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Appendix A. The Justification for the Equivalence Be-

tween β̂ŵ and β̂opt.

Firstly, we will show that

QN(w) = N−1
0

N∑
i=1

(1− Yi)I(β̂′wZi ≤ d̂w)

is monotone increasing, so that ŵ is well defined as the zero-crossing of
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QN(w). To this end, let 0 < w1 < w2 and we have

N1PN(w2) + w2N0QN(w2)

≥N1PN(w1) + w2N0QN(w1)

=N1PN(w1) + w1N0QN(w1) + (w2 − w1)N0QN(w1)

≥N1PN(w2) + w1N0QN(w2) + (w2 − w1)N0QN(w1)

=⇒QN(w2) ≥ QN(w1),

where

PN(w) = N−1
1

N∑
i=1

YiI(β̂′wZi ≥ d̂w).

Coupled with the fact that QN(0) = 0 and QN(+∞) = 1, the monotonicity

of QN(·) suggests that ŵ is well defined and QN(ŵ) = Op(N
−1), when there

is no tie in β′wZi, i = 1, · · · , N.

To show the equivalence between β̂ŵ and β̂opt, we note that

N−1
0

N∑
i=1

YiI(β̂′optZi ≥ d̂opt) ≥
N1

N0

PN(ŵ)

=N−1
0 {N1PN(ŵ) + ŵN0QN(ŵ)} − ŵπ0 +Op(N

−1)

≥N−1
0

{
N∑
i=1

YiI(β̂′optZi ≥ d̂opt) + ŵ

N∑
i=1

(1− Yi)I(β̂′optZi < d̂opt)

}
− ŵπ0 +Op(N

−1)

=N−1
0

N∑
i=1

YiI(β̂′optZi ≥ d̂opt) +Op(N
−1).
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Thus ∣∣∣∣ N−1
1

N∑
i=1

YiI(β̂′optZi ≥ d̂opt)− PN(ŵ)

∣∣∣∣= Op(N
−1),

i.e., the sensitivity PN(ŵ) is asymptotically equivalent to that based on β̂opt.

Appendix B. Asymptotical Properties of β̂S and d̂S

In this Appendix, g(x) = log{1 + exp(−x)}, ġ(x) = −{1 + exp(x)}−1 and

g̈(x) = exp(x){1 + exp(x)}−2. Firstly, we assume the following regularity

conditions:

1. Zi|Yi = 0 and Zi|Yi = 1 are random vector with a bounded support,

which has at least one continuous component and does not belong to

any p− 1 dimensional hyperplane. Here p is the dimension of Zi.

2. For any w > 0,

E [{Yi + w(1− Yi)}g{(2Yi − 1)(β′Zi − d)}]

=E {g(β′Zi − d) | Yi = 1} (1− ρ) + wE {g(−β′Zi + d) | Yi = 0} ρ

has an unique minimizer β0(w) and d0(w). The existence of a finite

minimizer can be guaranteed by the assumption that there is no hy-

perplane in the feature space separating cases from controls almost

surely. The uniqueness of the minimizer is true, because the second
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derivative of the convex objective function

E
(
Z̃⊗2
i g̈{β0(w)′Zi − d0(w)}

∣∣Yi = 1
)

(1−ρ)+wE
(
Z̃⊗2
i g̈{−β0(w)′Zi + d0}

∣∣Yi = 0
)
ρ

is positive definite, when condition (1) holds, where Z̃i = (−1, Z ′i)
′ and

a⊗2 = aa′.

3.

c0(w) = E

{
1

1 + exp{β0(w)′Zi − d0(w)}

∣∣∣∣ Yi = 0

}
is monotone increasing in w. This condition ensures the existence of

the unique root to the estimating equation

c0(w) = π0.

It is not difficult to show that

E

[
−g {−β0(w)′Zi + d0(w)}

∣∣∣∣ Yi = 0

]
is increasing in w. To this end, note that for w1 ≥ w2, we have

(1− ρ)E [g{β′0(w1)− d0(w1)} | Y = 1] + w1ρE [g{−β0(w1)′Z + d0(w1)} | Y = 0]

≤(1− ρ)E [g{β′0(w2)− d0(w2)} | Y = 1] + w1ρE [g{−β0(w2)′Z + d0(w2)} | Y = 0]

=(1− ρ)E [g{β′0(w2)− d0(w2)} | Y = 1] + {w2 + (w1 − w2)}ρE [g{−β0(w2)′Z + d0(w2)} | Y = 0]

≤(1− ρ)E [g{β′0(w1)− d0(w1)} | Y = 1] + w2ρE [g{−β0(w1)′Z + d0(w1)} | Y = 0]

+ (w1 − w2)ρE [g{−β0(w2)′Z + d0(w2)} | Y = 0]

⇒E [−g{−β0(w1)′Z + d0(w1)}|Y = 0] ≥ E [−g{−β0(w2)′Z + d0(w2)}|Y = 0] ,
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where limN→∞N0/N = ρ. Therefore, it is not an unreasonable assump-

tion that

c0(w) = E

(
exp (− [g {−β0(w)′Zi + d0(w)}])

∣∣∣∣ Yi = 0

)

is monotone increasing in w as well.

Under the regularity conditions 1-3, there is an unique solution (β′S, d̃S, dS, wS)′

to the estimating equation

s0(β, d̃, d, w) =



E
[
Zi{Yi + w(Yi − 1)}ġ{(2Yi − 1)(β′Zi − d̃)}

]
E
[
{Yi + w(Yi − 1)}ġ{(2Yi − 1)(β′Zi − d̃)}

]
E
[
{1 + exp(−d̃+ β′Zi)}−1 | Yi = 0

]
− π0

P (β′Zi − d < 0|Yi = 0)− π0


= 0. (S0.1)

We further assume that

4 (β′S, d̃S, dS, wS)′ is an interior point of the parameter space Ω = Ωβ ×

Ωd×Ωd×Ωπ, which is a compact set of Rp+2×R+, where R+ = (0,∞).

5 Let A0 be the first order derivative of s0(β, d̃, d, w) at (β′S, d̃S, dS, wS)′.

A0 is a non-singular matrix.
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Let

SN(β, d̃, d, w) = N−1

N∑
i=1



Zi{Yi + w(Yi − 1)}ġ{(2Yi − 1)(β′Zi − d̃)}

{Yi + w(Yi − 1)}ġ{(2Yi − 1)(β′Zi − d̃)}

{1 + exp(−d̃+ β′Zi)}−1(1− Yi)/ρ− π0

I(β′Zi − d < 0)(1− Yi)/ρ− π0



= (1− ρ)N−1
1

∑
Yi=1



Ziġ(β′Zi − d̃)

ġ(β′Zi − d̃)

0

0


+ ρN−1

0

∑
Yi=0



−wZiġ(d̃− β′Zi)

−wġ(d̃− β′Zi)

{1 + exp(−d̃+ β′Zi)}−1 − π0

I(β′Zi − d < 0)− π0


.

Now consider the classes of functions

G1 = {I(β′z ≤ d) | β ∈ Ωβ, d ∈ Ωd}, G2 =

{
1

1 + eβ′z−d

∣∣∣∣ β ∈ Ωβ, d ∈ Ωd

}
,

G3 =

{
z

1 + eβ′z−d

∣∣∣∣ β ∈ Ωβ, d ∈ Ωd

}
, G4 =

{
w

1 + ed−β′z

∣∣∣∣ β ∈ Ωβ, d ∈ Ωd, w ∈ Ωw

}
,

and

G5 =

{
wz

1 + ed−β′z

∣∣∣∣ β ∈ Ωβ, d ∈ Ωd, w ∈ Ωw

}
.

The class of functions of {β′z − d|β, d} is VC-class and thus G1 is both

P−Glivenko-Cantelli and Donsker. Since φ(x) = {1+exp(x)}−1 is continu-

ous and uniformly bounded by 1, G2 is P−Glivenko-Cantelli as well by the

preservation property of P−Glivenko-Cantelli [Kosorok, 2006]. Similarly,

one may verify that Gj, j = 3, 4, 5 are P−Glivenko-Cantelli. Since φ(x) is
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Lipschitz continuous, G2 is Donsker as well. Therefore, by the uniform law

of large numbers,

sup
(β′,d̃,d,w)′∈Ω

|SN(β, d̃, d, w)− s0(β, d̃, d, w)| = op(1),

which implies the consistency of (β̂′S,
ˆ̃dS, d̂S, ŵS)′, the solution to the esti-

mating equation SN(β, d̃, d, w) = op(N
−1/2) [Kosorok, 2006].

Furthermore, one may show that all the classes of functions Gj, j =

1, · · · , 5 are Donsker as well, which coupled with the consistency of (β̂′S,
ˆ̃dS, d̂S, ŵS)′

implies that

√
N{SN(β̂S,

ˆ̃dS, d̂S, ŵS)−s0(β̂S,
ˆ̃dS, d̂S, ŵS)−SN(βS, d̃S, dS, wS)+s0(βS, d̃S, dS, wS)} = op(1).

Therefore

A0

√
N



β̂S − βS
ˆ̃dS − d̃S

d̂S − dS

ŵS − wS


= −
√
NSN(βS, d̃S, dS, wS) + oP (1).

By central limit theorem,
√
NSN(βS, d̃S, dS, wS) converges weakly to a mean

zero Gaussian distribution with a variance-covariance matrix of

B0 = (1−ρ)E





Ziġ(β
′
SZi − d̃S)

ġ(β′SZi − d̃S)

0

0



⊗2

∣∣∣∣ Yi = 1


+ρE





−wZiġ(d̃S − β′SZi)

−wġ(d̃S − β′SZi)

{1 + exp(−d̃S + β′SZi)}−1 − π0

I(β′SZi − dS < 0)− π0



⊗2

∣∣∣∣ Yi = 0


.
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Therefore, by Sluscky theorem,
√
N(β̂′S − β′S,

ˆ̃dS − d̃S, d̂S − dS, ŵS − wS)

converges weakly to N(0, A−1
0 B0(A−1

0 )′).

To justify the resampling method, noting the fact that (β∗S
′, d̃∗S, d

∗
S, w

∗
S)′

is the root of the estimating equation

S∗N(β, d̃, d, w) = N−1

N∑
i=1

Bi



Zi{Yi + w(Yi − 1)}ġ{(2Yi − 1)(β′Zi − d̃)}

{Yi + w(Yi − 1)}ġ{(2Yi − 1)(β′Zi − d̃)}

{1 + exp(−d̃+ β′Zi)}−1(1− Yi)/ρ− π0

I(β′Zi − d < 0)(1− Yi)/ρ− π0


= 0,

we may use the similar arguments to show that

A0

√
N



β∗S − β̂S

d̃∗S −
ˆ̃dS

d∗S − d̂S

w∗S − ŵS


= −
√
NS∗N(β̂S,

ˆ̃dS, d̂S, ŵS) + op∗(1).

By central limit theorem, conditional on the observed data,
√
NS∗N(β̂S,

ˆ̃dS, d̂S, ŵS)

converges weakly to a mean zero Gaussian distribution with a variance-

covariance matrix B0 as N →∞. Therefore

sup
x

∣∣∣∣ P


√
N



β∗S − β̂S

d̃∗S −
ˆ̃dS

d∗S − d̂S

w∗S − ŵS


≤ x

∣∣∣∣ (Yi, Xi), i = 1, · · · , N


−P{N(0, A−1

0 B0(A−1
0 )′) ≤ x}

∣∣∣∣= op(1),
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and one may use the conditional variance of
√
N(β∗S − β̂S) to approximate

that of
√
N(β̂S − βS) when N is large.

For inferences on the sensitivity and specificity in a future population,

we note that the classes of functions {I(β′z − d ≥ 0)|β ∈ Ωβ, d ∈ Ωd}

and {I(β′z − d ≤ 0)|β ∈ Ωβ, d ∈ Ωd} are VC-class and thus Donsker.

Coupled with the root-N consistency of β̂S and d̂S, the stochastic continuity

associated with the Donsker property suggests that

 N
−1/2
1

∑
Yi=1

{
I(β̂′SZi ≥ d̂S)− P (β̂′SZi ≥ d̂S | Yi = 1, β̂S, d̂S)

}
N
−1/2
0

∑
Yi=0

{
I(β̂′SZi ≤ d̂S)− P (β̂′SZi ≤ d̂S | Yi = 0, β̂S, d̂S)

}


=

 N
−1/2
1

∑
Yi=1 {I(β′SZi ≥ dS)− P (β′SZi ≥ dS | Yi = 1)}

N
−1/2
0

∑
Yi=0 {I(β′SZi ≤ dS)− P (β′SZi ≤ dS | Yi = 0)}

+ op(1).

Therefore, the asymptotical validity of Iα,η and Iα,π follows from the fact

that η̂0 − η0 = op(1) and

1

N0

∑
Yi=0

I(β̂′SZi ≤ d̂S) = π0.

Appendix C. Asymptotical Properties for β̂R and d̂R(·)

To study the asymptotical property of β̂R and d̂R(·), we need the following

notations and regularity conditions:
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1. The unknown parameters of the model are β, d̃(π), d(π) and w(π), π ∈

[πL, πU ]. Without of loss of generality, we assume that the parameter

space is Ω = Ωβ × B[πL, πU ]⊗3, where B[πL, πU ] is the class of all

functions on [πL, πU ] uniformly bounded by a large constant C0.

2. For any given positive weight function w(·) ∈ B[πL, πU ], the functional

estimating equation

m̃0{β, d(·), w(·)}(π) = 0, π ∈ [πL, πU ]

has an unique solution βw and dw(·) ∈ B[πL, πU ], where m̃0 : Ω →

Rp × l∞[πL, πU ] is the functional: m̃0{β, d(·), w(·)}(π) =

(1−ρ)E


∫ πU
πL

Ziġ{β′Zi − d(π)}dπ

ġ{β′Zi − d(π)}

∣∣∣∣ Yi = 1

−ρE

∫ πU
πL

Ziw(π)ġ{−β′Zi + d(π)}dπ

w(π)ġ{−β′Zi + d(π)}

∣∣∣∣ Yi = 0

 .

3. E{[1 + exp{β′wZi − dw(π)}]−1|Yi = 0} = π, π ∈ [πL, πU ] has an unique

solution for w(·) ∈ BC0 [πL, πU ].

These conditions ensure the existence of the unique solution to the func-

tional estimating equation

m0{β, d̃(·), d(·), w(·)}(π) =


m̃0{β, d̃(·), w(·)}(π)

E{[1 + exp{β′Zi − d̃(π)}]−1|Yi = 0} − π

P{β′Zi ≤ d(π)|Yi = 0} − π

 = 0, (S0.2)

where π ∈ [πL, πU ]. Let βR, d̃R(·), dR(·) and wR(·) denote the root. We

further assume that
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4 The linear functional ṁβR,d̃R,dR,wR
{β, d̃(·), d(·), w(·)}(π) : Ω → Rp ×

l∞[πL, πU ]⊗3

(1− ρ)



∫ πU
πL

E[{Z⊗2
i β − d̃(π)Zi}g̈{β′RZi − d̃R(π)}]dπ

E[{β′Zi − d̃(π)}g̈{β′RZi − d̃R(π)}]

0

0

∣∣∣∣ Yi = 1



+ρ



∫ πU
πL

E
[
{Z⊗2

i β − d̃(π)Zi}g̈{−β′RZi + d̃R(π)}wR(π)− Ziġ{−β′RZi + d̃R(π)}w(π)
]
dπ

E
[
{β′Zi − d̃(π)}g̈{−β′RZi + d̃R(π)}wR(π)− Ziġ{−β′RZi + d̃R(π)}w(π)

]
−E

(
{β′Zi + d̃(π)} exp{β′RZi − d̃R(π)}[1 + exp{β′RZi − d̃R(π)}]−2

)
β′Ṗβ{βR, dR(π)}+ d(π)Ṗd{βR, dR(π)}

∣∣∣∣∣Yi = 0


is continuously invertible, where Ṗβ{βR, dR(π)} and Ṗd{βR, dR(π)}

are partial derivatives of P (β′Zi ≤ d|Yi = 0) with respect to β and d,

respectively.

5 MN{β, d̃(·), d(·), w(·)} : Ω → Rp × l∞[πL, πU ]⊗3 is the functional:

MN{β, d̃(·), d(·), w(·)}(π) =

(1−ρ)N−1
1

∑
Yi=1



∫ πU
πL

Ziġ{β′Zi − d(π)}dπ

ġ{β′Zi − d(π)}

0

0


+ρN−1

0

∑
Yi=0



−
∫ πU
πL

Ziw(π)ġ{−β′Zi + d(π)}dπ

−w(π)ġ{−β′Zi + d(π)}[
1 + exp{β′Zi − d̃(π)}

]−1

− π

I{β′Zi ≤ d(π)} − π


,

and {β̂′R,
ˆ̃dR(·), d̂R(·), ŵR(·)}′ is the root of the estimating function

MN{β, d̃(·), d(·), w(·)}(π) = 0, π ∈ [πL, πU ].
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Firstly since ∣∣∣∣ SN(β, d̃, d, w)− s0(β, d̃, d, w)

∣∣∣∣= op(1)

uniformly over any compact set of (β, d̃, w),

sup
Ω

∣∣∣∣ N−1
1

∑
Yi=1

∫ πU

πL

Ziġ{β′Zi − d̃(π)}dπ −
∫ πU

πL

E
(
Ziġ{β′Zi − d̃(π)} | Yi = 1

)
dπ

∣∣∣∣
≤ sup

Ω

∫ πU

πL

∣∣∣∣ N−1
1

∑
Yi=1

Ziġ{β′Zi − d̃(π)} − E
(
Ziġ{β′Zi − d̃(π)} | Yi = 1

) ∣∣∣∣ dπ
≤(πU − πL) sup

β,d̃

∣∣∣∣ N−1
1

∑
Yi=1

Ziġ(β′Zi − d̃)− E
(
Ziġ(β′Zi − d̃) | Yi = 1

) ∣∣∣∣
=op(1).

Similarly

sup
Ω

∣∣∣∣ N−1
0

∑
Yi=0

∫ πU

πL

Ziw(π)ġ{−β′Zi + d̃(π)}dπ −
∫ πU

πL

E
(
Ziw(π)ġ{−β′Zi + d̃(π)} | Yi = 0

)
dπ

∣∣∣∣
≤ sup

Ω

∫ πU

πL

∣∣∣∣ N−1
0

∑
Yi=0

Ziw(π)ġ{−β′Zi + d̃(π)} − E
(
Ziw(π)ġ{−β′Zi + d̃(π)} | Yi = 0

) ∣∣∣∣ dπ
≤(πU − πL) sup

β,d̃

∣∣∣∣ N−1
0

∑
Yi=0

Ziġ(−β′Zi + d̃)− E
(
Ziġ(−β′Zi + d̃) | Yi = 0

) ∣∣∣∣ sup
w
|w|

=op(1).

One can also can show that

sup
Ω×[πL,πU ]

∣∣∣∣ N−1
1

∑
Yi=1

ġ{β′Zi − d̃(π)} − E
(
ġ{β′Zi − d̃(π)} | Yi = 1

) ∣∣∣∣= op(1),
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sup
Ω×[πL,πU ]

∣∣∣∣ N−1
0

N∑
Yi=0

w(π)ġ{−β′Zi+d̃(π)}]−E
(
w(π)ġ{−β′Zi + d̃(π)}

) ∣∣∣∣= op(1),

sup
Ω×[πL,πU ]

∣∣∣∣ N−1
0

N∑
Yi=0

(1−Yi)
[
1 + exp{β′Zi − d̃(π)}

]−1

−E
([

1 + exp{β′Zi − d̃(π)}
]−1 ∣∣Yi = 0

) ∣∣∣∣= op(1),

and

sup
Ω×[πL,πU ]

∣∣∣∣ N−1
0

∑
Yi=0

I{β′Zi − d(π) < 0} − P{β′Zi < d(π) | Yi = 0}
∣∣∣∣= op(1).

Thus we have

sup
(β′,d̃(·),d(·),w(·))′∈Ω,π∈[πL,πU ]

|MN{β, d̃(·), d(·), w(·)}(π)−m0{β, d̃(·), d(·), w(·)}(π)| = op(1).

Coupled with the uniqueness of the solution for the estimating equation

m0{β, d̃(·), d(·), w(·)}(·) = 0, this uniform convergence implies that

|β̂R−βR|+ sup
π∈[πL,πU ]

{| ˆ̃dR(π)−d̃R(π)|+|d̂R(π)−dR(π)|+|ŵR(π)−wR(π)|} = op(1).

One can verify thatm{β, d̃(·), d(·), w(·)} is uniformly Frechet-differentiable

with the continuously invertible derivative of ṁβR,d̃R,dR,wR
{β, d̃(·), d(·), w(·)}

at (β′R, d̃R, dR, wR)′. Furthermore, since the process

√
N{SN(θ)− s0(θ)}

indexed by θ = (β′, d̃, d, w)′ ∈ Ω0 is asymptotical tight and the natural
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metric induced by the process is equivalent to |θ2 − θ1|, we have

lim
δ→0

lim sup
N→∞

P

(
sup

|θ2−θ1|≤δ

∣∣∣∣ √N{SN(θ2)− s0(θ2)} −
√
N{SN(θ1)− s0(θ1)}

∣∣∣∣≥ δ

)
= 0.

Furthermore, since

sup

π ∈ [πL, πU ], |β2 − β1|+

supπ |d̃2(π) − d̃1(π)|+

supπ |d2(π) − d1(π)|+

supπ |w2(π) − w1(π)| ≤ δ

∣∣∣∣ √N(MN −m0){β2, d̃2(·), d2(·), w2(·)}(π)−
√
N(MN −m0){β1, d̃1(·), d1(·), w1(·)}(π)

∣∣∣∣

≤ C sup
|θ2−θ1|≤δ

∣∣∣∣ √N{SN (θ2)− s0(θ2)} −
√
N{SN (θ1)− s0(θ1)}

∣∣∣∣
for a positive constant C,

√
N(MN −m0){β, d̃(·), d(·), w(·)} is also asymp-

totically tight and we have

sup
π∈[πL,πU ]

∣∣∣∣ √N(MN−m0){β̂R, ˆ̃dR(·), d̂R(·), ŵR(·)}(π)−
√
N(MN−m0){βR, d̃R(·), dR(·), wR(·)}(π)

∣∣∣∣= op(1),

due to the consistency of the estimator (β̂′R,
ˆ̃dR, d̂R(·), ŵR(·))′. Therefore,

we have

√
N



β̂R − βR
ˆ̃dR(·)− d̃R(·)

d̂R(·)− dR(·)

ŵR(·)− wR(·)


= −ṁ−1

0

(√
NMN{βR, d̃R(·), dR(·), wR(·)}

)
+op(1)

Lastly, since we assume that d̃R(·), dR(·) and wR(·) are uniformly contin-

uous on [πL, πU ], the process
√
NMN{βR, d̃R(·), dR(·), wR(·)}(π) is asymp-

totically tight and thus by the functional central limit theorem,

√
NMN{βR, d̃R(·), dR(·), wR(·)}(π), π ∈ [πL, πU ]
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weakly converges to a mean zero Gaussian process and especially
√
N(β̂R−

βR) converges to a multivariate mean zero Gaussian in distribution.

Appendix D. ROC curves from the optimal discrimi-

nant function and standard logistic regression.

To summarize various cases used in the simulation study, we plotted the

ROC curves based on the optimal discriminant function and the linear

combination from fitting the simple logistic regression. The purpose is to

demonstrate the potential space improvement space for the standard logistic

regression in each of the eight cases. To this end, the optimal discriminant

function is defined as the ratio of the density function of cases and that

of controls. The weight used in the linear combination from the standard

logistic regression is obtained by averaging the estimated regression coeffi-

cients from 10,000 simulated data sets. It is clear that while the standard

logistic regression is equivalent to the optimal discriminant function in case

1, it is far from optimal for cases 2-8, and, in particular, for cases 2 and 8.

It is conceivable that linear combination different from that of the standard

logistic regression may better approximate the nonlinear optimal decision

boundary at selected specificity levels. These simulation designs are thus
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interesting cases to study whether the proposed method can improve the

standard logistic regression.

Appendix E. Simulation study for the area under the

partial ROC curve.

We investigated the parallel properties of partial ROC curve-based combi-

nations with the same simulation settings described in the main paper.

In the first set of simulations, we examined the realized area under the

partial ROC curve in settings 1-8 described in the main paper. In this

simulation, we let [πL, πU ] = [0.85, 0.95], over which the area under the

partial ROC curve is of our interest. The results are summarized in Figure

3. In case 1, where the logistic regression is the true model, the proposed

method and logistic regression perform similarly and are better than the

grid search method. In cases 2-4, while the grid search directly maximizing

the area under the partial ROC curve yields the biggest partial area, the

performance of the proposed method is comparable and clearly superior

to that of the logistic regression. In cases 5-8, the proposed new method

also yields substantially bigger areas under the partial ROC curve than the

logistic regression.



Feature Ensemble Based on Partial ROC Curve

In the second and third sets of simulations, we examined the empirical

performance of the resampling method for β̂R and true coverage level of the

credible sets of the area under the partial ROC curve in the same settings as

those studied in the second and third sets of simulations in the main paper,

respectively. The results are reported in Table 1 and Figure 4. In general,

both the confidence interval for βR and the credible set for the true area

under the partial ROC curve have achieved satisfactory empirical coverage

level, supporting the validity of the proposed inference procedure.

Lastly, in the forth set of simulations, we investigated the ability of

the ROC-based ensemble method for correctly identifying the informative

features. The simulation design is the same as that in the fourth set of

the simulations of the main paper. We have applied the logistic regression

as well as proposed method aiming that maximizes the AUC under the

partial ROC curve corresponding to specificity levels between 85% and 95%.

The results are reported in Table 2. Both methods can identify important

features with high probability and the logistic regression tends to select

more informative as well as noise features than the new method. The true

areas under the partial ROC curves from these two methods are similar.
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Table 1: Simulation results for evaluating the empirical performance of the resampling

method based on 500 simulations: bias, empirical bias; ESE, empirical standard error;

ASE, empirical average of the estimated standard error; COV, the empirical coverage

probability.

ROC-based ensemble

case βR bias ESE ASE COV

3 -0.109 -0.018 0.137 0.125 92.0%

0.148 0.012 0.137 0.127 92.8%

1.051 0.028 0.137 0.149 93.6%

4 0.933 0.021 0.163 0.149 94.0%

0.387 0.027 0.183 0.162 93.0%

0.929 0.024 0.159 0.149 94.2%

6 0.360 0.029 0.221 0.218 93.8%

1.496 0.036 0.274 0.256 92.8%

0.703 0.032 0.195 0.193 94.8%

-1.232 -0.008 0.196 0.195 94.6%

7 0.360 0.029 0.221 0.218 93.8%

1.496 0.036 0.274 0.256 92.8%

0.703 0.032 0.195 0.193 94.8%

-1.232 -0.008 0.196 0.195 94.6%
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Table 2: The empirical probabilities of selecting informative as well as noise features

based on lasso-regularized logistic regression and the proposed ROC-based ensemble

method. The average area under the partial ROC curve (AUC) is also reported.

method Emp. Prob. of Being Selected AUC

ρ Z1 Z2 Z3 Z4 Noise markers

Logistic reg. 100% 100% 99% 72% 13% 0.056

ROC-based 100% 100% 90% 41% 5% 0.056

Logistic reg. 100% 100% 100% 74% 11% 0.073

ROC-based 100% 100% 93% 45% 3% 0.073

Logistic reg. 100% 100% 91% 65% 9% 0.086

ROC-based 96% 100% 80% 36% 3% 0.087
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Figure 1: ROC curves based on the optimal discriminant function and the linear combi-

nation from fitting the standard logistic regression for cases 1-4: red, standard logistic

regression; black, optimal discriminant function.
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Figure 2: ROC curves based on the optimal discriminant function and the linear combi-

nation from fitting the standard logistic regression for cases 5-8: red, standard logistic

regression; black, optimal discriminant function.
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Figure 3: Boxplots for the empirical distributions of the realized area under the partial

ROC curve of the risk score constructed using three different methods: white, logistic

regression; light gray, new proposal; dark gray, grid search.
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Figure 4: Empirical coverage levels for the constructed credible sets of the area under

the partial ROC curve

1 2 3 4 5 6 7 8

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

case

Em
pi

ric
al

 C
ov

er
ag

e 
Le

ve
l


