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Abstract: Quantile regression estimators at a fixed quantile level rely mainly on a

small subset of the observed data. As a result, efforts have been made to construct

simultaneous estimations at multiple quantile levels in order to take full advantage

of all observations and to improve the estimation efficiency. We propose a novel

approach that links multiple linear quantile models by imposing a condition on

the rank of the matrix formed by all of the regression parameters. This approach

resembles a reduced-rank regression, but also shares similarities with the dimension-

reduction modeling. We develop estimation and inference tools for such models

and examine their optimality in terms of the asymptotic estimation variance. We

use simulation experiments to examine the numerical performance of the proposed

procedure, and a data example to further illustrate the method.
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1. Introduction

Quantile regression models (Koenker and Bassett Jr (1978)) are important

alternatives to mean regression models. When a single quantile relation is mod-

eled, the parameter estimation is naturally more robust than the estimation in the

mean regression model. When multiple quantiles are modeled, a quantile model

provides a more complete description of the relation between the covariates and

the response variable than a mean model does. Quantile models have numerous

applications in the fields of economics and medicine, among others (Cade and

Noon (2003); Yu, Lu and Stander (2003); Wang and He (2007)). In addition

to linear quantile models, many studies have developed various nonlinear, semi-

parametric, and even nonparametric extensions to these models, including He

and Shi (1994); De Gooijer and Zerom (2003); Horowitz and Lee (2005); Kim

(2007); Wang, Zhu and Zhou (2009); Lian (2012); He, Wang and Hong (2013),
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among many others. Bayesian quantile regressions have also received significant

attention in recent years (Yu and Moyeed (2001); Kozumi and Kobayashi (2011)).

In a linear quantile regression, we assume that the conditional τ -th quantile

of the response Y is given by aτ + XTβτ , that is, pr(Y ≤ aτ + XTβτ |X) = τ for

τ ∈ (0, 1). The standard quantile regression estimator at a fixed quantile level

depends only on a small subset of the data, and thus, is known to be unstable in

practice. Theoretically, the quantile estimator has a large asymptotic variance

when the error density at this particular quantile level is small. Therefore, it

is natural to hope that by borrowing information from other quantile levels, we

can potentially improve the estimation efficiency. A method that follows this

rationale is the composite quantile regression (CQR) proposed by Zou and Yuan

(2008a), where the quantile regression errors are assumed to be independent of

the covariates, and thus, all slope parameters βτ are identical for different values

of τ . A similar assumption was used in Zhao and Xiao (2014) with a different

estimation approach. In this case, the authors applied the method to the pre-

diction of stock returns to demonstrate the improved efficiency of estimation.

CQR estimators are more efficient than quantile regression estimators at a single

quantile level. However, the independent regression error assumption more or

less defies the purpose of the original quantile regression model and is somewhat

stringent. The CQR assumption is relaxed in Jiang, Wang and Bondell (2013);

Jiang, Bondell and Wang (2014), who assumed that the quantile slope coefficients

are identical in certain regions of quantiles, instead of for all quantiles. Penal-

ization was then used to identify such regions. Their results showed improved

estimation accuracy over that of single quantile regression model. They also use

simulations and an application to the Barro growth data to show the model’s

improved prediction performance. Taking a different approach, Zou and Yuan

(2008b); He et al. (2016) borrowed information by assuming that the sparsity pat-

terns in a linear quantile regression for neighboring quantile levels are similar.

Furthermore, a penalized regression is used for variable selection. The advantage

of borrowing information from neighboring quantiles in a linear quantile regres-

sion is also recognized in the Bayesian implementation. Using a random-walk

prior distribution instead of an independent prior, Yang and He (2012) imposed

a smoothness condition where the slope parameter βτ is a function of the quantile

level τ . In addition, the authors demonstrated the improvement in performance

over the case without the smoothness condition of the slopes.

In all of these models, the information at different quantile levels is interre-

lated. Hence, the information over a level can be used to benefit that on other
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levels because of the assumption that the quantile regression slope parameters

are identical or similar at different quantile levels. However, we adopt a differ-

ent approach borrowing information from multiple quantiles. Instead of assuming

identical slope parameters, we assume that the slope parameter vectors βτ at dif-

ferent quantile levels τ have a certain linear dependency. In other words, for K

quantile levels 0 < τ1 < · · · < τK < 1, we assume the matrix B ≡ (βτ1 , . . . ,βτK )

satisfies a certain low-rank constraint.

Thus, our approach is related to the reduced-rank regression proposed in

the 1950s (Anderson (1951)), and our goal is to introduce a more parsimonious

model in cases with multiple responses. With reduced degrees of freedom, the

reduced-rank regression has the potential to produce a more efficient estimator of

B, as shown in Anderson (1999). More recent works on reduced-rank regression

include those of Geweke (1996); Bunea, She and Wegkamp (2011, 2012); Chen

and Huang (2012); Chen, Chan and Stenseth (2012); Chen, Dong and Chan

(2013); Lian and Ma (2013).

Next we provide several examples to motivate the low-rank assumption of

B, based on common data-generation procedures. In all of these situations, we

fit a linear quantile regression model. First, we generate data from the relation

Yi = a + XT
i α + εi, where εi is independent of the covariates, as in the CQR

model. When we fit the linear quantile regression model

Yi = aτ + XT
i βτ + ετ,i, (1.1)

where ετ,i = Yi−aτ−XT
i βτ has the τth conditional quantile zero, we obtain βτ =

α. Hence, B has rank 1. Note that the rank 1 constraint on B allows slightly

more flexibility than the CQR model in that it does not require all columns of B to

be identical. This additional flexibility allows other data-generation procedures

to be included. For example, assume that the true relation between Xi and Yi is

Yi = (b + XT
i γ)εi, where, as in CQR, εi is independent of Xi. When we fit the

same linear quantile regression model given in (1.1), we obtain βτ = γF−1ε (τ) if

b+ XTγ ≥ 0, and βτ = γF−1ε (1− τ) if b+ XTγ < 0, where Fε is the cumulative

distribution function and F−1ε is the quantile function of ε. Thus, B also has

rank 1. A more familiar example that combines these two situations is when

the data come from a location-scale structure. Consider (Xi, Yi) that satisfies

Yi = a+ XT
i α+ (b+ XT

i γ)εi, where εi is independent of Xi. At the τth quantile

level, when we fit model (1.1), we obtain βτ = α+F−1ε (τ)γ if b+ XT
i γ ≥ 0, and

βτ = α + F−1ε (1 − τ)γ if b + XT
i γ < 0. Because βτ can be obtained from the

linear combination of α and γ for any τ , the matrix B has rank 2 for data with
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the location-scale structure. Finally, consider the following very general data

structure often used in the sufficient dimension-reduction literature:

Yi = f
(
αTXi, εi

)
, (1.2)

where the error εi is independent of the covariate Xi, and α is a p × d matrix

that spans the dimension-reduction space. Assume the covariates Xi satisfy

the linearity condition, that is, E(X|αTX) is a linear function of αTX. Even

though the true link function is unknown and may be nonlinear in (1.2), we

can still fit the linear quantile regression model given in (1.1). In the online

Supplementary Material, we show that when we minimize the expected check

function ρτ (Y −a−XTβ) with respect to a and β, where ρτ (t) = t{τ−I(t ≤ 0)},
the minimizer βτ ∈ span(α) for all τ ∈ (0, 1). This implies that B has rank at

most d. These examples illustrate that the low-rank phenomenon of B often

arises naturally in practice, and thus is a sensible constraint to impose. Under

the low-rank assumption, the number of parameters in a multiple linear quantile

regression model can be reduced, and hence, we can expect to achieve better

estimation accuracy.

The rest of the paper is organized as follows. In Section 2, we propose

several multiple linear quantile regression estimators that take advantage of the

low-rank property of B. Computational procedures are also described. Section 3

contains the asymptotic properties of these estimators. Section 4 is devoted to

simulation studies that illustrate the improved accuracy of the proposed estima-

tors compared with that of the standard multiple linear quantile estimator and

the estimators proposed in Jiang, Wang and Bondell (2013). Section 5 presents

and analyzes a data example, and Section 6 concludes the paper. The technical

proofs are contained in the Supplementary Material.

2. Methods

Consider independent and identically distributed (i.i.d.) observations (Xi,

Yi), i = 1, . . . , n, where Xi is a p-dimensional vector of covariates and Yi is a scalar

response, and (Xi, Yi) are modeled using the τth linear quantile regression model

(1.1) at a series of quantile levels 0 < τ1 < · · · < τK < 1. The sequence of quantile

levels can either be user specified, depending on the quantiles of interest of the

problem, or follow some default choice, such as τk = k/(K + 1), k = 1, . . . ,K,

with K = 9 or 19 (Zou and Yuan (2008a)). For notational simplicity, we write

aτk ,βτk as ak,βk respectively.
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2.1. Multiple linear quantile regression

When no additional information is available other than the relation described

in the K linear quantile regression models, the natural approach is to estimate

each pair (ak,βk) from the standard procedure of minimizing the check function.

More formally, let a = (a1, . . . , aK)T and B = (β1, . . . ,βK), as defined before.

Then, we can obtain an estimator for a and B by solving

min
a,B

K∑
k=1

n∑
i=1

ρτk
(
Yi − ak −XT

i βk
)
. (2.1)

Note that although we express (2.1) as a single minimization problem, it is ef-

fectively identical to K separate minimization problems, each corresponding to

a single linear quantile regression.

Of course, it is well known that minimizing the check function is not the

best option in terms of estimating the regression parameters. To minimize the

variability of the parameter estimation, we should instead solve the estimation

equations
n∑
i=1

fετ |X(0,Xi)Ziψτ
(
Yi − aτ −XT

i βτ
)

= 0,

where fετ |X is the probability density function (pdf) of ετ conditional on X,

ψτ (t) = τ − I(t ≤ 0), and Zi = (1,XT
i )T (Newey and Powell (1990); Lee (2003)).

When we consider K different quantile levels simultaneously, it is tempting to

simply concatenate theK equations. However, a more careful inspection reveals a

better solution even though there is no apparent relation between the parameters

corresponding to different quantile levels. Because ετ at different values of τ are

correlated, a generalized estimating equation (GEE) principle can be used to

combine the individual quantile level estimating functions in a more efficient

way. Specifically, let ψ(Yi − a − BTXi) ≡ {ψτ1(Yi − a1 −XT
i β1), . . . , ψτK (Yi −

aK −XT
i βK)}T, and let V be the variance covariance matrix of ψ, that is, let

V be a K ×K matrix, where entry (k, k′) is Vk,k′ = min(τk, τk′)− τkτk′ . Then,

we can solve
n∑
i=1

(fi ⊗ Zi)V
−1ψ

(
Yi − a−BTXi

)
= 0 (2.2)

to obtain a more efficient estimator of a and B under a multiple linear quantile

regression without any constraints, where ⊗ is the Kronecker product. Here,

fi ≡ diag{fετk |X(0,Xi), k = 1, . . . ,K}. Although (2.2) yields a more efficient

estimator, it is not as popular a method, even in the single linear quantile re-



1444 LIAN, ZHAO AND MA

gression literature. This is because the estimation involves the conditional pdf

fετ |X(0,X), the estimation of which usually involves a nonparametric device and

is nearly impossible when the dimension of X is large.

One compromise, following the general idea of using a “working model,” is

to replace the quantity fi, which is difficult to estimate, with a guessed model f∗i .

Then, we can calculate an estimator from the equation
n∑
i=1

(f∗i ⊗ Zi)V
−1ψ(Yi − a−BTXi) = 0. (2.3)

If the guessed model f∗i happens to be correct, we obtain an estimator as efficient

as that from (2.2). However, even if we guessed incorrectly, we still obtain a

consistent estimator.

In the special case of using a uniform model for f∗i , we actually obtain a

GEE improved version of (2.1). To see this, we first recognize that minimizing

the check function at a single quantile level can be re-expressed as solving the

estimating equation
n∑
i=1

ψτ (Yi − ak −XT
i βk)Zi = 0.

Thus, we can follow the same “GEE principle” that we used to obtain (2.2) to

take into account the correlation between the K sets of such estimating functions,

yielding the following estimating equation:
n∑
i=1

(IK ⊗ Zi)V
−1ψ

(
Yi − a−BTXi

)
= 0, (2.4)

which is identical to (2.3) for f∗i = I.

Because ψτ (·) is discontinuous, instead of searching for zeros of the estimating

equations, it is better to write estimators such as those described in (2.2), (2.3),

and (2.4) as the solution to a minimization problem, such as

min
a,B

∥∥∥∥∥
n∑
i=1

(f∗i ⊗ Zi)V
−1ψ

(
Yi − a−BTXi

)∥∥∥∥∥ .
To simplify the writing and to concentrate on the main idea, in the following

text, we do not distinguish between the two ways of expressing the estimation

methods.

2.2. Rank-constrained multiple linear quantile regression

When B ∈ Rp×K has rank at most r, where r < min(p,K), we no longer have

(p+1)K free parameters. An immediate strategy, following the idea of minimizing
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the check function, is to modify (2.1) into a constrained minimization:

min
a,B

rank(B)≤r

K∑
k=1

n∑
i=1

ρτk
(
Yi − ak −XT

i βk
)
. (2.5)

A similar strategy can be adopted to modify the estimating equation in the

family of (2.3). We aim to minimize the l2 norm of the (p+ 1)K equations, that

is, we solve the constrained minimization problem

min
a,B

rank(B)≤r

∥∥∥∥∥
n∑
i=1

(f∗i ⊗ Zi)V
−1ψ

(
Yi − a−BTXi

)∥∥∥∥∥
2

to obtain an estimator. The special choices of f∗i = fi and f∗i = IK correspond

to the constrained versions of (2.2) and (2.4). However, in the former case, we

need to estimate the conditional pdf at zero. Hence, the estimator is difficult to

implement.

2.3. Better usage of the reduced-rank constraint

The analyses in Sections 2.1 and 2.2 indicate that the adaption from a

constraint-free multiple linear quantile regression to a reduced-rank case mainly

requires taking into account that we have fewer free parameters, owing to the

restriction on the rank of B. This changes the original optimization from being

unconstrained to being constrained. Furthermore, it causes the original just-

identifying estimating equations to become over-identifying. As a tool to handle

an excessive number of estimating equations, the generalized method of moments

(GMM) is well developed. Thus, we use it here to better handle the reduced-rank

constraint.

To modify the constrained minimization estimator from (2.5), the GMM-

based procedure based on the estimating equations in (2.4) for the reduced-rank

model minimizes

1

n

{
n∑
i=1

(IK ⊗ Zi)V
−1ψ(Yi − a−BTXi)

}T

W

{
n∑
i=1

(IK ⊗ Zi)V
−1ψ(Yi − a−BTXi)

}
, (2.6)

subject to rank(B) ≤ r. Here, W is the (p+ 1)K× (p+ 1)K weight matrix given

by
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W =
[
var
{

(IK ⊗ Zi)V
−1ψ(Yi − a−BTXi)

}]−1
=
[
E
{

(IK ⊗ Zi)V
−1(IK ⊗ Zi)

T
}]−1

.

We call the GMM estimator obtained from (2.6) the GMM reduced-rank (GMM-

RR) estimator. The GMMRR estimator is easy to implement, as shown in Sec-

tion 2.4, and is the main result proposed in this work.

We can also achieve optimal efficiency is to by starting from (2.2). Following

the same GMM idea, the optimal resulting estimator can be obtained from the

minimization problem

min
a,B

rank(B)≤r

1

n

{
n∑
i=1

(fi ⊗ Zi)V
−1ψ(Yi − a−BTXi)

}T

Wf

{
n∑
i=1

(fi ⊗ Zi)V
−1ψ(Yi − a−BTXi)

}
, (2.7)

where the weight matrix in this case is

Wf =
[
E
{

(fi ⊗ Zi)V
−1(fi ⊗ Zi)

T
}]−1

.

We call this the optimal reduced-rank estimator. Note that this estimator is

optimal in terms of both a single quantile regression estimation and combining

multiple quantile requirements under a rank constraint. In addition, it requires

knowledge or the assessment of the conditional pdfs of the quantile regression

errors at zero for each covariate value Xi. To achieve efficiency, these quantities

need to be estimated nonparametrically, which is difficult when the dimension of

X becomes large. Thus, we study this estimator for its theoretical value only,

and do not recommend using it in practice.

Of course, both (2.6) and (2.7) can be viewed as special members of the

general family of GMM estimators

min
a,B

rank(B)≤r

{
n∑
i=1

(f∗i ⊗ Zi)V
−1ψ(Yi − a−BTXi)

}T

W∗
f

{
n∑
i=1

(f∗i ⊗ Zi)V
−1ψ(Yi − a−BTXi)

}
, (2.8)

with

W∗
f =

[
E
{

(f∗i ⊗ Zi)V
−1(f∗i ⊗ Zi)

T
}]−1

.

Here, f∗i is based on the working model of fετ |X. If f∗i = fi, we obtain (2.7), and

if f∗i = IK , we obtain (2.6).
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2.4. Computation

The development in the previous section indicates that, in practice, feasible

reduced-rank estimators are based on either (2.5) or (2.6), with preference given

to (2.6). In fact, the only reason we retain (2.5) is its conceptual simplicity.

However, even the relatively simple constrained minimization problem in

(2.5) is not that straightforward computationally and, thus, requires some care.

Our approach to the computation is to convert (2.5) into an unconstrained mini-

mization problem. Because any matrix B with rank bounded by r can be written

as B = DA, with D ∈ Rp×r and A ∈ Rr×K , (2.5) is equivalent to solving the

following unconstrained minimization problem:

min
a,D,A

K∑
k=1

n∑
i=1

ρτk(Yi − ak −XT
i DAk), (2.9)

where Ak is the k-th column of A. Although the matrices D and A are not

unique, because if (D,A) minimizes (2.9), (DΩ−1,ΩA) does so as well for any

nonsingular matrix Ω. However, we only need to find one such (D,A) pair,

after which, the resulting B will be uniquely determined. Because D is the only

component involved in all K summands, this naturally suggests an optimization

strategy that alternates between updating D and updating each (Ak, ak) for

k = 1, . . . ,K. Specifically, fixing a and A, and using the relation XT
i DAk =

(AT
k ⊗XT

i )vec(D), the optimization with respect to vec(D) is rewritten as

min
vec(D)

K∑
k=1

n∑
i=1

ρτk
{
Yi − ak −

(
AT
k ⊗XT

i

)
vec(D)

}
,

which is essentially identical to the CQR estimation problem and can be solved

using linear programming. On the other hand, after fixing D, the optimization

over ak,Ak at each k involves only the kth summand in (2.9), and therefore is

also a standard linear quantile regression problem. Despite the non-uniqueness of

(D,A), in practice, the algorithm still converges to a minimizer that corresponds

to the choice of the initial value. This alternating minimization algorithm is

commonly used in reduced-rank regressions (Bunea, She and Wegkamp (2012);

Chen and Huang (2012)) and is found to be effective in our implementation.

The same idea of writing B as DA can be used in (2.6). In this case, we

rewrite (2.6) as{
n∑
i=1

(IK ⊗ Zi)V
−1ψ(Yi − a−XT

i DA)

}T

W
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n∑
i=1

(IK ⊗ Zi)V
−1ψ(Yi − a−XT

i DA)

}
, (2.10)

and then minimize (2.10) with respect to (a,D,A) without constraint. Note

that, in practice, we replace W with its sample version

Ŵ =

{
n−1

n∑
i=1

(IK ⊗ Zi)V
−1(IK ⊗ Zi)

T

}−1
,

which needs to be computed only once in the minimization procedure. Because

the target function (2.10) is not continuous, the optimization problem seems im-

possible to solve directly. Thus, we perform a smoothing approximation, which

is often used in the quantile regression literature (Horowitz (1998); Brown and

Wang (2005)). Specifically, we replace the indicator function I(t ≤ 0) contained

in ψ with a normal survival function 1−Φ(t/h), where Φ is the cumulative distri-

bution function (cdf) of the standard normal distribution and h is a bandwidth.

In the numerical studies, we set h = n−1/2. After the smoothing operation,

we can perform the optimization with respect to D and A iteratively using, for

example, the Newton-Raphson procedure.

To minimize both (2.9) and (2.10), the iterative procedures require initial

parameter values. We solve the K separate single linear quantile regression prob-

lems as in Section 2.1 to obtain the initial estimators ã and B̃. Then, we perform

a singular value decomposition on B̃ to obtain B̃ = UΛV. Next, we set D̃ as

the first r columns of U, and Ã as the first r rows of ΛV.

Finally, although we do not recommend implementing the optimal esti-

mator via solving (2.7) in practice, we experiment with it here to illustrate

its performance and to provide it as a benchmark. If the conditional pdfs

fi are available, the same procedure used to minimize (2.6) can be used. To

estimate fi, we adopt the method of Hendricks and Koenker (1992) and esti-

mate fετk |X(0,Xi) using the difference quotient 2hn
{
XT
i (βτk+hn − βτk−hn)

}−1
,

where βτk+hn and βτk−hn are estimated by the standard single linear quantile

regression at quantile levels τk + hn and τk − hn, respectively. Note that al-

though this procedure avoids estimating fi nonparametrically, it implicitly as-

sumes that the quantile relation between X and Y is linear at quantile levels

τk + hn and τk − hn, which may or may not hold in practice. Here, hn is a

bandwidth that approaches zero as n→∞. In our numerical studies, we choose

hn = 1.57n−1/3(1.5φ2{Φ−1(τ)}/[2{Φ−1(τ)}2+1])2/3, following Hall and Sheather

(1988), where φ and Φ are the pdf and cdf, respectively, of the standard normal

distribution.
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2.5. Determine the rank r

We have derived various estimators under a fixed-rank constraint r. In prac-

tice, when data are available to determine r, these methods can be applied di-

rectly. However, when no such data are available, we also need to determine r.

To this end, we treat r as a tuning parameter and select it based on the data.

Regardless of whether we estimate the model parameters using (2.5) or (2.6),

a common feature is that each estimator is the result of minimizing a target func-

tion. In addition, the minimum value of the target function is a monotonically

increasing function of the rank constraint r. Here, r directly determines the

flexibility of the model, reflected in the number of free parameters of the model.

More importantly, when the minimization is conducted under a working rank

constraint r that is satisfied by the true data-generation procedure, we will not

be able to shrink the target function value further by increasing r. On the other

hand, when the minimization is conducted under a working rank constraint r

that is too small, and hence is not satisfied by the true data-generation proce-

dure, we will be able to shrink the target function value further by increasing r.

To see this, note that the target function in (2.5) measures the goodness-of-fit

of the model directly, whereas (2.6) is bounded in probability quantity when r is

sufficiently large and approaches infinity when r becomes too small.

Based on the above considerations, we propose determining the rank con-

straint value r by minimizing the information criterion

BIC(r) = (2n)

K∑
k=1

log

[
n∑
i=1

ρτk

(
Yi − âk −XT

i β̂k

)]
+ log(n)

(
K + pr +Kr − r2

)
(2.11)

if (2.5) is used for estimation, and

BIC(r) =
1

2n

{
n∑
i=1

(IK ⊗ Zi) V−1ψ
(
Yi − â−XT

i B̂
)}T

W

{
n∑
i=1

(IK ⊗ Zi) V−1ψ
(
Yi − â−XT

i B̂
)}

+ log(n)
(
K + pr +Kr − r2

)
(2.12)

if (2.6) is used. Here, K + pr +Kr − r2 is the number of free parameters under

the rank constraint r. We use the same target function to form the criterion as

that used to form the estimator, to keep things simple, but this is not required.

Similar target functions to those used in the above BIC construction are often
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used in quantile regressions and the literature on estimating equations; see, for

example, Jiang, Wang and Bondell (2013) and Wang and Qu (2009). It is easy

to see that the construction in (2.12) is applicable to all estimators of the family

described in (2.8). In Section 3 we show that the rank determination based on

our BIC is consistent.

3. Theoretical Results

3.1. Regularity conditions

Recall that the conditional quantile at quantile level τ is aτ + XTβτ for

τ = τk, k = 1, . . . ,K, where 0 < τ1 < · · · < τK is a fixed sequence of quantile

levels. Furthermore, recall that fετ |X(ετ ,x) and Fετ |X(ετ ,x) are the conditional

pdf and cdf, respectively, of ετ .

We assume the following regularity conditions.

C1. fετ |X(ετ ,x) is continuously differentiable in ετ . There exist constants f, f ′,

such that fετ |X(ετ ,x) < f and |∂fετ |X(ετ ,x)/∂ετ | < f ′. Furthermore, there

exists a constant f > 0, such that fετ |X(0,x) > f for all x in its support

and all τ ∈ {τ1, . . . , τK}.

C2. E‖X‖3 <∞. C ≡ E[ZZT] is positive definite.

C3. The parameter space for θ is a compact set, where θ = (θT1 , . . . ,θ
T
K)T and

θk = (ak,β
T
k )T for k = 1, . . . ,K.

C4. The true slope parameter matrix B = (β1, . . . ,βK) has a rank bounded by

r. Note that B has size p×K; hence, r ≤ min(p,K).

The regularity conditions in (C1) are commonly assumed for quantile regressions

(Wang, Zhu and Zhou (2009); Belloni and Chernozhukov (2011); Wang, Wu and

Li (2012)). (C2) imposes a mild moment condition on the covariates. In (C3),

we require the parameter space to be bounded in order to apply the empirical

process theory. The empirical process theory is needed because our optimization

problem is noncontinuous and nonconvex. Thus, other classical techniques based

on Taylor’s expansion or convexity are not viable. Even in a multiple quantile

regression without rank constraints, the same assumption is needed if we use

(2.3) to perform the estimation, even though the estimator defined in (2.1) does

not require this condition because of the convexity of the target function. (C4)

assumes that the rank constraint is indeed satisfied.
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We define the matrix U ≡ diag(U1, . . . ,UK), which is a (p+1)K× (p+1)K

block-diagonal matrix, where the kth block is Uk = E[fετk |X(0,X)ZZT]. Thus,

U = E{f ⊗ (ZZT)}.

3.2. Estimation properties without rank constraints

We first consider the asymptotic properties of the quantile regression esti-

mator obtained by solving (2.1), which are applicable when no rank constraint

is imposed. The asymptotic property of this estimator is known in the statistics

community, although we were not able to find a documented statement. There-

fore, we state the results in the following theorem, for completeness.

Theorem 1. Let θ̂ be the estimator of θ from (2.1). Then, under Conditions

C1 and C2, when n→∞,
√
n(θ̂ − θ)→ N(0,Σ)

in distribution, where Σ = U−1(V ⊗C)U−1.

The proof of Theorem 1 is outlined in the online Supplementary Material.

Next, we consider the estimator from (2.3). Note that (2.2) and (2.4) are

special cases of (2.3).

Theorem 2. Let the estimator from (2.3) be (â, B̂), alternatively written as θ̂.

Under conditions (C1)–(C3), when n→∞,
√
n(θ̂ − θ)→ N(0,Σ)

in distribution, where

Σ = [E{(f∗ ⊗ Z)V−1(f ⊗ ZT)}]−1E{(f∗ ⊗ Z)V−1(f∗ ⊗ ZT)}
[E{(f ⊗ Z)V−1(f∗ ⊗ ZT)}]−1. (3.1)

As special cases, the asymptotic variance for the estimator from (2.4) is

Σ = E[(IK ⊗ Z)V−1(f ⊗ ZT)]−1E[(IK ⊗ Z)V−1(IK ⊗ ZT)]

E[(f ⊗ Z)V−1(IK ⊗ Z)T)]−1, (3.2)

and the asymptotic variance for the estimator from (2.2) is

Σ = E[(f ⊗ Z)V−1(f ⊗ ZT)]−1. (3.3)

Corollary 1. Among the multiple quantile regression estimators given in (2.1)

(2.2), (2.3), and (2.4), the best estimation variance of θ̂ is given in (3.3).

The result in Corollary 1 provides a lower bound for the multiple quantile es-

timators discussed in Section 2.1, when no additional constraints are imposed on
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the relation between different quantile functions. Although, in theory, the vari-

ance can be as small as that given in (3.3), it is not necessarily easy to construct

the corresponding estimator, owing to the need to estimate the conditional den-

sity fετ |X(0,x). In reality, the variance of the form given in (3.2) is more realistic

and is usually achieved.

3.3. Estimation properties with rank constraints

Here, we further consider the rank-constrained multiple quantile regression

estimators discussed in Sections 2.2 and 2.3. Assume the true rank of the matrix

B is at most r. In this case, we can write B = DA, where D ∈ Rp×r and

A ∈ Rr×K contain totally free parameters. Define the (p+1)K×{K+r(p+K)}
matrix ∆ as

∆ =
∂θ

∂{aT, vecT(AT), vecT(DT)}
.

Theorem 3. Under assumptions (C1)-(C4), the estimator obtained from (2.5)

satisfies
√
n(θ̂ − θ)

d→ N(0,Σ),

when n→∞. Here, Σ = U−1/2PΦU1/2{U−1(V⊗C)U−1}U1/2PΦU−1/2, Φ =

U1/2∆, and PΦ = Φ(ΦTΦ)+ΦT, where (ΦTΦ)+ is the Moore-Penrose inverse

of ΦTΦ.

Remark 1. We decompose the matrix B into DA to explicitly accommodate

the rank constraint. The parameters in A and D can be any values. However,

this decomposition is not unique, and ∆ does not have full column rank. Thus,

we need to use the Moore–Penrose inverse rather than the usual inverse matrix.

Furthermore, it can be shown that Σ depends on ∆ only through its column

span.

Remark 2. When r = min(p,K), ∆ has full row rank and PΦ is the identity

matrix I(p+1)K . Therefore, the variance matrix in Theorem 3 is identical to that

in Theorem 1. This agrees with the fact that when the rank constraint vanishes,

the estimators from (2.1) and (2.5) are identical.

Remark 3. Although (2.5) is a direct implementation of (2.1). while incorpo-

rating the additional rank constraint property, the results in Theorems 1 and 3

indicate that (2.5) does not always yield a gain over (2.1) in terms of the esti-

mation efficiency of θ. Instead, the efficiency gain is in the estimation of U1/2θ,

in that the total estimation variability, described as the trace of the estimation

variance matrix of U1/2θ̂, decreases when the rank constraint is imposed. This
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phenomenon also indicates that the rank constraint is not properly taken into ac-

count to maximally benefit the estimation of the quantile regression parameters

in (2.5).

Now, we consider the estimators obtained from (2.8), of which (2.6) and (2.7)

are special cases.

Theorem 4. Under assumptions (C1)–(C4), the estimator obtained from (2.8)

satisfies
√
n(θ̂ − θ)→ N(0,Σ)

in distribution when n→∞. Here,

Σ = ∆(∆TE[(f ⊗ Z)V−1(f∗ ⊗ ZT)]W∗
f

E[(f∗ ⊗ Z)V−1(f ⊗ ZT)]∆)+∆T. (3.4)

As special cases, the asymptotic variance for the estimator from (2.6) is

Σ = ∆(∆TE[(f ⊗ Z)V−1(IK ⊗ ZT)]W

E[(IK ⊗ Z)V−1(f ⊗ ZT)]∆)+∆T. (3.5)

and the asymptotic variance for the estimator from (2.7) is

Σ = ∆(∆TE[(f ⊗ Z)V−1(f ⊗ ZT)]∆)+∆T. (3.6)

Corollary 2. Among the multiple rank constrained quantile regression estima-

tors given in (2.5), (2.6), (2.7), and (2.8), the best estimation variance of θ̂ is

given in (3.6).

The result in Corollary 2 provides a lower bound for the multiple quantile

estimators, subject to the rank constraint discussed in Sections 2.2 and 2.3.

Although, in theory, the variance can be as small as that given in (3.6), as in

the no-constraint case, it is not necessarily easy to construct the corresponding

estimator, because we have to estimate the conditional density fετ |X(0,x). In

reality, the variance form in (3.5) is more readily achieved.

We can see that Theorems 3 and 4 contain the estimator properties under

the rank constraint corresponding to those stated in Theorems 1 and 2 without

any constraint. It is clear from Remarks 2 and 3 that (2.1) and (2.5) are equiv-

alent when the rank constraint is removed, but that they differ when the rank

constraint holds. The same holds for the pairs (2.8) and (2.3), (2.7) and (2.2),

and (2.6) and (2.4). When the rank constraint is removed, the two estimators in

each pair are identical. However, when the rank constraint holds, the estimators

from (2.8), (2.7), and (2.6) are more efficient than their respective counterparts,
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(2.3), (2.2), and (2.4). These conclusions are easily verified by noting that for

any positive-definite matrix Σ, Σ−1 −∆(∆TΣ∆)+∆T is nonnegative definite

because the matrix(
Σ−1 ∆

∆T ∆TΣ∆

)
=

(
Σ−1/2 0

0 ∆TΣ1/2

)(
I I

I I

)(
Σ−1/2 0

0 Σ1/2∆

)
is nonnegative definite (see the general matrix result in the online Supplement

Material), and ∆ has full row rank when r = min(p,K). We emphasize these

relations in Remarks 4 and 5.

Remark 4. When r = min(p,K), the variance matrices in (3.4), (3.5), and (3.6)

are identical to those in (3.1), (3.2), and (3.3), respectively.

Remark 5. When r < min(p,K), the variance matrices in (3.4), (3.5), and (3.6)

are smaller than those in (3.1), (3.2), and (3.3) respectively. Here, a matrix A1

being smaller than a matrix A2, we mean that A2 −A1 is nonnegative definite.

3.4. Results on rank determination

Finally, we show that the BICs proposed in Section 2.5 can consistently

estimate the rank of the true coefficient matrix B.

Theorem 5. Under assumptions (C1)–(C4), the BIC criteria (2.11) and (2.12)

select the true rank r with probability approaching one when the sample size n

approaches infinity.

The consistency of the two BIC methods in determining the rank indicates

that our rank-constrained quantile estimation procedure can be used in a model

that takes full advantage of the data properties, but without imposing artificial

structures. This is because if the true rank is larger than that under which we

conduct our estimation, bias will occur. However, if the true rank is smaller, we

are not taking full advantage of the data structure, in which case the estimation

variance may be inflated. Note that this inflation may or may not happen for the

estimator in (2.5), but will happen for the estimators in Section 2.3. Here, the

amount of the inflation is the difference between the estimation variances given

in Theorem 4 corresponding to different row sizes of ∆.

4. Simulation Experiments

We now assess the finite-sample performance of the methods discussed in

Section 2. In all of the examples, we set the dimension of βτ to p = 7 and

we use a sample size of n = 200. To obtain the covariates, we first generate
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(X∗i1, . . . , X
∗
ip), i = 1, . . . , n, from a zero-mean multivariate Gaussian distribution

with cov(X∗ij , X
∗
ij′) = 0.3|j−j

′|. Then, we set Xij = Φ(X∗ij), where Φ is the cdf

of the standard normal distribution. The simulation is repeated 100 times in

each setting, and we use the quantile sequence (0.1, 0.2, . . . , 0.9) in all examples;

hence, K = 9.

Example 1. Location-shift model. Yi = 1 + XT
i β + εi, where εi ∼ N(0, 1), i =

1, . . . , n, and β = (1,−1, 1,−1, 1,−1, 1,−1)T. The true rank of the coefficient

matrix is r = 1.

Example 2. Location-scale shift model. Yi = 1+XT
i β+(1+XT

i γ)εi, where εi ∼
N(0, σ2), i = 1, . . . , n, σ = 0.3, β = (2, 2, . . . , 2)T, and γ = (2, 2, 2, 0, 0, 0, 0)T.

The true rank of the coefficient matrix is r = 2.

Example 3. The conditional quantile is given by Qτ (X) = Φ−1(τ) + XTβ +

(XTγ)(Φ−1(τ) − Φ−1(0.49))I{τ < 0.49}, where β = (−2,−1, 0, 1, 2, 3, 4)T and

γ = (2, 2, . . . , 2)T. The true rank of the coefficient matrix is r = 2. We use the

inverse cdf method to generate the responses.

In each of the three examples, we compare the following three sets of esti-

mators. The first set of estimators do not take into account the rank constraints.

They include the standard quantile regression described in (2.1) (NAIVE), quan-

tile estimator based on equation (2.4) (GMM), optimal quantile estimator based

on equation (2.2), where the density values are estimated as in Section 2.4 (OPT),

and optimal estimator without rank constraint based on (2.2), where we substi-

tute in the true density values (ORACLE). The second set of estimators takes

into account the rank constraints. They include the naive reduced-rank estimator

described in (2.5) (NAIVE.RR), proposed reduced-rank GMM estimator in (2.6)

(GMMRR), and optimal reduced-rank GMM estimator in (2.7), substituting in

the estimated (OPT.RR) and true (ORACLE.RR) density values. Finally, we

compute the composite quantile regression estimator of Zou and Yuan (2008a)

(CQR) as the third set of estimators.

We use three measures to examine the performance of the various estimators.

The first measure is the mean squared error of the estimated coefficients

MSE =

K∑
k=1

|âk − a0k|2 + ‖β̂ − β0‖2.

The second measure is the integrated squared error

ISE =
1

n

n∑
i=1

K∑
k=1

{
âk + XT

i β̂ − (a0k + XT
i β0k)

}2
.
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The third measure is the quantile prediction error

PE =
1

500

500∑
i=1

K∑
k=1

ρτk{Y ′i − âk − (X′i)
Tβ̂k},

where (Y ′i ,X
′
i), for i = 1, . . . , 500 are independently generated test data.

The simulation results for the different methods are reported in Table 1. We

see clearly that the reduced-rank methods improve upon the full-rank methods

in all cases. The GMM-based methods are generally better than the methods

based on the check loss functions, although the improvement is not as large as

that of the rank constraints. The optimal estimating equation using the estimated

density values is asymptotically best within the GMM family. However, its finite-

sample performance is similar, or even slightly worse, than the proposed GMMRR

method, where the density values are simply set to one. In fact, even in the

oracle case, where the true density is substituted into the GMM estimator, the

performance is only slightly better than that of the GMMRR. This suggests

that although the estimator (2.7) is theoretically best, the poor estimation of

the density makes it uncompetitive compared with that give in (2.6). Thus we

advocate using (2.6). Finally, CQR is better in Example 1, as expected, because

the model satisfies the requirement set by CQR. However, it performs worse in

the other two examples.

We further investigate the accuracy of the standard error estimates associ-

ated with the proposed GMMRR estimator, described in Theorem 4. Although

the GMMRR estimation does not require the density function of Y , conditional

on the covariates, an evaluation of its variability does require this quantity, which

we estimate as in Section 2.4. The results are presented in Table 2. In the table,

ŝe denotes the estimated standard error based on the asymptotic results in (3.5),

and se denotes the sample standard deviation of the coefficient value based on

100 repetitions. For illustration purposes, we only show the results for β1 and β4
at five quantile levels τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. In general, the estimated stan-

dard errors based on the asymptotic results are reasonably close to their sample

versions.

Finally, we experiment with the methods of determining the rank of the

coefficient matrix. We report the percentage of times that the true rank is selected

by the BIC in Table 3 in the three examples. We can see that the correct rank

is selected most of the time, and that the performance improves as the sample

size increases.

Experiments with sample sizes of n = 100 and 400 show similar comparative
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Table 1. Simulation results for Examples 1-3 based on 100 generated data sets.

Method MSE ISE PE
Example 1
naive(2.1) 14.075(4.493) 6.683(0.713) 2.763(0.075)
GMM(2.4) 13.935(4.472) 6.516(0.664) 2.754(0.072)
OPT(2.2) 13.996(4.504) 6.466(0.694) 2.754(0.073)
ORACLE(2.2) 13.350(4.288) 6.232(0.639) 2.639(0.069)
naive.RR(2.5) 12.057(4.085) 5.522(0.734) 2.523(0.068)
GMMRR(2.6) 10.598(3.824) 4.832(0.710) 2.398(0.067)
OPT.RR(2.7) 10.694(3.841) 4.871(0.750) 2.399(0.065)
ORACLE.RR(2.7) 10.349(3.772) 4.791(0.732) 2.349(0.066)
CQR 8.869(2.832) 4.615(0.562) 2.344(0.063)
Example 2
naive(2.1) 19.663(6.831) 1.479(0.453) 4.137(0.110)
GMM(2.4) 19.150(6.836) 1.423(0.462) 4.128(0.110)
OPT(2.2) 19.206(6.832) 1.437(0.466) 4.129(0.109)
ORACLE(2.2) 18.727(6.555) 1.365(0.444) 3.956(0.105)
naive.RR(2.5) 15.790(6.332) 1.164(0.422) 3.770(0.103)
GMMRR(2.6) 15.382(6.281) 1.140(0.405) 3.714(0.100)
OPT.RR(2.7) 15.490(6.307) 1.146(0.417) 3.736(0.106)
ORACLE.RR(2.7) 15.251(6.121) 1.118(0.391) 3.676(0.097)
CQR 26.261(6.798) 1.598(0.469) 4.324(0.119)
Example 3
naive(2.1) 19.444(6.262) 1.658(0.506) 3.689(0.116)
GMM(2.4) 19.018(6.248) 1.619(0.521) 3.679(0.113)
OPT(2.2) 19.268(6.252) 1.636(0.518) 3.681(0.114)
ORACLE(2.2) 18.802(5.999) 1.567(0.485) 3.528(0.109)
naive.RR(2.5) 16.404(5.912) 1.437(0.478) 3.367(0.104)
GMMRR(2.6) 14.785(5.333) 1.302(0.440) 3.104(0.097)
OPT.RR(2.7) 14.971(5.376) 1.323(0.449) 3.109(0.093)
ORACLE.RR(2.7) 14.679(5.308) 1.282(0.431) 3.049(0.099)
CQR 30.362(4.115) 1.941(0.468) 3.894(0.125)

results for the estimators. The results are not reported here to save space.

5. Real-Data Application

We now use various quantile regression procedures to analyze the Barro

growth data used in Koenker and Machado (1999). The data consist of a pooled

sample of 161 observations related to national growth rates during two periods,

1965–1975 and 1975–1985. The goal of the analysis is to understand the effect

of 13 covariates in terms of their influence on the growth process at different

conditional quantiles levels.
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Table 2. Comparison of the standard error estimates based on asymptotic normality
using (3.5) (ŝe) and the standard error calculated based on the sample standard deviation
of 100 repetitions (se).

Method τ = 0.1 τ = 0.3 τ = 0.5 τ = 0.7 τ = 0.9
Example 1 β1 β4 β1 β4 β1 β4 β1 β4 β1 β4

ŝe 0.206 0.213 0.161 0.157 0.157 0.154 0.158 0.154 0.206 0.213
se 0.223 0.221 0.175 0.174 0.167 0.167 0.175 0.176 0.220 0.220

Example 2 β1 β4 β1 β4 β1 β4 β1 β4 β1 β4
ŝe 0.276 0.282 0.211 0.212 0.211 0.209 0.215 0.209 0.275 0.287
se 0.306 0.303 0.237 0.234 0.228 0.225 0.238 0.237 0.300 0.300

Example 3 β1 β4 β1 β4 β1 β4 β1 β4 β1 β4
ŝe 0.492 0.487 0.353 0.347 0.146 0.157 0.051 0.054 0.067 0.063
se 0.504 0.516 0.341 0.348 0.173 0.175 0.062 0.063 0.067 0.069

Table 3. Percentage of times that the correct rank is selected, for Simulation Examples
1–3.

Example 1 Example 2 Example 3
naive.RR GMMRR OPT.RR naive.RR GMMRR OPT.RR naive.RR GMMRR OPT.RR

76 82 82 79 77 74 68 68 70

Table 4. Prediction errors and selected rank for the Barro data.

naive (2.1) GMM(2.4) OPT(2.2) naive.RR(2.5) GMMRR(2.6) OPT.RR(2.7) CQR
PE 14.31 14.14 14.12 13.74 13.60 13.65 13.90

rank NA NA NA 2.30 2.08 2.20 NA

We apply the standard quantile regression (2.1) and the proposed methods

to the data set. All variables are standardized before the analysis. To compare

the performance of the different methods, we consider predictions in which we

randomly sample 100 observations for training, and use the rest for testing, with

100 repetitions. The prediction errors are reported in Table 4, as well as the

average rank (mostly 2 or 3) selected for each reduced-rank method. We find

that the reduced-rank methods perform uniformly better, with smaller prediction

errors, than the methods that do not take into account the possibility of a reduced

rank.

We provide the estimated coefficients with 95% confidence intervals for the

standard quantile regression (2.1) and the proposed GMMRR method (2.6) in

Figures 1 and 2, respectively. Here, we find that the intervals for the GMMRR

method are generally shorter, resulting in more variables that are statistically

significant. For example, using the standard quantile regression, the last vari-
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Figure 1. Estimates and 95% confidence interval for the Barro data, using the standard
quantile regression in (2.1).

able (growth rate terms trade) is found to be significant at the 0.05 level for

τ = 0.1, 0.2, 0.6, 0.7, 0.8, 0.9, whereas it is found to be significant at all τ ∈
{0.1, . . . , 0.9} when using GMMRR.

6. Discussion

In this study, we investigated a new approach for simultaneously estimating

multiple conditional quantiles, motivated by a reduced-rank regression. We de-
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Figure 2. Estimates and 95% confidence interval for the Barro data, using the GMMRR
method in (2.6).

rived the most efficient estimating equations based on the GMM principle, and

proposed an estimator that is easy to compute and performs nearly as well as

the most efficient estimator. The proposed method improves the efficiency by

sharing information across quantiles levels and is shown empirically to attain

estimates for the coefficients that are more accurate.

Empirically, we do not encounter any problems with numerical convergence.

However, we are not able to provide an additional convergence analysis of the
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algorithm. For (2.9), in addition to the derivative of the loss not being smooth,

another technical problem is to show that the computed quantities are bounded.

For (2.10), the problem is nonconvex in D or A (when the other is fixed), mak-

ing it even more difficult to remark on the convergence. Fortunately, for our

problem, it is trivial to obtain a good initial estimator using a standard quantile

regression, and, thus we are working in a small neighborhood of the optimum.

As a check-loss-based problem (2.9), as suggested by a reviewer, using an exist-

ing MM algorithm for the quantile regression, as in Hunter and Lange (2000),

the quantile loss can be majorized by a quadratic function. Thus, it might be

possible to update B directly, which may make it easier to conduct a convergence

analysis. However, this does not seem to work for the GMM estimator and, thus,

we choose to use the alternating update algorithm for both the loss-based and

the GMM estimator.

In this study, we focus on the prediction performance of the proposed method,

which serves as its main motivation. By the well-known relationships between a

reduced-rank regression and a factor analysis, it is tempting to interpret XTD

as some type of low-dimensional factor. However, it is not clear whether this is

useful in practice, and the fact that solutions with different rank values are not

nested, in general, makes interpretation even more difficult. Further investiga-

tions in this direction may be worthwhile.

Several other extensions of the proposed methodology are of interest. For

example, it can be extended to the semiparametric quantile models studied in

Kim (2007); Wang, Zhu and Zhou (2009); Lian (2012), among others, to improve

efficiency. A problem that is not addressed in the current study is the problem of

crossing quantiles. Many methods have been proposed in the literature to deal

with this (He (1997); Dette and Volgushev (2008); Bondell, Reich and Wang

(2010); Chernozhukov, Fernandez-Val and Galichon (2010)). How to combine

these methods with our approach is an interesting research topic. Finally, it is

worthwhile considering the case when p is diverging with the sample size, given

the level of interest in high-dimensional analyses in the statistical community.

Supplementary Materials

The online supplementary material contains the proofs of all theorems and

corollaries.
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