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Appendix A. The Justification for the Equivalence Be-

tween Bw and Bopt.

Firstly, we will show that

is monotone increasing, so that w is well defined as the zero-crossing of
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Qn(w). To this end, let 0 < w; < we and we have

N1 Py (w3) 4 waNo@n (w2)
>Ny Py (wy) + weNoQn (wy)
=N1Py(wi) + wiNo@n (w1) + (w — w1) NoQn (w1)
> N1 Py (ws) + wiNo@n (w2) + (wa — wi) No@n (w1)

=Qn(w2) > Qn(wr),
where
N
Py(w) = N;'Y YiI(B,,Z; > du).
i=1

Coupled with the fact that Qn(0) = 0 and Qn(+00) = 1, the monotonicity
of Qn(+) suggests that w is well defined and Qx () = O,(N~1), when there
is no tiein 5, Z;,i =1,--- , N.

To show the equivalence between Bw and Bopt, we note that

N N
>N;! {Z Vil (Bl Zi > dop) + 0y (1= Y)I(Bl Zi < dopt)} —my + O, (N7
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Thus

i.e., the sensitivity Py(w) is asymptotically equivalent to that based on Bopt.

Appendix B. Asymptotical Properties of /5’5 and dg

In this Appendix, g(z) = log{1 + exp(—z)}, ¢(z) = —{1 + exp(z)}~! and
g(z) = exp(z){1 + exp(z)} 2. Firstly, we assume the following regularity

conditions:

1. Z;|Y; = 0 and Z;|Y; = 1 are random vector with a bounded support,
which has at least one continuous component and does not belong to

any p — 1 dimensional hyperplane. Here p is the dimension of Z;.
2. For any w > 0,

E[{Y;+ w1 -Yi)}g{(2Y; = 1)(F'Z — d)}]

—E{g(8'Z—d) | Vi = 1} (1 - p) + wE {g(~B'Z, + d) | Y; = 0} p

has an unique minimizer fy(w) and do(w). The existence of a finite
minimizer can be guaranteed by the assumption that there is no hy-
perplane in the feature space separating cases from controls almost

surely. The uniqueness of the minimizer is true, because the second
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derivative of the convex objective function
E (Z5%{Bo(w) 2 — do(w)}|Vi = 1) (1=p)+wE ( ZE2{~fo(w) Zi + do}|Y; = 0) p

is positive definite, when condition (1) holds, where Z; = (—1, Z!)" and

a®? = ad.

) = 5| ez a | ¥ )

is monotone increasing in w. This condition ensures the existence of

the unique root to the estimating equation
colw) = mo.
It is not difficult to show that
B|-a (w2 + dow} | i =]

is increasing in w. To this end, note that for w; > 1ws, we have

(1= D) B [g{Bwr) — do(wn)} | Y = 1] + wip B [g{~Bo(ur) Z + dofun)} | ¥ = 0]
<(1= p)E [g{Bhfan) — do(wa)} | Y = 1] + w19 [g{—Folw) Z + dolwa)} | ¥ = 0
(1= B gB(w) — dolw)} | ¥ = 1]+ {ws + (1w, — w)}pF [g{—Bo(ws) 7 + dy(wa)} | Y = 0]
<(1= B g8 (wr) — dolwn)} | ¥ = 1] + wspF lg{~Bo(wr) 7 + dy(wn)} | ¥ = 0]

+ (w1 — w2)pE [g{—olwa) Z + dofw)} | ¥ = 0)

=L [—g{—Bo(w1)'Z + do(w1)}|Y = 0] > E [~g{—Bo(wa)'Z + do(w2) }|Y = 0],
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where limy_,oo No/N = p. Therefore, it is not an unreasonable assump-

tion that

cow) = (w0 (g (-l Zs + douw)}) | ¥i=0)

is monotone increasing in w as well.

Under the regularity conditions 1-3, there is an unique solution (5%, dg, dg, w s)

to the estimating equation

B [ZYi + (i = 1)}9{(2Y: - )(8'Z - d)}]

] E [{Yi +w(Y: = D}{(2Yi - 1)(8'Z: — d)}]
50(57 d7 d? w) =

Il
e

(S0.1)
E [{1 texp(—d+ B Z)} 1Y = 0] — 70

P(B/Zi—d< Oli/l ZO) )

We further assume that

4 (B, dg,dg,wg)' is an interior point of the parameter space = Qg x

Q4 x Qg% Qy, which is a compact set of RPT2 x R*, where RT = (0, 00).

5 Let Ap be the first order derivative of sqo(/3, d,d, w) at (B%, dg, dg, wg)'.

Ap is a non-singular matrix.
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Let
ZAY; + w(Y; — 1)}g{(2Y; — 1)(8'Z; — d)}
Nl Y+ w(Y; - D3{ Y - 1)(8'Z — d)}

SN(57J7d7w) = Nﬁlz
i=1 {1+exp(—d+ B'Z) 11 —=Y;)/p— mo

I(3'Zi —d < 0)(1=Y;)/p =m0

Z:g(B'Z; — d) —wZig(d — B'Z;)
1(8'Z; — d —wq(d — B'Z;
S 9(p ) NS ng 8'Z;)
Yi=1 0 Ym0 | {1 +exp(—d+BZ)} =7
0 I(,@’Zl—d<0)—7r0

Now consider the classes of functions

1

m 5€QB,dEQd},

G = {I(8> < d) | B ey de ), QQ:{

ﬁeﬂﬁ,deﬁd,weQw},

~ w
QSZ{W ﬁEQ/g,dEQd}y g4:{m

and

wz

The class of functions of {#'z — d|3,d} is VC-class and thus G; is both
P—Glivenko-Cantelli and Donsker. Since ¢(z) = {1+exp(x)}~! is continu-
ous and uniformly bounded by 1, G5 is P—Glivenko-Cantelli as well by the
preservation property of P—Glivenko-Cantelli [Kosorok, 2006]. Similarly,

one may verify that G;,j = 3,4,5 are P—Glivenko-Cantelli. Since ¢(z) is
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Lipschitz continuous, Gy is Donsker as well. Therefore, by the uniform law

of large numbers,

~Sllp |SN(B7J7d7w)_SO(ﬁ7J7d7w)‘ :Op(]')u
(B',d,dw) €Q

which implies the consistency of (Bg, c?s, ds,ws)’ , the solution to the esti-
mating equation Sy(3,d,d, w) = o,(N~'/?) [Kosorok, 2006].

Furthermore, one may show that all the classes of functions G;,; =
1,---,5are Donsker as well, which coupled with the consistency of (Bg, aiq, CZS, wg)'

implies that

VN{Sx(Bs,ds, ds, s)—so(Bs, ds, ds, ws)—Sn(Bs, ds, ds, ws)+s0(Bs, ds, ds, ws)} = 0p(1).

Therefore
Bs — Bs
ds — dg _
AgV'N = —V/NSy(Bs, ds, ds, ws) + op(1).
ds —ds
12)5 — Ws

By central limit theorem, v NSy (8s, dg, ds, wg) converges weakly to a mean

zero Gaussian distribution with a variance-covariance matrix of

_ ®2 - _ ®2 -
Zig(BsZi — ds) —wZ;g(ds — BsZ:)
9(BsZi — ds) —wg(ds — BsZi)
By =(1-p)E Y, =1|+pE Y; =0].
0 {1+ exp(—ds + B5Z:)} "+ — 7o
0 1(BsZ; — ds < 0) — mo
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Therefore, by Sluscky theorem, \/N(B’S — Bs, js —dg,dg — dg, g — wg)

converges weakly to N(0, A" Bo(A4,")).

To justify the resampling method, noting the fact that (3%, CZ*S, ds, wg)

is the root of the estimating equation

ZAY; +w(Y; — 1)}e{(2Y; — 1)(8'Z; — d)}
{Y: +w(Y; — 1)}{(2Y; — 1)(B'Z; — d)}

{1+ exp(—d+B8'Z)} (1 -Y))/p—m

we may use the similar arguments to show that

AgV' N

B — Bs
d% — ds
4 — dg
wg—wg

= —\/NS]*V(Bs,CZS,dS?wS) + OP*<1)'

By central limit theorem, conditional on the observed data, v N S}(,(BS, dg, ds, Ws)

converges weakly to a mean zero Gaussian distribution with a variance-

covariance matrix By as N — oo. Therefore

(

sup | P VN

Bs — Bs
& — ds
ds — ds

<z |(Y,X,),i=1,--- N [=P{N(0,A;'Bo(A;")) <z} |= 0,(1),
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and one may use the conditional variance of v N (Bt — BS) to approximate
that of vV N(3s — Bs) when N is large.

For inferences on the sensitivity and specificity in a future population,
we note that the classes of functions {I(f'z —d > 0)|5 € Qp,d € Qq4}
and {I(f'z —d < 0)|f € Qs,d € Q4} are VC-class and thus Donsker.
Coupled with the root-N consistency of Bg and cis, the stochastic continuity

associated with the Donsker property suggests that

NP {106 2 ds) — P2 2 ds | Yi= 1, fsvds)}
N2 Sy {162 < )~ Pz < ds | Yi= 0,5, )

B NS 1852, > ds) — P(BsZ; > ds | Yi = 1)} f o)

Ny Sy o {1(B52; < ds) — P(857; < ds | Yi = 0)}

Therefore, the asymptotical validity of 1,, and I, , follows from the fact
that 7o — o = 0,(1) and

1 R R
— > I(BsZ; < ds) = m.

N,
03—,

Appendix C. Asymptotical Properties for 3z and a?R(-)

To study the asymptotical property of B r and d r(+), we need the following

notations and regularity conditions:
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1. The unknown parameters of the model are 3, d(r), d(r) and w(n), 7 €
[7r, my]. Without of loss of generality, we assume that the parameter
space is Q = Qg x Blrp, my]®?, where B[rp,my| is the class of all

functions on [, 7] uniformly bounded by a large constant Cj.

2. For any given positive weight function w(-) € B[ry, my], the functional

estimating equation

mO{ﬁv d()v w()}(ﬂ-) =0,m¢€ [ﬂ-Lvﬂ-U]

has an unique solution 3, and d,(-) € Blrp,my|, where mgy : Q —

RP x [*°[rp, my] is the functional: me{S,d(-), w(:)}(7) =

f:LU Zig{B' Z; — d(m) }dr f:: Ziw(m)g{—B'Z; + d(m) }dr
Y, =1|—pE Y, =0

9{B'Z: — d(m)} w(m)g{—B'Z: + d()}

(1-p)E

3. E{[1+ exp{B,Z; — dy(m)}]7!Y; =0} = 7,7 € [r1, my| has an unique
solution for w(-) € Be,[mL, my].

These conditions ensure the existence of the unique solution to the func-

tional estimating equation

mo{B,d(-), w(-)}(r)
mo{B,d(-),d(-),w()}(m) = | B{[1+exp{fZ —d(m)}] |Yi=0} -« | =0,  (S0.2)

P{B'Z; < d(m)|Y; =0} — =
where 7 € [r, 7). Let B, dr(-), dg(-) and wg(-) denote the root. We

further assume that
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4 The linear functional mﬁRdR’dRwa{/B,J(-),d(-),w(-)}(w) : Q0 — RP X

loo[’/TL,WU]®3

STV E{ZE*8 — d(m) Z:}i{BrZs — dr(m)}dn
E[{B Z; — d(m)}i{BrZ: — dr(m)}]
0

0

S22 B [{28%8 - d(m) Z:}i{~BrZi + dr(m)}wr(r) — Zig{~BpZi + dr(r) yuw(r) | dr
E [{8'2: — d(m)}i{~BrZ: + dr(m) ywr(r) — Zig{~BrZi + dr(m)hw(m)] ‘Yi iy
B ({8'Zs + d(m)} exp{BpZ: — dn(m)H[1 + exp{fpZs — dn(m)}) )
B'Pa{Br, dn(m)} + d(m) Pa{Br, dr(m)}
is continuously invertible, where Pg{ﬂR,dR(ﬂ)} and Pd{BR,dR(W)}
are partial derivatives of P(3'Z; < d|Y; = 0) with respect to 5 and d,

respectively.

5 My{B3,d(-),d(-),w()} : Q@ = RP x I®[r,,7y]® is the functional:
My {8, d(-),d(-), w(-)}(w) =

JrY Zig{B'Zi — d(m)}dm =7V Ziw(m)g{ =B Zi + d() }dr
{8 Z; — d(w —w(mg{—=B'Z; + d(m
oo | R | (R)i{—B'Zi + d()}

Y;=1 0 ¥i=0 [1 + exp{f'Z; — J(W)}] = ™

0 Hp'Z: <d(m)} —

and {3, jR(-), dr(+), wr(-)} is the root of the estimating function

My {8, d(-),d(-),w()}(w) = 0,7 € [z, m0].
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Firstly since

‘ Sn(B,d,d,w) — so(B,d, d,w) ‘: 0,(1)

uniformly over any compact set of (3, d, w),

sup ’ N© Z / 2,48 Z: — d(m)}dr — /:U E <Zig'{5'Zi —d(m)) Y = 1) dr

Ssup/
Q 7,

<(my — m) sup
B,d

3 G4 )~ B (50092 - ) | v = 1) ar

NN Zig(B 7= d) ~ B (Zg(8 7 - d) | Vi =1) ‘

=0,(1).
Similarly
sup Z/ m{—B'Zi + d(x )}dﬂ—/WUE(Ziw(w)g{_ﬁ’zi—l—cZ(ﬂ)} | Y; :o) dr

Y Zuw(m)g{—B' 2+ d(x)} — B (Zuw(m)g{—#'Z; + d(x)} | Y; = 0) ‘ dr

Y;=0

Ne' - Zig(~BZi+d) — E (Zig(~8'Z +d) | ¥; = 0)
Yi=0

U
< sup/
Q T,

<(my — 7)sup
B,d

sup |w|

w

=0,(1).
One can also can show that

sup
Qx [ﬂ'L,TK'U]

N Y 02— d(m) ~ B (12— A} Vi =1) | o0

Yi=1
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No' - w(mgl—B'Zi+d(m)} )~ E (w(m)i{~8Z + d(m)}) ': 0p(1),

sup
QX |[nr,mu] g
Lo N };u-m [1+exp{pz,—dm}] B ([1 +exp{BZ —d(m)}] |Yi= 0) ’z 0p(1),
and
) Tup | Ny* Z H{p'Z; —d(r) <0} — P{8'Z; < d(m) | Yi =0} ‘: op(1).
Thus we have

sup |MyAB, d(-), d(-), w()}(m)=mo{B,d(-), d(-), w(-)} ()| = 0,(1).

(ﬂ/vd(')vd(')7w('))leﬂrﬂ-€[ﬂ-Lrﬂ-U}
Coupled with the uniqueness of the solution for the estimating equation

mo{B,d(-),d(-), w(-)}(-) = 0, this uniform convergence implies that

Ba—Bal+ sup {|dn(m)—~da(m)|+lda(m)~da(m) |+ dr(m)—wn(m)[} = o,(1).

m€lmp,my]
One can verify that m{3,d(-), d(-), w(-)} is uniformly Frechet-differentiable
with the continuously invertible derivative of rng 7. 4, {5, d(-),d(-), w(-)}

at (Og, dr, dr,wgr)’. Furthermore, since the process
\/N{SN<9) —s0(0)}

indexed by 6 = (8',d,d,w) € € is asymptotical tight and the natural
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metric induced by the process is equivalent to |0 — 60|, we have

lim lim sup P sup
=0 Nooco |02—61|<5

Furthermore, since

\/N{SN(QQ) — 80(92)} - \/N{SN(Hl) — 80((91)} ‘Z (S) =0.

VN(My —mo){B2,d2("), da(-), wa () }(7) = VN(Mn — mo){B1,dr ("), dr(-), wi () }(r)

sup

m € [np, 7yl B2 — B+
supy |da(m) — dy (v)|+
supg |do(w) — dy (7)[+

supy Jwa(m) — wy(m)| < 8

<C sup
[02—01]|<8

for a positive constant C, v N(My —mg){3,d(-),d(-), w(-)} is also asymp-

\/N{SN(02) —50(62)} — \/N{SN(Ql) —s0(6h)}

totically tight and we have

VN(My—mo){Bk, CiR(‘)»G?R(‘), Wr()}Hm)—VN(My—mo){Br, dr(-), dr(-), wr(-)}(r) |= op(1),

sup
mE[ry,my]

due to the consistency of the estimator (3}, dg, dg(-), wg(-)). Therefore,

we have
Br — Br
dn() — dn( _
VN f’”( R (VN My{Br. dr(). dr(-), wr()} ) +0p(1)
dr(-) — dr(")

Lastly, since we assume that dg(-), dg(-) and wg(-) are uniformly contin-
uous on [rp, my], the process VN My{ g, dr(-), dg(-), wr(-)}(r) is asymp-

totically tight and thus by the functional central limit theorem,

VNMy{Br,dr ("), dr(-), wr(-)}(7), 7 € [rr, 7]
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weakly converges to a mean zero Gaussian process and especially v N (B R—

fr) converges to a multivariate mean zero Gaussian in distribution.

Appendix D. ROC curves from the optimal discrimi-

nant function and standard logistic regression.

To summarize various cases used in the simulation study, we plotted the
ROC curves based on the optimal discriminant function and the linear
combination from fitting the simple logistic regression. The purpose is to
demonstrate the potential space improvement space for the standard logistic
regression in each of the eight cases. To this end, the optimal discriminant
function is defined as the ratio of the density function of cases and that
of controls. The weight used in the linear combination from the standard
logistic regression is obtained by averaging the estimated regression coeffi-
cients from 10,000 simulated data sets. It is clear that while the standard
logistic regression is equivalent to the optimal discriminant function in case
1, it is far from optimal for cases 2-8, and, in particular, for cases 2 and 8.
It is conceivable that linear combination different from that of the standard
logistic regression may better approximate the nonlinear optimal decision

boundary at selected specificity levels. These simulation designs are thus
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interesting cases to study whether the proposed method can improve the

standard logistic regression.

Appendix E. Simulation study for the area under the

partial ROC curve.

We investigated the parallel properties of partial ROC curve-based combi-
nations with the same simulation settings described in the main paper.

In the first set of simulations, we examined the realized area under the
partial ROC curve in settings 1-8 described in the main paper. In this
simulation, we let [rp,my] = [0.85,0.95], over which the area under the
partial ROC curve is of our interest. The results are summarized in Figure
3. In case 1, where the logistic regression is the true model, the proposed
method and logistic regression perform similarly and are better than the
grid search method. In cases 2-4, while the grid search directly maximizing
the area under the partial ROC curve yields the biggest partial area, the
performance of the proposed method is comparable and clearly superior
to that of the logistic regression. In cases 5-8, the proposed new method
also yields substantially bigger areas under the partial ROC curve than the

logistic regression.
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In the second and third sets of simulations, we examined the empirical
performance of the resampling method for Bp and true coverage level of the
credible sets of the area under the partial ROC curve in the same settings as
those studied in the second and third sets of simulations in the main paper,
respectively. The results are reported in Table 1 and Figure 4. In general,
both the confidence interval for Sr and the credible set for the true area
under the partial ROC curve have achieved satisfactory empirical coverage
level, supporting the validity of the proposed inference procedure.

Lastly, in the forth set of simulations, we investigated the ability of
the ROC-based ensemble method for correctly identifying the informative
features. The simulation design is the same as that in the fourth set of
the simulations of the main paper. We have applied the logistic regression
as well as proposed method aiming that maximizes the AUC under the
partial ROC curve corresponding to specificity levels between 85% and 95%.
The results are reported in Table 2. Both methods can identify important
features with high probability and the logistic regression tends to select
more informative as well as noise features than the new method. The true

areas under the partial ROC curves from these two methods are similar.
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Table 1: Simulation results for evaluating the empirical performance of the resampling
method based on 500 simulations: bias, empirical bias; ESE, empirical standard error;
ASE, empirical average of the estimated standard error; COV, the empirical coverage

probability.

ROC-based ensemble

case Br bias ESE ASE COV

3 -0.109 | -0.018 | 0.137 | 0.125 | 92.0%

0.148 | 0.012 | 0.137 | 0.127 | 92.8%

1.051 0.028 | 0.137 | 0.149 | 93.6%

4 0.933 | 0.021 | 0.163 | 0.149 | 94.0%

0.387 | 0.027 | 0.183 | 0.162 | 93.0%

0.929 | 0.024 | 0.159 | 0.149 | 94.2%

6 0.360 | 0.029 | 0.221 | 0.218 | 93.8%
1.496 | 0.036 | 0.274 | 0.256 | 92.8%
0.703 | 0.032 | 0.195 | 0.193 | 94.8%

-1.232 | -0.008 | 0.196 | 0.195 | 94.6%

7 0.360 | 0.029 | 0.221 | 0.218 | 93.8%
1.496 | 0.036 | 0.274 | 0.256 | 92.8%
0.703 | 0.032 | 0.195 | 0.193 | 94.8%

-1.232 | -0.008 | 0.196 | 0.195 | 94.6%
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Table 2: The empirical probabilities of selecting informative as well as noise features
based on lasso-regularized logistic regression and the proposed ROC-based ensemble

method. The average area under the partial ROC curve (AUC) is also reported.

method Emp. Prob. of Being Selected AUC
p Z1 Zo Z3 Z4 Noise markers
Logistic reg. 100% | 100% | 99% | 72% 13% 0.056
ROC-based 100% | 100% | 90% 41% 5% 0.056
Logistic reg. 100% | 100% | 100% | 74% 11% 0.073
ROC-based 100% | 100% | 93% | 45% 3% 0.073
Logistic reg. 100% | 100% | 91% | 65% 9% 0.086
ROC-based 96% | 100% | 80% | 36% 3% 0.087
Bibliography
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Figure 1: ROC curves based on the optimal discriminant function and the linear combi-

nation from fitting the standard logistic regression for cases 1-4: red, standard logistic

regression; black, optimal discriminant function.
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Figure 2: ROC curves based on the optimal discriminant function and the linear combi-

nation from fitting the standard logistic regression for cases 5-8: red, standard logistic

regression; black, optimal discriminant function.
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Figure 3: Boxplots for the empirical distributions of the realized area under the partial

ROC curve of the risk score constructed using three different methods: white, logistic

regression; light gray, new proposal; dark gray, grid search.
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