (i − 1)/10 for

i = 1, . . . 21. In Figure 1, we report the empirical sizes associated with different



1524 KOUL, XIE AND ZHU

bandwidths when the regression model is µ(x) = βT

0x and n = 100, 200, λ = 4,

and the covariance matrix of X is Σ1. We can see that the test is not sensitive to

the bandwidth and a value of c = 1.6 may be a good choice for both Tn and T̃n.

We also need to select two bandwidths for the Zheng’s test. Here, We consider

h = cn−1/(4+p) and v = c(N/2)−2/(4+p). We find that in order to maintain

the significance level, the bandwidths must have a larger c. The results suggest

that a good bandwidth within the equal grid points is c = 2.5 + (i − 1)/10 for

i = 1, . . . , 21 (see Figure 1). For Song’s score test, only one bandwidth is required.

Here, we set the bandwidth to v = cN−1/(4+p) and search for c within the equal

grid points using c = 1 + (i − 1)/10 for i = 1, . . . , 21. Here too, a large value of

c is desirable. The reported curves are shown in Figure 1.

We find that the empirical sizes of Tn are not sensitive to the bandwidths

selected. The curves for p = 2 and p = 8 are almost identical. Although the

empirical size of T̃n is slightly effected by the dimensionality, it is still more

robust than TZhn and TSn . A value of c = 1.6 is recommended for both Tn and

T̃n. However, the empirical sizes of TZhn and TSn associated with the bandwidths

are not as robust as that of Tn. The empirical sizes show the efficient bandwidth

changes as p increases. When p is small, a small h can maintain its theoretical

size. As p increases, a larger h is necessary. This phenomenon is particularly

serious for TZhn . For the bandwidths of TZhn , c = 3.9 is appropriate. Finally,

c = 2.2 seems appropriate for TSn .

Study 1. The data are generated from the following model:

H11 : µ(x) = βT

0x+ a (βT

0x)2,

H12 : µ(x) = βT

0x+ a exp

(
−(βT

0x)2

2

)
,

H13 : µ(x) = βT

0x+ 2a cos(0.6πβT

0x).

The case of a = 0 corresponds to the null hypothesis and a 6= 0 corresponds to the

alternatives. In H11 and H12, the alternative parts (βT

0x)2 and exp(−(βT

0x)2/2,

respectively, always exist for a 6= 0. However, the alternative part of H13,

cos(0.6πβT

0x), appears and disappears periodically for any nonzero a, which

makes the bandwidth selection process even more challenging. This is because

the large bandwidth selected to maintain the significance level may make the test

obtuse to high-frequency alternatives. The dimension p is equal to 2 and 8, en-

abling us to check the impact from the dimensionality. Let β0 = (1, 1, . . . , 1)T/
√
p

and λ = 4. The simulation results are presented in Table 1.

From this table, we find that when p = 2, TSn performs very well. This is
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Figure 1. Plots of the empirical size curve against different values of c in the bandwidths.
For model Y = βT

0X + ε, the solid lines show p = 2, and the dash-dotted lines show
p = 8.

expected because the consistency rate of this test is 1/
√
n. In addition, when

p is small, TZhn is comparable to Tn because both are local smoothing tests.

However, when the dimension increases, TZhn and TSn are severely impacted by

the dimensionality. The test TZhn behaves much worse. In particular, when p = 8,

the test breaks down for n = 100 and regains its power as n increases. The test TSn
is also affected by the dimensionality because the residuals contain nonparametric

estimations based on the local smoothing technique. Its power decreases in both

small and large samples. On the other hand, the test Tn does not suffer from the

curse of dimensionality in the limited simulation studies presented here. When
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Table 1. Empirical sizes and powers of Tn, TZh
n , and TS

n for H1k, k = 1, 2, 3, in Study 1.

Σ = Σ1 n=100 n=200 Σ = Σ2 n=100 n=200
H11 a 0 0.5 0 0.5 a 0 0.5 0 0.5
Tn p = 2 0.0430 0.6960 0.0570 0.9625 p = 2 0.0505 0.8635 0.0525 0.9990

p = 8 0.0515 0.6365 0.0340 0.9545 p = 8 0.0385 0.9390 0.0535 1.0000
TZh
n p = 2 0.0360 0.7105 0.0335 0.9690 p = 2 0.0400 0.9065 0.0385 0.9985

p = 8 0.0285 0.2875 0.0410 0.5500 p = 8 0.0350 0.6190 0.0405 0.9420
TS
n p = 2 0.0495 0.9550 0.0335 0.9995 p = 2 0.0655 0.9895 0.0595 1.0000

p = 8 0.0440 0.7305 0.0410 0.9705 p = 8 0.0430 0.9715 0.0420 1.0000
H12 a 0 0.5 0 0.5 a 0 0.5 0 0.5
Tn p = 2 0.0505 0.6435 0.0485 0.9505 p = 2 0.0430 0.6010 0.0520 0.8975

p = 8 0.0450 0.6110 0.0465 0.9285 p = 8 0.0475 0.4470 0.0445 0.8090
TZh
n p = 2 0.0330 0.7060 0.0425 0.9445 p = 2 0.0390 0.6620 0.0495 0.9115

p = 8 0.0300 0.3060 0.0400 0.5900 p = 8 0.0420 0.2500 0.0405 0.4865
TS
n p = 2 0.0530 0.8375 0.0510 0.9825 p = 2 0.0505 0.7670 0.0475 0.9645

p = 8 0.0460 0.6265 0.0365 0.9170 p = 8 0.0450 0.4890 0.0365 0.8050
H13 a 0 0.5 0 0.5 a 0 0.5 0 0.5
Tn p = 2 0.0475 0.5395 0.0435 0.8775 p = 2 0.0440 0.4690 0.0410 0.7975

p = 8 0.0460 0.4900 0.0470 0.8445 p = 8 0.0445 0.2510 0.0530 0.6075
TZh
n p = 2 0.0350 0.5075 0.0450 0.8410 p = 2 0.0365 0.4010 0.0505 0.7330

p = 8 0.0250 0.1610 0.0450 0.3225 p = 8 0.0355 0.0780 0.0415 0.1650
TS
n p = 2 0.0570 0.2540 0.0410 0.4225 p = 2 0.0560 0.1350 0.0565 0.1840

p = 8 0.0405 0.1895 0.0420 0.3600 p = 8 0.0440 0.0660 0.0400 0.0600

p is large, Tn outperforms TSn . The finite-sample power of the TSn test is poor

against the alternatives H13 for both p = 2 and p = 8.

Study 2. In this study, we design a simulation to confirm that the test Tn
is not a directional test, but that Song’s test TSn is. The data are generated from

the following model:

H14 : µ(x) = βT

0x+ a(βT

1x)2, H15 : µ(x) = 2βT

0x+ a(2βT

1x)3.

Once again, a = 0 corresponds to the null hypothesis and a 6= 0 corresponds to the

alternatives. The matrix B = (β0, β1) and, thus, the structural dimension q under

the alternative is 2. Let λ = 4, p = 4, β0 = (1, 1, 0, 0)T/2, and β1 = (0, 0, 1, 1)T/2.

The simulation results are presented in Table 2. From these results, we first

observe that TSn has good performance under H14, which coincides with the

findings in Study 1. However, the poor performance under H15 shows that

TSn is a directional test, because this alternative is not detected at all. At the

population level, we find that the conditional expectation of the residual is equal

to zero under this alternative. In this case, Tn still works well. This supports

the claim that Tn is an omnibus test.



AN ADAPTIVE TEST FOR EIV MODELS 1527

Table 2. Empirical sizes and powers of Tn and TS
n for H14 and H15 in Study 2.

a H14 H15

λ = 4 Σ = Σ1 Σ = Σ2 Σ = Σ1 Σ = Σ2

n=100 n=200 n=100 n=200 n=100 n=200 n=100 n=200
Tn 0 0.0510 0.0500 0.0475 0.0485 0.0445 0.0445 0.0370 0.0480

0.1 0.0545 0.0735 0.0650 0.0775 0.0495 0.0435 0.0525 0.0620
0.3 0.1245 0.2615 0.2050 0.3525 0.1045 0.1510 0.2170 0.3725
0.5 0.3115 0.5910 0.4510 0.8025 0.1915 0.3245 0.3270 0.6125

TS
n 0 0.0525 0.0605 0.0605 0.0540 0.0450 0.0515 0.0540 0.0535

0.1 0.0830 0.0970 0.0915 0.1155 0.0620 0.0545 0.0525 0.0490
0.3 0.2310 0.4245 0.3575 0.6170 0.0485 0.0465 0.0590 0.0570
0.5 0.5020 0.8040 0.6935 0.9410 0.0590 0.0515 0.0505 0.0410

Study 3. In this study, we explore the impact of the estimation of r on

the performance of the proposed tests. Here, a small λ = lim(N/n) denotes a

small amount of validation data and a large λ means the estimator r̂ is very

close to the true function r. Consider N/n = 0.1, 0.5, 4, 8. From Theorem 3, we

know that when λ is small, we can have a test with a simpler limiting variance.

Write the related test as T
(1)
n . From Theorem 2, when λ =∞, we can also have

a test for large N/n, which we write as T
(2)
n . To examine whether these two

variants of the test Tn work, we generate data from the model H11 in Study 1.

When the size of the validation data is such that N/n = 0.1, 0.5, T
(1)
n is used,

and when N/n = 4, 8, T
(2)
n is applied. Because T

(1)
n is a test with very different

convergence rates, we also need to choose suitable bandwidths. Here, we search

for the bandwidths at the rates v = c(N/2)−1/3 and h = cn−1/(2+q̂) and find that

c = 2 is a good choice. For T
(2)
n , only the asymptotic variance changes. Thus, we

use the same bandwidths as before. When λ = 0.1, 0.5, we use a larger sample

size for the validation data, N = 100, 200; otherwise, N is too small and the tests

do not perform well. The simulation results are presented in Table 3.

From Table 3, we have the following two observations. First, for λ = 0.1, Tn
is more conservative, with lower power than T

(1)
n . This seems to indicate that

Tn is less sensitive to the alternative model than T
(1)
n . This phenomenon stems

from the improper selection of bandwidths for Tn, because Conditions (h1) and

(h2) ensure that the consistency of Tn and T
(1)
n require different ratios of h and

v. Thus, when N/n is very small, T
(1)
n seems to be a better choice than Tn.

However, when λ is closed to one, T
(1)
n cannot maintain the significance level

well. Second, T
(2)
n has slightly higher empirical size and power than those of Tn.

Overall, the performance of T
(2)
n is very similar to that of Tn. Therefore, when
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Table 3. Empirical sizes and powers of Tn, T
(1)
n , and T

(2)
n for H11 in Study 3.

H11 p=2 p=8 p=2 p=8
λ = 0.1 λ = 0.1 λ = 0.5 λ = 0.5

a N=100 N=200 N=100 N=200 N=100 N=200 N=100 N=200
Tn 0 0.0160 0.0255 0.0080 0.0120 0.0330 0.0420 0.0235 0.0295

0.1 0.0380 0.0865 0.0280 0.0535 0.0535 0.0725 0.0425 0.0685
0.3 0.4695 0.8920 0.4465 0.8835 0.2720 0.6005 0.2370 0.5905
0.5 0.9465 1.0000 0.9360 1.0000 0.7270 0.9860 0.6390 0.9805

T
(1)
n 0 0.0610 0.0555 0.0400 0.0475 0.1690 0.1720 0.1190 0.1490

0.1 0.1135 0.1745 0.0885 0.1635 0.2175 0.2470 0.1745 0.2600
0.3 0.7100 0.9680 0.6550 0.9595 0.5695 0.8410 0.5100 0.8165
0.5 0.9865 1.0000 0.9860 1.0000 0.9115 0.9975 0.8625 0.9985

λ = 4 λ = 4 λ = 8 λ = 8
a n=100 n=200 n=100 n=200 n=100 n=200 n=100 n=200

Tn 0 0.0525 0.0545 0.0480 0.0405 0.0485 0.0385 0.0430 0.0545
0.1 0.0590 0.0960 0.0530 0.0925 0.0705 0.0850 0.0615 0.0780
0.3 0.2645 0.5715 0.2525 0.5445 0.3045 0.5815 0.2550 0.5605
0.5 0.6705 0.9700 0.6295 0.9665 0.6885 0.9690 0.6620 0.9690

T
(2)
n 0 0.0610 0.0620 0.0575 0.0495 0.0530 0.0420 0.0445 0.0575

0.1 0.0660 0.1075 0.0685 0.1085 0.0755 0.0890 0.0690 0.0840
0.3 0.2910 0.5985 0.2845 0.5775 0.3145 0.5960 0.2735 0.5760
0.5 0.6880 0.9735 0.6580 0.9720 0.6950 0.9700 0.6745 0.9715

the size of the validation data N is reasonably large and the ratio N/n is large,

T
(2)
n is appropriate. Furthermore, the simulations show that although T

(1)
n can

be used, it does not maintain the finite-sample significance level as well as the

Tn test does. Thus, when the ratio N/n is not too small, we recommend using

Tn rather than T
(1)
n in practical situations.

Study 4. In this study, we consider a nonlinear single-index null model. We

try four alternatives with different structural dimensions:

H16 : µ(x) = (βT

0x)3 + a|βT

0x|,
H17 : µ(x) = (βT

0x)3 + ax23,

H18 : µ(x) = (βT

0x)3 + a
(x2

4
+ x23 + cos(πx4)

)
,

H19 : µ(x) = (βT

0x)3 + a
(x2

2
+ x23 + cos(πx4) + x5 exp

(x6
2

)
+ x8x7

)
.

Let p = 4 for H16, H17, and H18, and let p = 8 for H19. Then β0 = [1, 0, . . . , 0]T,

Σ = Σ1, σu = 0.5, and a is designed to be 0, 0.2, 0.4, 0.6, 0.8, 1.0. In these cases,

q is always one for the null, but is different for the alternatives. For H16, q = 1

for any nonzero a. The structure dimension under H17 is 2, and under H18,

p = q = 4. For H19, p = q = 8. The test Tn uses the same bandwidths as
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Figure 2. Plots of power curves over a for H16−H19 in Study 4. The solid lines show
Tn, and the dash-dotted lines show TZh

n .

those chosen for the above linear model. For TZhn , we adjust the bandwidths to

maintain the test’s performance. Set c = 2.7 for H16, H17, and H18, and let c = 3

for H19. The results are presented in Figure 2.

We have the following observations. First, Tn has greater empirical power

than TZhn for all chosen alternatives. Under H18 and H19, without the dimension-

reduction structure, Tn is still more powerful than TZhn because Tn is constructed

from nh1/2Vn/
√
τ = h(1−q/2)×nhq/2Vn/

√
τ . Second, the power of TZhn decreases

quickly as p and q increase, but that of Tn does not.

5. A Real-Data Example

In this section, we apply the proposed tests to the NHANES-I Epidemiologic

Study Cohort data (Jones et al. (1987)). The study interviewed 8,596 women

about their nutrition habits and then looked for evidence of breast cancer. Part

of the data are analyzed by Carroll and Li (1992) for the purpose of dimension

reduction and by Carroll et al. (2006) for nonlinear regression modeling. In the

data set, Y is an indicator of breast cancer. The relevant predictors include
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age, body mass index (bmi), alcohol (alch, yes/no), saturated fat intake (satfat),

calorie intake (cals), vitamin A intake (vita), and vitamin C intake (vitc). Age,

body mass index, and alcohol are measured without measurement errors. Because

it is difficult to measure a person’s long-term diet, the variables related to the

nutrition intake are 24-hour recall, which are known to be measured with a large

error (Beaton, Milner and Little (1979); Wu, Whittemore and Jung (1986)).

Clearly, a single day’s diet cannot serve as an adequate estimation of the average

level of a day’s nutrition intake in one year. This measurement error can be

modeled using the Continuing Survey of Food Intakes by Individuals (CSFII)

data, which includes a 24-hour recall and three follow-up interviews. Validation

data are then obtained for this data set. Similarly to Carroll and Li (1992),

we consider the part of the data set corresponding to ages between 25 and 50.

The primary data set has size n = 3,143, and the size of the validation data

set is N = 1,847. There are 59 cases in the primary data set of reported breast

cancer. This setup suggests using a logistic model to fit the data set. Carroll and

Li (1992) consider an estimation using dimension reduction that includes three

predictors age, bmi, and satfat. We now use our tests to check the adequacy

of the fit for this data set. The values of the test statistics are −0.9403 and

−0.7785, and the p-values are 0.8265 and 0.7819, respectively. Note that these

p-values are reasonable because the tests are one-sided, not two-sided. Because

the other predictors of nutrition intake with measurement errors are modeled

as a logistic model, we include all four nutrition intake predictors for checking

purpose only. The values of the test statistics Tn and T̃n are−0.1533 and−0.1918,

respectively. The p-values are 0.5609 and 0.5761, respectively. Again, a logistic

model is plausible. Moreover, we use all seven predictors in the model checking

for a logistic model, and find values of Tn and T̃n of 0.1154 and −0.2035, and

p-values of 0.4541 and 0.5806, respectively. Therefore, a logistic model is feasible

for fitting this data set.

6. Conclusion

In this study, we investigate an adaptive-to-model test for parametric single-

index EiV models. The consistency rate of the proposed test does not depend

on the dimension of the covariate vector. The simulation studies show that the

proposed test can potentially alleviate the curse of dimensionality. In addition,

the studies confirm that the proposed test is omnibus. However, selecting optimal

bandwidths remains a problem because the optimal bandwidth in the estimation
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may not be optimal in the hypothesis testing. This problem requires further

research in order to select bandwidths adaptively. A critical issue is consistently

estimating the number of columns in the dimension-reduction structure under

local alternative models. This is left to further research.

Appendix.Assumptions

(f). The density f of Z has bounded partial derivatives up to order 3 and satisfies

0 < inf
z
fZ(z) ≤ sup

z
fZ(z) <∞.

(g). g(βTx, γ) is a measurable function of x for each θ = (β; γ) and is differentiable

in θ up to order 3, and E
∥∥∂g(βT

0X, γ0)/∂θ
∥∥2 <∞.

(r). The function r(bTw, θ) has bounded partial derivatives with respect to bTw

up to order 3, and E[r2(bTW, θ)] <∞, for θ ∈ Rp+d.
(G). Let ∆(Z) = E[G(BTX)|Z]. Then, E[∆2(Z)] <∞, E[(G(BTX)−∆(Z))4] <

∞, and ∆(z) has bounded partial derivatives up to order 3.

(W). max1≤k≤pE[W 2
(k)|Z] <∞, where W(k) represents the k-th coordinate of W ,

for k = 1, . . . , p.

(e). E[(ξ2(Z))2] <∞ and ξ2(z) are uniformly continuous functions with bounded

partial derivatives up to order 3.

(K). K is a spherically symmetric and continuous kernel function with bounded

support and is of order 2, with all derivatives bounded.

(M). M is a symmetric and continuous kernel function with bounded support

and is of order 2, with all derivatives bounded.

(h1). h→ 0, v → 0, and v/h→ 0.

(h2). h→ 0, v → 0, and h/v → 0.

(h3). nh2 →∞, Nv2 →∞, and nv4 → 0.

(h4). nh5/2 →∞, Nv2 →∞, and nv4 → 0.

(h5). Nh2 →∞, Nv/(nh)→ 0, and Nv4 → 0.

(h6). nhq →∞ and Nv →∞.

Supplementary Material

The proofs are postponed to the online supplementary materials.
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