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Abstract: In a smooth semi-parametric model, the marginal posterior distribution

of a finite-dimensional parameter of interest is expected to be asymptotically equiv-

alent to the sampling distribution of any efficient point estimator. This assertion

leads to asymptotic equivalence of the credible and confidence sets of the parame-

ter of interest, and is known as the semi-parametric Bernstein-von Mises theorem.

In recent years, this theorem has received much attention and has been widely

applied. Here, we consider models in which errors with symmetric densities play

a role. Specifically, we show that the marginal posterior distributions of the re-

gression coefficients in linear regression and linear mixed-effect models satisfy the

semi-parametric Bernstein-von Mises assertion. As a result, Bayes estimators in

these models achieve frequentist inferential optimality, as expressed, for example,

in Hájek’s convolution and asymptotic minimax theorems. For the prior on the

space of error densities, we provide two well-known examples, namely, the Dirichlet

process mixture of normal densities and random series priors. The results provide

efficient estimates of the regression coefficients in the linear mixed-effect model, for

which no efficient point estimators currently exist.

Key words and phrases: Bernstein–von mises theorem, linear mixed-effect model,

linear regression, semi-parametric efficiency, symmetric error.

1. Introduction

In this paper, we give an asymptotic Bayesian analysis of models with errors

that are distributed symmetrically. The observations X = (X1, . . . , Xn)T ∈ Rn

are modeled by

X = µ + ε, (1.1)

where µ = (µ1, . . . , µn)T and ε = (ε1, . . . , εn)T . Here, the mean vector µ is

nonrandom and parametrized by a finite-dimensional parameter θ, and the dis-

tribution of the error vector ε is symmetric in the sense that ε has the same

distribution as −ε. Because the error has a symmetric, but otherwise unknown
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distribution, the model is semi-parametric. Examples of models of the form given

in (1.1) include the symmetric location model (where µi = θ ∈ R), the linear re-

gression model (where µi = θTZi for given covariates Zi ∈ Rp), and models with

dependent errors, such as linear mixed-effect models (Laird and Ware (1982)).

The main goal of this study is to prove the semi-parametric Bernstein-von

Mises (BvM) assertion for models of the form shown in (1.1) with symmetric

error distributions. As such, we show that the marginal posterior distribution

of the parameter of interest is asymptotically normal, based on an efficient esti-

mator with variance equal to the inverse Fisher information matrix. As a result,

statistical inferences based on the posterior distribution satisfy the frequentist

criteria of optimality; see van der Vaart (1998) for identically and independently

distributed (i.i.d.) cases and Bickel et al. (2005) for non-i.i.d. extensions.

Various studies have developed sets of sufficient conditions for the semi-

parametric BvM theorem based on the full local asymptotic normality (LAN)

expansion (i.e., the LAN expansion with respect to both the finite and the infinite

dimensional parameters; McNeney and Wellner (2000)), including those of Shen

(2002), Castillo (2012), Bickel and Kleijn (2012), and Castillo and Rousseau

(2015). Because the models we consider are adaptive (Bickel (1982)), we consider

a simpler type of LAN expansion that involves only the parameter of interest.

Nevertheless, the expansion must be valid under data distributions that differ

slightly from the one on which the expansion is centered. We call this property

a misspecified LAN and prove that it holds for models of the form given in (1.1)

and that, together with other regularity conditions, it implies the semi-parametric

BvM assertion. The misspecified LAN condition is slightly weaker and easier to

check than those of Castillo (2012) and Castillo and Rousseau (2015) for adaptive

models, even though their conditions cover more general nonadaptive cases.

While the BvM theorem for parametric Bayesian models is well established

(e.g., Le Cam and Yang (1990); Kleijn and van der Vaart (2012)), the semi-

parametric BvM theorem is still actively studied. Here, examples (Cox (1993);

Freedman (1999)) of simple semi-parametric problems with simple choices for

the prior have demonstrated the failure of marginals posteriors to display BvM-

type asymptotic behavior. Subsequently, positive semi-parametric BvM results

have been established in these and other examples, including models of sur-

vival analyses (Kim and Lee (2004); Kim (2006)), multivariate normal regres-

sion models with growing numbers of parameters (Bontemps (2011); Johnstone

(2010); Ghosal (1999)), and discrete probability measures (Boucheron and Gas-

siat (2009)). More delicate notions, such as finite sample properties and second-
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order asymptotics, are considered in Panov and Spokoiny (2015), Spokoiny (2013),

and Yang et al. (2015). Furthermore, Castillo et al. (2015) studied the BvM the-

orem in high-dimensional models incorporating sparse priors.

With regard to models of the form given in (1.1), a sizable body of litera-

ture has examined efficient point estimations for the symmetric location problem

(Beran (1978); Stone (1975); Sacks (1975)) and linear regression models (Bickel

(1982)). In contrast, to date, no efficient point estimators exist for the regression

coefficients in the linear mixed-effect model. However, the semi-parametric BvM

theorem proved here implies that the Bayes estimator is efficient. To the best of

our knowledge, this study provides the first efficient semi-parametric estimator

for linear mixed-effect models. Although the compactness assumptions imposed

on the prior and the true error density are rather strong, the numerical study

given in section 5 supports the view that the Bayes estimator, which can be

computed easily using MCMC methods, is superior to previous methods of esti-

mation. Finally, note that an extension of the current work to a high-dimensional

sparse setting is provided by Chae et al. (2016).

The remainder of this paper is organized as follows. Section 2 proves the

semi-parametric BvM assertion for all smooth adaptive models (c.f., the mis-

specified LAN expansion). In sections 3 and 4, we study the linear regression

model and the linear mixed-effect model, respectively. In each case we consider

two common choices for the nuisance prior, namely, a Dirichlet process mixture

and a series prior, and we show that both lead to validity of the BvM assertion.

The results of numerical studies are presented in section 5. Proofs of the main

results can be found in the supplementary material.

1.1. Notation and conventions

For two real values a and b, a∧ b and a∨ b are the minimum and maximum

of a and b, respectively, and an . bn signifies that an is smaller than bn, up to

a constant multiple independent of n. Lebesgue measures are denoted by µ and

| · | represents the Euclidean norm on Rd. The capitals Pη, Pθ,η, and so on denote

the respective probability measures associated with the densities that we write

in lower case, pη, pθ,η, and so on (where it is always clear from the context which

dominating measure µ is involved). The corresponding log densities are indicated

by `η, `θ,η, and so on. The Hellinger and total-variational metrics are defined as

h2(p1, p2) =
∫ (√

p1 −
√
p2

)2
dµ and dV (p1, p2) =

∫
|p1 − p2|dµ, respectively. The

expectation of a random variable X under a probability measure P is denoted by

PX. The notation P0 always represents the true probability that generates the
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observation, and Xo = X − P0X is the centered version of the random variable

X. The indicator function for a set A is denoted as 1A. For a class of measurable

functions F , the quantities N(ε,F , d) and N[ ](ε,F , d) represent the ε-covering

and -bracketing numbers, respectively (van der Vaart and Wellner (1996)), with

respect to a (semi-)metric d.

2. Misspecified LAN and the Semi-Parametric BvM theorem

2.1. Misspecified LAN

In this section, we prove the semi-parametric BvM theorem for smooth adap-

tive models, that is, those that satisfy the misspecified LAN expansion defined

below. Consider a sequence of statistical models P(n) = {P (n)
θ,η : θ ∈ Θ, η ∈ H}

on measurable spaces (X (n),A (n)), parametrized by a finite-dimensional param-

eter θ of interest and an infinite-dimensional nuisance parameter η. Assume that

Θ is a subset of Rp, H is a metric space equipped with the associated Borel σ-

algebra, and P
(n)
θ,η has density x 7→ p

(n)
θ,η (x) with respect to some σ-finite measures

µ(n) dominating P(n).

Let X(n) be a X (n)-valued random element following P
(n)
0 , and assume that

P
(n)
0 = P

(n)
θ0,η0

for some θ0 ∈ Θ and η0 ∈ H. We say that a sequence of statistical

models P(n) satisfies the misspecified LAN expansion if there exists a sequence

of vector-valued (component-wise) L2(P
(n)
0 )-functions (gn,η), a sequence (Hn) of

measurable subsets of H, and a sequence (Vn,η) of p× p-matrices, such that,

sup
h∈K

sup
η∈Hn

∣∣∣∣ log
p

(n)
θn(h),η

p
(n)
θ0,η

(X(n))− hT√
n
gn,η(X

(n)) +
1

2
hTVn,ηh

∣∣∣∣ = oP0
(1), (2.1)

for every compact K ⊂ Rp, where θn(h) is equal to θ0 + h/
√
n. When we know

η0, property (2.1) is nothing but the usual parametric LAN expansion, where

we set Hn = {η0}. We refer to (2.1) as the misspecified LAN expansion because

the base for the expansion is (θ0, η), whereas the rest-terms go to zero under P0,

which corresponds to the point (θ0, η0).

Note that the misspecified LAN expansion is slightly weaker than the LAN

expansion used in Castillo (2012) and Castillo and Rousseau (2015) for adaptive

models. In particular, the conditions in Castillo (2012) and Castillo and Rousseau

(2015) require a Hilbert space structure on the space of η − η0, where the LAN

expansion and the localizing sets Hn rely on the Hilbert space structure through

the associated norm. It is not easy to check that a given prior of η has the required

Hilbert space structure for η − η0. In contrast, we establish the semi-parametric
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BvM theorem (Theorem 1) based on the misspecified LAN (2.1), which does not

require a Hilbert space structure for η − η0. Hence, it is relatively easy to check

the misspecified LAN for a given prior. For example, in Section 3.2 we verify the

misspecified LAN for a mixture of a normal prior and a basis expansion prior.

Although the misspecified LAN expansion (2.1) can be applied only to adap-

tive cases, verifying (2.1) is not easy, owing to the misspecification and the re-

quired uniformity of convergence. LAN expansions have been shown to be valid

even under misspecification. For example, Kleijn and van der Vaart (2012) ex-

pressed smoothness in misspecified parametric models using a version of local

asymptotic normality under the true distribution of the data, with a likelihood

expansion around points in the model, where the Kullback–Leibler (KL) diver-

gence with respect to P0 is minimal. In models with symmetric errors, the point

of minimal KL divergence is equal to θ0, provided that the misspecified η is suf-

ficiently close to η0 in the sense of Hn. This allows the usual LAN expansion

at θ0 for fixed η; that is, the left-hand side of (2.1) is expected to be of order

oP0
(1). By choosing localizations Hn appropriately, the family of score functions

{ ˙̀
θ,η : η ∈ Hn} is shown to be a Donsker class, which validates (2.1) in models

with symmetric errors, where ˙̀
θ,η(x) = ∂`θ,η(x)/∂θ, gn,η(X

(n)) =
∑n

i=1
˙̀
θ0,η(Xi),

and Vn,η = n−1P
(n)
0 [gn,ηg

T
n,η0 ]. The score function is not necessarily the pointwise

derivative of the log-likelihood, but in most examples (including the models con-

sidered in this paper), gn,η = ˙̀(n)
θ0,η

, where ˙̀(n)
θ,η = ∂`

(n)
θ,η/∂θ. Henceforth, because

it conveys the natural meaning of a derivative, we use the notation ˙̀(n)
θ0,η

instead

of gn,η.

2.2. The semi-parametric Bernstein-von Mises theorem

We use a product prior Π = ΠΘ ×ΠH on the Borel σ-algebra of Θ×H and

denote the posterior distribution by Π(·|X(n)). Note that the misspecified LAN

property gives rise to an expansion of the log-likelihood that applies only locally

in sets Θn ×Hn, where Θn = {θ0 + h/
√
n : h ∈ K} (for some compact K ∈ Rp

and appropriate Hn ⊂ H). Thus, for the semi-parametric BvM theorem, the

score function ˙̀(n)
θ0,η

and Vn,η must “behave nicely” on Θn×Hn, and the posterior

distribution must concentrate inside Θn × Hn. Technically, these requirements

are expressed by the following two conditions. For a matrix A ∈ Rn1×n2 , ‖A‖
represents the operator norm of A, defined as supx 6=0 |Ax|/|x|, and if A is a square

matrix, ρmin(A) and ρmax(A) denote the minimum and maximum eigenvalues of

A, respectively.
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Condition A. (Equicontinuity and nonsingularity)

sup
η∈Hn

∣∣∣ ˙̀(n)
θ0,η

(X(n))− ˙̀(n)
θ0,η0

(X(n))
∣∣∣ = oP0

(n1/2), (2.2)

sup
η∈Hn

‖Vn,η − Vn,η0‖ = o(1), (2.3)

0 < lim inf
n→∞

ρmin(Vn,η0) ≤ lim sup
n→∞

ρmax(Vn,η0) <∞. (2.4)

Condition B. (Posterior localization)

P
(n)
0 Π

(
η ∈ Hn|X(n)

)
→ 1, (2.5)

P
(n)
0 Π

(√
n|θ − θ0| > Mn|X(n)

)
→ 0, for every Mn ↑ ∞. (2.6)

Conditions such as (2.2) and (2.3) are to be expected in the context of a

semi-parametric estimation (see, e.g., Theorem 25.54 of van der Vaart (1996)).

Condition (2.2) amounts to asymptotic equicontinuity and is implied whenever

scores form a Donsker class, a well-known sufficient condition in semi-parametric

efficiency (see van der Vaart (1996)). Condition (2.3) is implied whenever the

L2(P
(n)
0 )-norm of the difference between the scores at (θ0, η) and (θ0, η0) vanishes

as η converges to η0 in the Hellinger distance (c.f., (S1.5) in the supplementary

material, which controls variations of the information matrix as η converges to η0

with Hn). Note that conditions (2.1)–(2.3) lead to the following LAN assertion:

sup
h∈K

sup
η∈Hn

∣∣∣∣ log
p

(n)
θn(h),η

p
(n)
θ0,η

(X(n))− hT√
n

˙̀(n)
θ0,η0

(X(n)) +
1

2
hTVn,η0h

∣∣∣∣ = oP0
(1), (2.7)

which is typically assumed in the literature on the semi-parametric BvM theorem.

We separate (2.7) into three conditions because proofs of both (2.1) and (2.2)

are technically demanding.

Condition (2.4) guarantees that the Fisher information matrix does not de-

velop singularities as the sample size goes to infinity. Condition (2.5) formulates

a requirement of posterior consistency, in the usual sense, and the sufficient con-

ditions are well known (Schwartz (1965); Barron et al. (1999); Walker (2004);

Kleijn (2013)). Condition (2.6) requires an n−1/2 rate of convergence for the

marginal posterior distribution of the parameter of interest. Although (2.6) ap-

pears to be rather strong (Yang et al. (2015)), it is clearly a necessary condition.

Note that conditions (2.1) and (2.6) can be replaced by

sup
θ∈Θ̃n

sup
η∈Hn

∣∣∣∣ log
p

(n)
θ,η

p
(n)
θ0,η

(X(n))− (θ − θ0)T gn,η(X
(n)) +

n

2
(θ − θ0)TVn,η(θ − θ0)

∣∣∣∣
= oP0

(
1 + n(|θ − θ0|2)

)
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and

P
(n)
0 Π

(
θ ∈ Θ̃n|X(n)

)
→ 1,

for some Θ̃n ⊂ Θ, as in Castillo (2012) and Yang et al. (2015). Thus, if the

log-likelihood is uniformly approximated by a quadratic function in a neighbor-

hood where the posterior contracts, then the posterior achieves an n−1/2 rate of

convergence.

We say the prior ΠΘ is thick at θ0 if it has a strictly positive and continuous

Lebesgue density in the neighborhood of θ0. The following is the BvM theorem

for semi-parametric models that are smooth in the sense of the misspecified LAN

expansion.

Theorem 1. Consider statistical models {P (n)
θ,η : θ ∈ Θ, η ∈ H} with a prod-

uct prior Π = ΠΘ × ΠH. Assume that ΠΘ is thick at θ0 and that (2.1) and

Conditions A and B hold. Then,

sup
B

∣∣∣Π(√n(θ − θ0) ∈ B|X(n)
)
−N∆n,V

−1
n,η0

(B)
∣∣∣→ 0, (2.8)

in P
(n)
0 -probability, where N∆n,V

−1
n,η0

is the normal distribution with mean

∆n =
1√
n
V −1
n,η0

˙̀(n)
θ0,η0

(X(n))

and variance V −1
n,η0.

Proof. Note first that (2.5) implies that ΠH(Hn) > 0 for sufficiently large n.

Let ΠHn be the probability measure obtained by restricting ΠH to Hn and then

re-normalizing, and let ΠHn(·|X(n)) be the corresponding posterior distribution.

Then, for any measurable set B in Θ,

Π(θ ∈ B|X(n)) = Π(θ ∈ B, η ∈ Hn|X(n)) + Π(θ ∈ B, η ∈ Hcn|X(n))

= ΠHn(θ ∈ B|X(n))Π(η ∈ Hn|X(n)) + Π(θ ∈ B, η ∈ Hcn|X(n)).

Thus, we have

sup
B

∣∣∣Π(θ ∈ B|X(n))−ΠHn(θ ∈ B|X(n))
∣∣∣→ 0,

in P
(n)
0 -probability. Therefore, it is sufficient to prove the BvM assertion with

the priors ΠHn .

In particular,

ΠHn(
√
n|θ − θ0| > Mn|X(n)) =

Π(
√
n|θ − θ0| > Mn, η ∈ Hn|X(n))

Π(η ∈ Hn|X(n))
(2.9)

converges to zero in P
(n)
0 -probability from (2.5), and (2.6). Using (2.1), (2.2),
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and (2.3), we obtain (2.7) for every compact K ⊂ Rp. Let

b1(h) = inf
η∈Hn

log
p

(n)
θn(h),η(X

(n))

p
(n)
θ0,η

(X(n))
and b2(h) = sup

η∈Hn
log

p
(n)
θn(h),η(X

(n))

p
(n)
θ0,η

(X(n))
.

Then, trivially, we have

eb1(h) ≤

∫
p

(n)
θn(h),η(X

(n))dΠHn(η)∫
p

(n)
θ0,η

(X(n))dΠHn(η)
≤ eb2(h), (2.10)

and the quantity

sup
h∈K

∣∣∣∣bk(h)− hT√
n

˙̀(n)
θ0,η0

(X(n)) +
1

2
hTVn,η0h

∣∣∣∣
is bounded above by the left-hand side of (2.7) for k = 1, 2. As a result,

sup
h∈K

∣∣∣∣∣∣log

∫
p

(n)
θn(h),η(X

(n))dΠHn(η)∫
p

(n)
θ0,η

(X(n))dΠHn(η)
− hT√

n
˙̀(n)
θ0,η0

(X(n)) +
1

2
hTVn,η0h

∣∣∣∣∣∣ = oP0
(1),

(2.11)

because |c2| ≤ |c1| ∨ |c3| for all real numbers c1, c2, and c3, with c1 ≤ c2 ≤ c3.

The remainder of the proof is (almost) identical to the proof for parametric

models (Le Cam and Yang (1990), Kleijn and van der Vaart (2012)), replacing

the parametric likelihood by θ 7→
∫
p

(n)
θ,η (X(n))dΠHn(η), as in Bickel and Kleijn

(2012). For further detail, see Theorem 3.1.1 of Chae (2015).

3. Semi-Parametric BvM for Linear Regression Models

3.1. Semi-parametric BvM theorem

Let H be the set of all continuously differentiable densities η defined on

D = (−r, r) (for some r ∈ (0,∞]), such that η(x) > 0 and η(x) = η(−x) for every

x ∈ D. Equip H with the Hellinger metric. We consider a model for data that

satisfies

Xi = θTZi + εi, for i = 1, . . . , n, (3.1)

where Zi denotes the p-dimensional nonrandom covariates and the errors εi are

assumed to form an i.i.d. sample from a distribution with density η ∈ H. We

prove the BvM theorem for the regression coefficient θ.

Let Pθ,η,i denote the probability measure with density x 7→ η(x − θTZi)

and ˙̀
θ,η,i = ∂`θ,η,i/∂θ. In addition, let Pη be the probability measure with

density pη = η and sη(x) = −∂`η(x)/∂x. Let P
(n)
θ,η represent the product measure

Pθ,η,1×· · ·×Pθ,η,n, and let ˙̀(n)
θ,η =

∑n
i=1

˙̀
θ,η,i. With a slight abuse of notation, we
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treat pθ,η,i, `θ,η,i, and ˙̀
θ,η,i as either functions of x or as the corresponding random

variables when they are evaluated at x = Xi. For example, ˙̀
θ,η,i represents either

the function x 7→ ˙̀
θ,η,i(x) : D 7→ Rp or the random vector ˙̀

θ,η,i(Xi). We treat

p
(n)
θ,η , `

(n)
θ,η and ˙̀(n)

θ,η similarly.

Let θ0 ∈ Θ and η0 ∈ H be the true regression coefficient and the error density

in the model (3.1), respectively. Define specialized KL balls in Θ×H of the form

Bn(ε) =

{
(θ, η) :

n∑
i=1

K(pθ0,η0,i, pθ,η,i) ≤ nε2,
n∑
i=1

V (pθ0,η0,i, pθ,η,i) ≤ C2nε
2

}
,

(3.2)

where K(p1, p2) =
∫

log(p1/p2)dP1, V (p1, p2) =
∫

(log(p1/p2) − K(p1, p2))2dP1,

and C2 is some positive constant (see Ghosal and van der Vaart (2007a)). Define

the mean Hellinger distance hn on Θ×H by

h2
n

(
(θ1, η1), (θ2, η2)

)
=

1

n

n∑
i=1

h2(pθ1,η1,i, pθ2,η2,i). (3.3)

Let vη = Pη0 [sηsη0 ] and

Vn,η =
1

n
P

(n)
0

[
˙̀(n)
θ0,η

˙̀(n)T
θ0,η0

]
. (3.4)

It is easy to see that Vn,η = vηZn, where Zn = n−1
∑n

i=1 ZiZ
T
i .

We say that a sequence of real-valued stochastic processes {Yn(t) : t ∈ T},
(n ≥ 1), is asymptotically tight if it is asymptotically tight in the space of bounded

functions on T with a uniform norm (van der Vaart and Wellner (1996)). A

vector-valued stochastic process is asymptotically tight if each of its components

is asymptotically tight.

Theorem 2. Suppose that supi≥1 |Zi| ≤ L for some constant L > 0, lim infn ρmin

(Zn) > 0, and vη0 > 0. The prior for (θ, η) is a product Π = ΠΘ × ΠH, where

ΠΘ is thick at θ0. Suppose too that there exist an N ≥ 1, a sequence εn → 0

with nε2n → ∞, and partitions Θ = Θn,1 ∪ Θn,2 and H = Hn,1 ∪ Hn,2, such that

η0 ∈ Hn,1 and

logN(εn/36,Θn,1 ×Hn,1, hn) ≤ nε2n,

log Π
(
Bn(εn)

)
≥ −1

4
nε2n,

log
(
ΠΘ(Θn,2) + ΠH(Hn,2)

)
≤ −5

2
nε2n,

(3.5)

for all n ≥ N . For some Mn ↑ ∞, with εnMn → 0, let Hn = {η ∈ Hn,1 :

h(η, η0) < Mnεn} and assume that there exist a continuous L2(Pη0) function Q
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and an ε0 > 0, such that

sup
|y|<ε0

sup
η∈HN

∣∣∣∣`η(x+ y)− `η(x)

y

∣∣∣∣ ∨ ∣∣∣∣sη(x+ y)− sη(x)

y

∣∣∣∣ ≤ Q(x), (3.6)

where HN = ∪∞n=NHn. Furthermore, assume that the sequence of stochastic

processes {
1√
n

(
˙̀(n)
θ,η − P

(n)
0

˙̀(n)
θ,η

)
: |θ − θ0| < ε0, η ∈ HN

}
, (3.7)

indexed by (θ, η), is asymptotically tight. Then the assertion of the BvM theorem 1

holds for θ.

Because the observations are not i.i.d., we consider the mean Hellinger dis-

tance hn, as in Ghosal and van der Vaart (2007a). The conditions given in

(3.5) are required for the convergence rate of hn
(
(θ, η), (θ0, η0)

)
to be εn, which

in turn implies that the convergence rates of |θ − θ0| and h(η, η0) are εn (c.f.,

Lemma S1.1 in the supplementary material). In fact, we need only to prove (3.5)

with arbitrary rate εn, because the so-called no-bias condition supη∈Hn P0
˙̀(n)
θ0,η

=

oP0
(n−1/2) holds trivially by the symmetry. This plays an important role in

proving (2.1)–(2.3), as in the frequentist literature (see Chapter 25 of van der

Vaart (1998)). Condition (3.6), which is technical in nature, might be somewhat

restrictive. However, (3.6) can be checked easily under a certain compactness

assumption for the prior ΠH. In Section , for example, we consider a mixture

of normal densities for ΠH, the mixing distribution of which is supported on a

compact set, and verify (3.6) without much difficulty. Note that condition (3.6)

is implied by a certain consistency of derivatives, which is almost unknown in

nonparametric Bayesian contexts; see Shen and Ghosal (2016).

For a random design, (3.7) is asymptotically tight if and only if the class of

score functions forms a Donsker class, and the sufficient conditions for the latter

are well established in empirical process theory. Because the observations are

not i.i.d., owing to the nonrandomness of the covariates, (3.7) does not converge

in distribution to a Gaussian process. Here, asymptotic tightness of (3.7) merely

ensures that the supremum of its norm is of order OP0
(1). Asymptotic tightness

holds under a finite bracketing integral condition (where the definition of the

bracketing number is extended to non-i.i.d. observations in a natural way). For

the sufficient conditions for asymptotic tightness in non-i.i.d. observations, refer

to Section 2.11 of van der Vaart and Wellner (1996).

In the supplementary material, we prove Theorem 2 by checking the mis-

specified LAN condition and Conditions A and B. The conditions in Theorem 2
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depend particularly on the choice of prior for the nuisance parameter η. In the

next two subsections, we provide priors that satisfy the conditions in Theorem 2:

a symmetric Dirichlet mixture of normal distributions, and a random series prior

on a smoothness class. For a given density p on D, its symmetrization p̄ is defined

by p̄ = (p+ p−)/2, where p−(x) = p(−x) for all x ∈ D. We can construct a prior

on H by putting a prior on p ∈ H̃ and then symmetrizing it, where H̃ is the set

of every density on D with symmetrization in H. Obviously, we have H ⊂ H̃.

Let ΠH̃ be a probability measure on H̃ and let ΠH be the corresponding prob-

ability measure on H. Hellinger entropy bounds and prior concentration rates

around KL neighborhoods are well known for various choices of ΠH̃. Therefore,

the following lemma is useful in the proof of (3.5).

Lemma 1. For a subset H̃0 of H̃ containing η0, suppose there exists a function

Q̃ such that supη∈H̃0
PηQ̃

2 < ∞. In addition, for every x and for sufficiently

small y,

sup
η∈H̃0

∣∣∣∣ log η(x+ y)− log η(x)

y

∣∣∣∣ ≤ Q̃(x). (3.8)

Furthermore, assume that for sufficiently large n,

logN(ε̃n, H̃n,1, h) . nε̃2n,

log ΠH̃
(
{η ∈ H̃ : K(η0, η) ≤ ε̃2n, V (η0, η) ≤ ε̃2n}

)
& −nε̃2n,

log ΠH̃(H̃n,2) ≤ −5

2
nε̃2nM

2
n,

(3.9)

for some partition H̃ = H̃n,1∪H̃n,2, with η0 ∈ H̃n,1 ⊂ H̃0, and sequences ε̃n → 0,

Mn → ∞, with ε̃n & n−1/2 log n. If Θ is compact and supi≥1 |Zi| ≤ L, then, for

any ΠΘ that is thick at θ0, the product prior ΠΘ × ΠH satisfies (3.5) for some

Hn,1 ⊂ H0, Θn,1 = Θ, and εn = ε̃nMn, where H0 is the set of symmetrizations

of p ∈ H̃0.

3.2. Symmetric Dirichlet mixtures of normal distributions

Dirichlet process mixture priors are popular and the asymptotic behavior of

the posterior distribution is well documented. A random density η is said to follow

a Dirichlet process mixture of normal densities (Lo (1984)) if η(x) =
∫
φσ(x −

z)dF (z, σ), where F ∼ DP(α,H) and φσ is the density of the normal distribution

with mean zero and variance σ2. Here, DP(α,H) denotes the Dirichlet process

with precision α > 0 and mean probability measure H on R × (0,∞) Ferguson

(1973).
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For given positive numbers σ1, σ2, and M , with σ1 < σ2, let F be the set

of all distribution functions supported on [−M,M ] × [σ1, σ2]. Furthermore, let

H̃0 be the set of all densities η on R of the form η(x) =
∫
φσ(x− z)dF (z, σ), for

F ∈ F . Then, it is easy to show that H0, the symmetrization of H̃0, is the set of

all η ∈ H̃0, where F ∈ F with dF (z, σ) = dF (−z, σ). If F ∼ DP(α,H), where

H has a positive and continuous density supported on [−M,M ] × [σ1, σ2], the

corresponding Dirichlet process mixture prior and its symmerization, denoted

by ΠH̃ and ΠH, respectively, have full support on H̃0 and H0, relative to the

Hellinger topology.

Note that the class H0 (or H̃0) is sufficiently flexible, in spite of the compact

support of the mixing distributions. The posterior convergence rate has also

been studied for this class of densities; see Ghosal and van der Vaart (2001) and

Walker et al. (2007). Eliminating the compactness condition requires significantly

different techniques, even for deriving the posterior convergence rate (Ghosal and

van der Vaart (2007b)). As mentioned earlier, the main challenge lies in condition

(3.6), that is, the consistency of the derivatives. We leave this problem for general

mixtures for future work.

Corollary 1. Suppose that supi≥1 |Zi| ≤ L and lim infn ρmin(Zn) > 0. With

the symmetrized Dirichlet process mixture prior described above for η, the BvM

theorem holds for the linear regression model, provided that η0 ∈ H0 and that ΠΘ

is compactly supported and thick at θ0.

3.3. Random series prior

Let W be a random function on [−1/2, 1/2], defined as a series W (·) =∑∞
j=1 j

−αCjbj(·), where b1(t) = 1, b2j(t) = cos(2πjt), and b2j+1(t) = sin(2πjt).

In addition, Cj denotes i.i.d. random variables drawn from a density supported

on [−M,M ], which is continuous and bounded away from zero. We impose

smoothness through the requirement that α be greater than 3. Thus, the series

is well defined as a continuous real-valued function on [−1/2, 1/2], with first and

second derivatives that are bounded uniformly by a constant. Let W be the

set of all functions w : [−1/2, 1/2] → R of the form w(·) =
∑

j ajbj(·), for some

sequence (a1, a2, . . .), with jα|aj | ≤M for all j. Let H̃0 denote the set of densities

pw, where w ∈ W and

pw(x) =
ew(x)∫ 1/2

−1/2 e
w(y)dy

,

for every x ∈ D = (−1/2, 1/2). Let H0 denote the associated space of sym-
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metrized p̄w. Let ΠH̃ and ΠH be the laws of random densities pW and p̄W ,

respectively.

Corollary 2. Suppose that supi≥1 |Zi| ≤ L and lim infn ρmin(Zn) > 0. If α > 3,

η0 ∈ H0, vη0 > 0, and ΠΘ is compactly supported and thick at θ0, then the random

series prior ΠH for η leads to a posterior for θ that satisfies the BvM assertion

(2.8) in the linear regression model.

4. Efficiency in the Linear Mixed-Effect Model

4.1. Semi-parametric BvM theorem

In this section, we consider the linear mixed-effect model (Laird and Ware

(1982)),

Xij = θTZij + bTi Wij + εij , for i = 1, . . . , n and j = 1, . . . ,mi,

where the covariates Zij ∈ Rp and Wij ∈ Rq are nonrandom, the errors εij form

an i.i.d. sequence drawn from a distribution with density f , and the random-effect

coefficients bi are i.i.d. from a distribution G. Under the Gaussian assumption

on f and G, the linear mixed-effect model has been widely used for analyzing

longitudinal data and repeated measures in many fields; see Diggle et al. (2002),

and the references therein. Many statistical sofeware packages have been devel-

oped to fit this model, among which the R package “lme4” is the most popular;

see Bates et al. (2014). Relaxing the Gaussian assumption on f and G has also

been studied, focusing particularly on robust estimations using Student’s t dis-

tributions; see Welsh and Richardson (1997), Pinheiro et al. (2001), and Song

et al. (2007). In Bayesian contexts, Wakefield et al. (1994) studied a Gibbs sam-

pler algorithm using Student’s t distributions. Note that without the Gaussian

assumption, it is a nontrivial problem to find the maximum likelihood estimator

and confidence intervals, whereas Bayesian computational methods are relatively

easy to extend. In this regard, semi-parametric linear mixed-effect models have

been considered in Bayesian frameworks; see Bush and MacEachern (1996),

Kleinman and Ibrahim (1998), and Kyung et al. (2010). However, these works

suffer from a lack of theory.

We assume that both f and G are symmetric for the identifiability of θ. This

might be a bit stronger than the zero-mean assumption, but offers a reasonable

compromise between model flexibility and theoretical development.

Thus, the nuisance parameter η = (f,G) takes its values in the space

H = F × G, where the first factor F denotes the class of continuously differ-
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entiable densities supported on D = (−r, r); for some r ∈ (0,∞]. Here, f(x) > 0

and f(x) = f(−x) for all x ∈ D, and G is the class of symmetric distributions

supported on [−Mb,Mb]
q, for some Mb > 0. As in the linear regression model, the

compactness condition on the support of G (and possibly F), which is assumed

for technical convenience, is rather strong. Although we leave this technical prob-

lem as future work, the numerical results given in Section show the validity of

the Bayes estimator without such a strong assumption.

The true value of the nuisance parameter is denoted by η0 = (f0, G0). We

write Xi = (Xi1, . . . , Ximi
)T and, similarly, Zi ∈ Rp×mi and Wi ∈ Rq×mi . As in

the linear regression model, we assume that,

|Zij | ≤ L and |Wij | ≤ L, for all i and j. (4.1)

Define

pθ,η,i(x) =

∫ mi∏
j=1

f(xj − θTZij − bTi Wij)dG(bi),

where x = (x1, . . . , xmi
)T ∈ Rmi . Quantities denoted by p

(n)
θ,η , `θ,η,i,

˙̀
θ,η,i and

˙̀(n)
θ,η are defined and used in the same way as in Section . The design matrix

Zn is defined by Zn = n−1
∑n

i=1 ZiZ
T
i . For technical reasons and notational

convenience, we assume that there exists an integer m such that mi = m for all

i. However, the proofs can be extended to general cases relatively easily.

For y = (y1, . . . , ym)T ∈ Rm and w = (w1, . . . , wm) ∈ [−L,L]q×m, define

ψη(y|w) =

∫ m∏
j=1

f
(
yj − bTwj

)
dG(b)

and `η(y|w) = logψη(y|w). Let sη(y|w) = −∂`η(y|w)/∂y ∈ Rm. Then, it is

easily shown that ˙̀
θ,η,i(x) = Zisη

(
x− ZTi θ|Wi

)
∈ Rp. Furthermore, let Ψw

η (·)
denote the probability measure on Rm with density y 7→ ψη(y|w). The metric hn
on Θ×H is defined as in (3.3). With a slight abuse of notation, we also use hn
as a metric on H, defined as hn(η1, η2) = hn((θ0, η1), (θ0, η2)). Let

d2
w(η1, η2) =

∫
|sη1(y|w)− sη2(y|w)|2dΨw

η0(y).

Define Bn(ε) and Vn,η as in (3.2) and (3.4), respectively. Then, it is easily shown

that

Vn,η =
1

n

n∑
i=1

Zivη(Wi)Z
T
i , (4.2)

where vη(w) is the m×m matrix defined as
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vη(w) =

∫
sη(y|w) sη0(y|w)T dΨw

η0(y).

To prove the BvM assertion in the linear mixed-effect model, we need a

condition to ensure that supi≥1 h(ψηn(·|Wi), ψη0(·|Wi)) → 0 as hn(ηn, η0) → 0.

For this purpose, we define Nn,ε(u) to be the number of Wij with |Wij − u| < ε,

and assume that for every (fixed) ε > 0 and u ∈ Rq,

Nn,ε(u) = 0 for all n, or lim inf
n

n−1Nn,ε(u) > 0. (4.3)

Condition (4.3) is easily satisfied, for example, when Wij is an i.i.d. realization

from any distribution. The proof of the following theorem is quite similar to that

of Theorem 2, except for a few technical details.

Theorem 3. Suppose that lim infn ρmin(Zn) > 0, ρmin(vη0(w)) > 0 for every w,

G0 is thick at 0, ΠΘ is thick at θ0, and w 7→ vη0(w) is continuous. In addition,

suppose there exist a large integer N ; a sequence (εn), with εn ↓ 0; and nε2n →∞;

and sequences of partitions Θ = Θn,1 ∪ Θn,2 and H = Hn,1 ∪ Hn,2, such that

η0 ∈ Hn,1 and (3.5) holds for all n ≥ N . For some Mn ↑ ∞, with εnMn → 0, let

Hn = {η ∈ Hn,1 : hn(η, η0) < Mnεn}. Assume there exists a continuous function

Q, such that supw
∫
Q3(x,w)ψη0(x|w)dµ(x) <∞ and,

sup
η∈HN

|`η(x+ y|w)− `η(x|w)|
|y|

∨ |sη(x+ y|w)− sη(x|w)|
|y|

≤ Q(x,w), (4.4)

for all x,w, and sufficiently small |y|, where HN = ∪∞n=NHn. Furthermore,

assume that the class of R2-valued functions,{
w 7→

(
dw(η1, η2), h(ψη1(·|w), ψη2(·|w))

)
: η1, η2 ∈ HN

}
, (4.5)

is equicontinuous, and for sufficiently small ε0 > 0, the stochastic process{
1√
n

(
˙̀(n)
θ,η − P

(n)
0

˙̀(n)
θ,η

)
: |θ − θ0| < ε0, η ∈ HN

}
(4.6)

is asymptotically tight. Then, the BvM assertion (2.8) holds for the linear mixed-

effect model, provided that (4.1) and (4.3) hold.

Let F̃ (resp. G̃) be the set of every f (resp. G) the symmetrization of which,

f̄ (resp. G), belongs to F (resp. G), whereG = (G+G−)/2 withG−(A) = G(−A)

for every measurable set A. For the prior of η, we consider a product measure

ΠF × ΠG , where ΠF and ΠG are the symmetrized versions of the probability

measures ΠF̃ and ΠG̃ on F̃ and G̃, respectively. The following lemma plays the

role of Lemma 1. Denote the Lévy–Prohorov metric between two probability

measures, P1 and P2, as dW (P1, P2).
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Lemma 2. Let H0 = F0 × G0 ⊂ H for some F0 ⊂ F and G0 ⊂ G, with f0 ∈ F0

and G0 ∈ G0. Assume that there exist a continuous function Q0 and a sufficiently

small δ0 > 0, such that∫
sup
w

sup
η∈H0

Q0(x,w)2ψη(x|w)dµ(x) <∞ (4.7)

and

sup
η∈H0

|`η(x+ y|w)− `η(x|w)|
|y|

∨
∣∣∣∣ψη0(x|w)

ψη(x|w)

∣∣∣∣δ0 ≤ Q0(x,w), (4.8)

for all x,w, and sufficiently small |y|. Furthermore, assume that F0 is uniformly

tight, and

sup
f∈F0

sup
x
f(x) ∨ |ḟ(x)| <∞, (4.9)

where ḟ is the derivative of f . Then, on Θ×H0,

sup
n≥1

hn
(
(θ1, η1), (θ2, η2)

)
→ 0, (4.10)

as |θ1 − θ2| ∨ h(f1, f2) ∨ dW (G1, G2)→ 0, and

sup
n≥1

1

n

n∑
i=1

K(pθ0,η0,i, pθ,η,i) ∨ V (pθ0,η0,i, pθ,η,i)→ 0, (4.11)

as |θ − θ0| ∨ h(f, f0) ∨ dW (G,G0)→ 0.

4.2. Symmetric dirichlet mixtures of normal distributions

Let ΠF denote the symmetric Dirichlet mixtures of a normal prior with the

compact support defined in Section 3.2, and let F0 be the support of ΠF in the

Hellinger metric. Let G0 be the support of a prior ΠG on G in the weak topology,

and let H0 = F0 × G0. The following corollary proves the BvM theorem for θ.

Corollary 3. Assume lim infn ρmin(Zn) > 0. With the prior ΠH described above,

the BvM theorem holds for the linear mixed-regression model, provided that η0 ∈
H0, G0 is thick at 0, and ΠΘ is compactly supported and thick at θ0, assuming

(4.1) and (4.3) hold.

Note that the only condition for ΠG is that G0 ∈ G0. Thus, we can consider

both parametric and nonparametric priors for G. For example, we can use the

multivariate normal distribution truncated on [−Mb,Mb]
q or the symmetrized

DP(α,HG) prior with a distribution HG on [−Mb,Mb]
q for ΠG .
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4.3. Random series prior

Let ΠF be the random series prior defined in Section 3.3 and let F0 be

the support of ΠF . Because the distributions in F0 have compact supports,

the distributions in G0 (i.e., the support of ΠG) should have the same support in

order for (4.4) to hold. Hence, we only consider normal distributions truncated on

[−Mb,Mb]
q with positive definite covariance matrices. That is, G0 = {NMb

(0,Σ) :

0 < ρ1 ≤ ρmin(Σ) ≤ ρmax(Σ) ≤ ρ2 < ∞} for some constants ρ1 and ρ2, where

NMb
(0,Σ) denotes the truncated normal distribution. Let ΠH = ΠF ×ΠG .

Corollary 4. Assume lim infn ρmin(Zn) > 0 and ρmin(vη0(w)) > 0 for all w.

With the prior ΠH described above, the BvM theorem holds for the linear mixed-

regression model, assuming provided that η0 ∈ H0 and ΠΘ is compactly supported

and thick at θ0, assuming (4.1) and (4.3) hold.

5. Numerical Study

In previous sections, we have proved the semi-parametric BvM theorems in

regression models of the form (1.1). However, the required conditions are rather

strong; for example, the compactness condition on the mixing distribution of a

DP prior is restrictive. The purpose of this section is to cover the discrepancy

between theory and practice by performing numerical studies using practical and

convenient priors, as well as to illustrate the efficacy of the Bayes estimators

for linear mixed-effect models. We focus on a DP mixture prior because it is

computationally more efficient than a series prior, such as a Gaussian process,

and various tail properties can be covered by mixtures of normal distributions

(Andrews and Mallows (1974); West (1987)). Details of the algorithms used in

this section can be found in Chae (2015).

First, to see the BvM phenomenon, we consider the coverage probability of

credible intervals using the linear regression model in (3.1). In the simulations,

data sets are generated from model (3.1) using several error distributions. Then,

the 95% credible (or confidence) set of θ is obtained using various methods. This

procedure is repeated N = 500 times, and the coverage probability and the

relative lengths of the credible (or confidence) intervals for the first component

of θ are reported.

We compare the results of three methods under five error distributions. In

all simulations, we let Zij = (Zij1, Zij2)T , where the Zijk is generated i.i.d. from a

Bernoulli distribution with success probability 1/2. The true parameter θ0 is set

as (−1, 1)T . For the error distribution, we consider a standard normal distribu-
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Figure 1. Density plots of the error distributions in E4 (left) and E5 (right).

tion (E1), Student’s t distribution with two degree of freedom (E2), uniform(-3,3)

distribution (E3), and two mixtures of normal distributions (E4 and E5). For

the mixtures, we take

p(x) =

K∑
k=1

πk

(
φ1(x− µk) + φ1(x+ µk)

)
,

with K = 4, (µ1, µ2, µ3, µ4) = (0, 1.5, 2.5, 3.5), and (π1, π2, π3, π4) = (0.1, 0.2,

0.15, 0.05) for E4, and K = 4, (µ1, µ2, µ3, µ4) = (0, 1, 2, 4), and (π1, π2, π3, π4) =

(0.05, 0.15, 0.1, 0.2) for E5. These two densities (see Figure 1) have two and three

modes, respectively.

For the estimators of θ, we consider one frequentist estimator (F) (the least-

square estimator) and two Bayesian estimators (B1 and B2). For the two Bayes

estimators, we consider two different priors for the distribution of η: a normal

distribution with mean zero and variance σ2 (B1), and a symmetrized Dirichlet

location mixture of normal distributions with scale parameter σ (B2). A normal

distribution is set as the mean of the Dirichlet process. Independent diffuse

normal and inverse gamma distributions are imposed for the priors of θ and σ2,

respectively.

For each repetition, the sample size n is set as 200. The coverage probabilities

and the relative lengths of the credible (or confidence) intervals are summarized

in Table 1. There is nearly no difference between the results of three methods if

the true error distribution is normal. However, under the model misspecification,
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Table 1. Coverage probability (and the relative lengths of the credible (or confidence)
intervals with respect to B2) of each method F, B1, and B2, using N = 500 repetitions
for each experiment E1–E5.

F B1 B2
E1 0.952 (0.999) 0.950 (0.999) 0.948 (1.000)
E2 0.932 (1.913) 0.930 (1.900) 0.952 (1.000)
E3 0.962 (1.393) 0.960 (1.384) 0.948 (1.000)
E4 0.936 (1.126) 0.932 (1.119) 0.946 (1.000)
E5 0.944 (1.145) 0.944 (1.137) 0.946 (1.000)

the coverage probabilities of the parametric methods F and B1 are far from 95%,

whereas the semi-parametric approaches are always close to 95%. In particular,

the credible (or confidence) intervals based on the normal models underestimate

(overestimate, resp.) the real confidence if the tail of the true distribution is

heavier (lighter, resp.) than the Gaussian tail. Furthermore, if the model is

misspecified, the lengths of the credible (or confidence) intervals of the parametric

methods are always larger than those of the semi-parametric methods, which

explaining the BvM phenomenon.

Next, we provide simulation results to illustrate the semi-parametric efficacy

of the Bayes estimator for the linear mixed-effect model. We specialize the model

introduced in section 4 slightly by considering only the random intercept model,

Xij = θTZij + bi + εij , (5.1)

where bi denotes the univariate random effects that follow a normal distribution

with mean zero and variance σ2
b .

The true parameters θ0 and σ2
0b are set as (−1, 1)T and 1, respectively, and

data sets are generated using the five error distributions and two covariates, as

above. Then, the regression parameters θ are estimated using various meth-

ods. The performance of the estimation methods is evaluated using the mean

squared error, N−1
∑N

k=1 |θ̂
(k)
n − θ0|2, where θ̂

(k)
n is the estimate in the k-th sim-

ulation. We compare the performance of three estimators. For the estimators of

θ, we consider one frequentist estimator (F) (the maximum likelihood estimator

under the assumption of a normal error and a normal random effect, which is

equal to Henderson’s best linear unbiased estimator (Henderson (1975)), and two

Bayesian estimators (B1 and B2) based on normal and nonparametric priors on

f , respectively.

For each of the N = 500 repetitions, we set n = 20 and mi = 5 for all i. The

mean squared errors and relative efficiencies of the three estimators are summa-
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Table 2. Mean squared error (and relative efficiency with respect to B2) of each method
F, B1, and B2, using N = 500 repetitions for each experiment E1–E5.

F B1 B2
E1 0.027 (0.983) 0.027 (0.983) 0.028 (1.000)
E2 0.269 (3.056) 0.263 (2.987) 0.088 (1.000)
E3 0.068 (1.404) 0.068 (1.394) 0.049 (1.000)
E4 0.127 (1.176) 0.124 (1.156) 0.108 (1.000)
E5 0.190 (1.128) 0.188 (1.116) 0.168 (1.000)

rized in Table 2. As in the previous experiments, there is nearly no difference

between the three methods if the true error distribution is normal. Otherwise, B2

outperforms the other two estimators. Note that the loss of efficiency when using

F or B1 compared with using B2 is relatively large when there is tail mismatch

between the prior and the true distribution (E2 and E3). In particular, the loss

becomes very large when the error distribution has a heavier tail than that of

the normal distribution.

Supplementary Materials

The supplementary material contains technical proofs for Sections 3 and 4.
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