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Abstract: The purpose of this study is three-fold. First, based on an asymptotic

presentation of initial estimators and model-independent parameters, either hidden

in the model or combined with the initial estimators, a pro forma linear regres-

sion between the initial estimators and the parameters is defined in an asymptotic

sense. Then, a weighted least squares estimation is constructed within this frame-

work. Second, systematic studies are conducted to examine when both the variance

and and the bias can be reduced simultaneously, and when only the variance can

be reduced. Third, a generic rule for constructing a composite estimation and uni-

fied theoretical properties is introduced. Important examples, such as a quantile

regression, nonparametric kernel estimation, and blockwise empirical likelihood es-

timation, are investigated to explain the methodology and theory. Simulations are

conducted to examine the performance of the proposed method in finite sample

situations and a real-data set is analyzed as an illustration. Lastly, the proposed

method is compared to existing competitors.
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1. Introduction

1.1. Motivation and existing methodologies

The enhancement of the efficiency of point estimations in various models

is an important issue. Recently, composition methodologies have received much

attention in the literature. The main goal of these methodologies is to reduce the

estimation variance. Zou and Yuan (2008) proposed a composite quantile linear

regression to reduce asymptotic variance. Kai, Li and Zou (2010) extended this

regression to construct a variance-reduced nonparametric regression estimation.

For further developments of this methodology in semiparametric settings, see Kai,

Li and Zou (2011). To achieve both variance reduction and robustness, Bradic,

Fan and Wang (2011) introduced a penalized composite quasi-likelihood for ultra-
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high-dimensional variable selection by combining several convex loss functions,

and a weighted L1-penalty. Because the common purpose of these methodologies

is to reduce the estimation variance, we call them variance-reduction methodolo-

gies.

Two common approaches used to construct a composite estimator are the

following. The first directly defines a weighted sum of initial estimators as a

composite estimator:

θ̃ =

m∑
k=1

wkθ̂k, (1.1)

if a set of initial estimators θ̂k of the parameter of interest θ can be defined. We

call this a the direct composition. Estimation efficiency is achieved by properly

selecting the weights using a criterion such as minimizing the estimation variance;

see, for example, Koenker (1984) and Kai, Li and Zou (2010). More generally,

minimizing a user-chosen risk, such as the mean squared error, can be adopted

for this purpose; see, Lavancier and Rochet (2016), and the references therein.

A similar methodology, called an aggregation estimation, mimics the estimation

that uses weighted averages. The resulting composite estimator is approximately

at least as good as the best linear or convex combination of initial estimators;

see, for instance, Juditsky and Nemirovski (2000) and Rigollet and Tsybakov

(2007), and the references therein.

Note that when the risk is chosen as the mean squared error, the correspond-

ing methodology can reduce the estimation bias or the estimation variance, or

both, in a balanced manner. However, when the biases of the initial estimators

are of the same magnitude, this methodology often fails to reduce the bias, un-

less the weights are chosen to be negative (see Rigollet and Tsybakov (2007)) or

strong constraints are imposed on the initial estimators (see Sun, Gai and Lin

(2013)).

The second method defines a composite estimator by minimizing a weighted

sum of objective functions. This estimator is expressed as

θ̃ = arg min
θ∈Θ

m∑
k=1

wkgk(Z, θ), (1.2)

provided that the predetermined objective functions gk(Z, θ), k = 1, . . . ,m, con-

tain the same parameter θ. We call this an the objective function composition.

For example, Zou and Yuan (2008) suggested this method for linear quantile

regressions. In their method, objective functions gk are related to different quan-

tiles τk, but the parameter of interest θ is free of τk. Compared with the estimator
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of θ obtained using a single quantile τ , the composite estimator can reduce the

estimation variance when the weights wk are properly selected. However, this

method cannot be extended to handle many other problems. For example, in

a nonparametric quantile regression, we can not obtain a weighted sum of the

objective functions in (1.2) such that the parameter of interest is free of the

quantiles τ . Hear, for different αk (the 100τk% quantile of the model error), the

parameters in the objective functions gk(Z, θk) are θk = r(x) + αk. Although we

want to estimate the nonparametric regression function r(x), it is not easy to

separate r(x) and αk (see Kai, Li and Zou (2010)). Sun, Gai and Lin (2013)

showed that the weights in the above composition asymptotically play no role

in enhancing the estimation efficiency, and the bias cannot be reduced to have a

faster convergence rate to zero.

1.2. The contributions of the proposed method

To explore the proposed methodology, we observe a common feature in sev-

eral cases. That is, a model-independent parameter, say τ , plays a crucial role

in the procedure used to construct a set of initial estimators. This parameter is

not of interest in terms of the estimation. However, using different values τk of

the parameter τ , we can define several initial estimators θ̂τk for the parameter

of interest θ. Then, the first question we need to answer is how to find a model-

independent parameter for this purpose. In some scenarios, it is hidden in the

model, such as the quantile in a quantile regression. However, in other scenar-

ios, particularly in semiparametric and nonparametric setups, such a parameter

does not exist in the model; however, it can be identified from the estimation

procedure. Examples of this include the following: the quantile in parametric

and nonparametric quantile regression estimators (Zou and Yuan (2008); Kai,

Li and Zou (2010)); the bandwidth in the Nadaraya-Watson kernel estimator

(N–W estimator) and the local linear estimator in a nonparametric regression

(Fan and Gijbels (1996)); and the size of the block in a blockwise likelihood

(Kitamura (1997); Lin and Zhang (2001)). For more details, see the examples

given in Section 3.

In this study, we establish a unified relationship between the estimation

and the model-independent parameter under a generic framework. To do so,

we use the asymptotic representation of the initial estimator. Specifically, we

use (or define) the model-independent parameter and the corresponding initial

estimators to build a pro forma linear regression model.

Then, we construct a composite weighted least squares estimator using the
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linear regression model. We call this the asymptotically weighted least squares

(AWLS) method, and the resultant estimation the AWLS estimation. The details

are presented in Sections 2 and 3.

This method has several desirable features:

1. (Generality) The AWLS estimation can be constructed as long as the esti-

mator has an asymptotically linear representation with a known function

of the model-independent parameter.

2. (Variance reduction) By selecting proper weights, the AWLS estimation can

be asymptotically more efficient than those obtained by existing composite

methods, such as the composite maximum likelihood and the composite

least squares methods.

3. (Bias reduction) The AWLS method can, in some cases, reduce the esti-

mation bias in order to accelerate the convergence rate. A nonparametric

estimation is an example.

4. (Generic rule) More importantly, the results explain how the composition

depends on the structure of the asymptotic representation. This has not yet

been explored in the literature. From the construction, we can identify those

cases in which the AWLS method reduces both the bias and the variance

and when it reduces the variance only.

The remainder of this paper is organized as follows. In Section 2, a unified

framework for the AWLS method is introduced, and a generic rule for the method

and its theoretical properties are investigated. In Section 3, two typical models,

the linear quantile regression and nonparametric regression, are used as examples

to illustrate the model described in the previous section. The blockwise empirical

likelihood is also briefly discussed. Numerical studies, including a simulation

study and a real data analysis, are given in Section 4. The proofs of the theorems

are provided in the Supplementary Material.

2. A Generic Framework for the AWLS Method

In this section, we first introduce a generic framework for the construction of

the AWLS estimation, and then investigate its theoretical properties in different

scenarios. Examples are provided in the next section.

2.1. Models and estimations

Given m values τk, k = 1, . . . ,m, of a model-independent parameter τ , the
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m initial estimators θ̂τk of the parameter of interest θ depend on τk, respectively,

and have the following asymptotic representation:

θ̂τk = θ + bnξn(τk) + εn(τk), k = 1, . . . ,m. (2.1)

Here, n is the sample size, the random variable ξn(τ) is a known function of

τ satisfying ξn(τ) = Op(1), and bn is independent of τ and is an infinitesimal

of lower order than the order of εn(τ), in probability. The convergence rate of

θ̂τk − θ is then Op(bn) for all k = 1, . . . ,m. The framework in (2.1) sets a pro

forma linear model with response variables θ̂τk , covariates τk (or ξn(τk)), intercept

θ, and model error εn(τk). Here, the intercept θ is the parameter of interest.

This formula has four possible combinations: bn is either known or unknown,

and ξn(τ) is either free of θ or dependent on θ. When the artificial covariate ξn in

(2.1) is related to θ, we write it as ξn = ξn(τ, θ), for clarity. An initial estimator θ̂

is then required to replace θ. In this case, denote ξ̂n(τ) = ξn(τ, θ̂). We find that

these combinations lead to different asymptotic properties for the corresponding

AWLS estimator. In the following, we separately consider the two cases when bn
is known or unknown because the corresponding AWLS estimators have different

expressions. However, for ξn, we only give the estimators when ξn depends on θ.

When ξn is free of θ, the AWLS estimators have the same forms if ξ̂n is replaced

by ξn.

Case 1. (bn is unknown). An AWLS estimator θ̃ of θ can be constructed as

the first component of the following minimizers:(
θ̃

b̃n

)
= arg min

θ,bn

1

m

m∑
k=1

wk(θ̂τk − θ − bnξ̂n(τk))
2, (2.2)

where wk, k = 1, . . . ,m, are weights satisfying
∑m

k=1wk = 1. The estimator has

the following closed form:

θ̃ =

m∑
k=1

wkθ̂τk − b̂n
¯̂
ξn, (2.3)

where
¯̂
ξn =

∑m
k=1wkξ̂n(τk) and b̂n =

(∑m
k=1wkθ̂τk

(
ξ̂n(τk)−

¯̂
ξn

))
/
(∑m

k=1wk(
ξ̂n(τk)−

¯̂
ξn

)2 )
.

Case 2. (bn is known). By the weighted least squares, the AWLS estimator

can be expressed as

θ̃ =

m∑
k=1

wk

(
θ̂τk − bnξ̂n(τk)

)
, (2.4)

where wk, k = 1, . . . , m, are weights satisfying
∑m

k=1wk = 1.
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2.2. Properties

We now investigate the asymptotic properties of the AWLS estimators de-

fined in (2.3) and (2.4).

2.2.1. Convergence rate

First, consider the case where ξn(τ) is free of θ. We define the regenerated

weights as

w̃k = wk − ξ̄n
wk(ξn(τk)− ξ̄n)∑m
k=1wk(ξn(τk)− ξ̄n)2

, k = 1, . . . ,m. (2.5)

These are free of the initial estimators and still satisfy
∑m

k=1 w̃k = 1, but are not

necessarily positive. This yields the following theorem.

Theorem 1. When ξn(τ) is free of θ, the AWLS estimators θ̃ defined in (2.3)

and (2.4) satisfy

θ̃ − θ =

m∑
k=1

w̃kεn(τk),

where εn(τk) are the error terms in the asymptotic representation defined in (2.1).

Remark 1. The theorem yields an important conclusion: when ξn is free of

the parameter of interest, the convergence rate of the AWLS estimator can be

accelerated. More precisely, θ̃ − θ has the same convergence rate as that of the

error term εn(τ).

Now, consider the case where ξn(τ) depends on θ. We need the following

condition:

(C1) There are constants c1 > 0 and c2 > 0, such that when n is sufficiently large,

c1 ≤ |bnξ′n(τ, θ)| ≤ c2 and |bnξ′′n(τ, θ)| ≤ c2, in probability, where ξ′n(τ, θ)

and ξ′′n(τ, θ) are, respectively, the first- and second-order partial derivatives

of ξn(τ, θ) with respect to θ.

Condition (C1) is usually mild. For example, when the asymptotic representa-

tion (2.1) is obtained using the Bahadur representation or the asymptotic linear

estimation (van der Vaart (1998) and Bickel et al. (1998)), this condition holds

under some regularity conditions.

Theorem 2. When ξn(τ) depends on θ and condition (C1) holds, then the AWLS

estimators θ̃ in (2.3) and (2.4) have the same convergence rate, in probability, as

that of the initial estimator θ̂τ .
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Remark 2. Theorem 1, Theorem 2, and Theorem 3 show that the asymptotic

representation can determine whether an AWLS estimator can reduce both the

bias and the variance. Here, we choose the representation in which ξn is free of

the parameter of interest, if possible.

2.2.2. Variance reduction

Now, we consider the variance reduction issue. When ξn(τ) is free of θ,

Theorem 1 shows that the AWLS estimator has a faster convergence rate than

the initial estimator and, thus, reduces the variance, asymptotically. Consider

the case when ξn(τ) depends on θ. The following condition is assumed:

(C2) There is a function g(τ), such that g(τ) 6= 0 and bnξ
′
n(τ) = g(τ) +Op(bn).

From model (2.1) we can see that this condition is mild as well. In a parametric

situation, for instance, bn = 1/
√
n and g(τ) is the expectation of bnξ

′
n(τ).

Let wg = (w1g(τ1), . . . , wmg(τm))T and 1 be an m-dimensional column vec-

tor with all components equal to one. We have the following theorem.

Theorem 3. If ξn(τ) depends on θ and (C1) and (C2) hold, then the AWLS

estimators θ̃ defined in (2.3) and (2.4) satisfy

θ̃ = −
m∑
k=1

wkg(τk)(θ̂τk − θ) + bnOp(θ̂τk − θ) + op(θ̂τk − θ) + εn(τk),

where bnOp(θ̂τk − θ) + op(θ̂τk − θ) + εn(τk) is an infinitesimal of higher order than

the first term. In particular, if θ is a scale parameter of interest, the asymptotic

variance of
√
n θ̃ defined in (2.3) and (2.4) can be expressed as

lim
n→∞

nV ar(θ̃) = wT
g lim Σθ̂wg,

where lim Σθ̂ is the asymptotic covariance matrix of
√
n(θ̂τ1 , . . . , θ̂τm)T . Moreover,

the optimal weight vector (written as w∗) has the form: w∗ = (1T (lim Σθ̂)−1

1)−1(lim Σθ̂)−11. Then, limn→∞ V ar(θ̃) ≤ limn→∞ V ar(θ̂τk) for k = 1, . . . ,m.

Remark 3. (a) Optimal weights. In Theorem 3, the optimal weight vector

w∗ = (w∗1, . . . , w
∗
m)T = (1T (lim Σθ̂)−11)−1(lim Σθ̂)−11 is related to the unknown

covariance matrix lim Σθ̂ and vector wg = (w1g(τ1), . . . , wmg(τm))T . These can

be consistently estimated using classical methods, such as the jackknife method

(see, e.g., Shao and Wu (1989)).

(b) Weight selection under the multivariate θ case. For scalar θ, a closed

representation of the optimal weight vector w∗ is derived in Theorem 3. When

θ is a vector, we have
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lim
n→∞

Cov(θ̃) =

m∑
j=1

m∑
k=1

wjg(τj)wkg(τk) lim
n→∞

Cov(θ̂τj , θ̂τk).

In general, a closed solution for the optimal weight might not be attained, unless

a numerical approximation is adopted. However, if the initial estimators satisfy

HCov(θ̂τk , θ̂τj )H → akjD, (2.6)

where H = diag(nδ1 , . . . , nδp) with 0 < δj ≤ 1/4, ajk are constants and D is

a positive definite matrix, and both are given or estimable, we can obtain a

closed solution. For example, the asymptotic covariances of the quantile re-

gression estimators satisfy this; see the results in Section 3. In this situation,

by the same argument used above, the closed representation of the optimal

weight vector is w∗ =
(
1TD−11

)−1
D−11. When (2.6) does not hold, the fol-

lowing suboptimal weights can be considered. Note that limn→∞ tr(Cov(θ̃)) =∑m
j=1

∑m
k=1wjg(τj)wkg(τk) limn→∞ tr (Cov(θ̂τj , θ̂τk)). A suboptimal weight vec-

tor can be obtained as w∗S =
(
1TA−1

S 1
)−1

A−1
S 1, where

AS =
(

lim
n→∞

tr(Cov(θ̂τj , θ̂τk))
)p
j,k=1

.

2.3. Choices of m and values of τ

In practice, we must choose the number m of initial estimators to be com-

bined and the values of the model-independent parameter τ . Here, m can be

regarded as a tuning parameter, because its choice influences the performance

of the AWLS estimator. It is challenging to use a criterion to select an optimal

m and values of τ , because they appear model-dependent. Thus, the choices

presented here are empirical. As shown by Zou and Yuan (2008), for a composite

quantile regression, a value of 19 for m is practically useful. Thus, the equally

spaced quantiles τk = k/(m+1) amount to using the 5%, 10%, . . . , 95% quantiles.

In the simulations, we find that the AWLS estimator for the composite quantile

regression is not sensitive to the choice of m and τk. If τ is the bandwidth h in

the kernel estimation (discussed in the next section) or the number of knots in

the B-spline estimation, the AWLS estimator is reasonably affected by the choice

of h because the bandwidth often affects the performance of a nonparametric es-

timation. However, we show that the AWLS is not very sensitive to m when hk
is around the optimal bandwidth. In practice, we may determine a data-driven

bandwidth first, and then take values τk such that hk is around this bandwidth.

In the simulation studies in Sec. 4, we discuss this issue in further detail.

On the other hand, although we have a generic framework for the com-

position, the model-independent parameter selection is, in general, a challenge,
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because it relies on the asymptotic presentation of the initial estimator and the

relationship between this parameter and the initial estimators. Further research

is required to determine whether there is a general way to select this parameter,

even when the user has little knowledge about the asymptotics.

3. Examples

In this section, we use linear quantile and nonparametric regressions, and

a blockwise empirical likelihood estimation as examples to verify the methods

and the theory proposed in the previous section. The conclusions drawn below

can be viewed as direct corollaries of those proposed in Section 2. However, for

validation and further discussion, we still provide detailed conclusions and proofs.

Moreover, for these specific models, several special results are obtained.

3.1. AWLS for linear quantile regression

Consider the following linear regression model:

Y = βTX + e.

Suppose that the conditional 100τ% quantile of Y |X can be expressed as the

following linear regression form: βTX + ατ , where ατ is the 100τ% quantile

of Y − βTX. See Koenker (2005) for further details. The quantile regression

estimator of (ατ , β
T )T can be obtained as(
α̂τ
β̂τ

)
= arg min

ατ ,β

n∑
i=1

ρτ (Yi − ατ − βTXi),

where ρτ (t) = τt+ + (1− τ)t− is the so-called check function, with + and − de-

noting the positive and negative parts, respectively. Denote Fi(y) = F (y|Xi) =

P (Yi < y|Xi), and suppose that Fi(y), i = 1, . . . , n, are independent and iden-

tically distributed (i.i.d.) with a common density function f(y) > 0, for all

y. Under some regularity conditions (see, e.g., Bahadur (1966); Kiefer (1967);

Koenker (2005)), for different quantile positions τ = τk, k = 1, . . . ,m, we have

the following Bahadur representation:

β̂τk = β +
1

fe(ατk)n
D−1
n

n∑
i=1

Xi(τk − I(Yi ≤ ατk + βTXi)) + εn(τk)

=: β + bnξn(τk) + εn(τk), k = 1, . . . ,m, (3.1)

where Dn = (1/n)
∑n

i=1XiX
T
i , fe(·) is the density function of error e = Y −βTX,

εn(τk), k = 1, . . . , m, are of order Op(n
−3/4), and bn and ξn(τk) are defined,
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respectively, as bn = 1/
√
n and

ξn(τk) =
1

fe(ατk)
√
n
D−1
n

n∑
i=1

Xi(τk − I(Yi ≤ ατk + βTXi)).

It can be seen that ξn(τk) = Op(1), and bn is of order n−1/2, an infinitesimal of

lower order than that of εn(τk). We first suppose fe(·) is a given function. Then,

the asymptotic representation (3.1) can be included in the framework of (2.1).

When ατk and β in ξn(τk) are replaced by their consistent estimators α̂τk and

β̂τk , respectively, from (2.4), the AWLS estimator of β has the following form:

β̃ =

m∑
k=1

wk

{
β̂τk −

1

fe(α̂τk)n
D−1
n

n∑
i=1

Xi(τk − I(Yi ≤ α̂τk + β̂TτkXi))

}
. (3.2)

By comparing the above with the Bahadur representation (3.1), we see that in

addition to the initial estimators β̂τk , the main term bnξn(τk) plays a key role in

constructing the AWLS estimator in (3.2). This term is related mainly to the

directional derivative of the objective function. This method can be extended

to the case when the density function fe(·) is unknown, but can be consistently

estimated. For ease of exposition, we only present the result with a given fe(·)
because, by the Slutsky theorem, the asymptotic distribution of β̃ is changeless

when a consistent estimator of fe(·) is used. We now investigate the properties

of the above AWLS estimator. To this end, we assume the following conditions:

(C3) max1≤i≤n ‖Xi‖ ≤ cnν , for some constants c > 0 and 0 ≤ ν < 1/2, where

‖ · ‖ is the Euclidean norm and there exists a positive definite matrix D

such that D = limn→∞Dn.

(C4) The density function fe(·) of the error e is continuously differentiable and

positive at ατk for k = 1, . . . , m.

The following theorem states the asymptotic properties of the AWLS esti-

mator.

Theorem 4. Under conditions (C3) and (C4), the AWLS estimator (3.2) has

the following asymptotic representation:

β̃ − β = D−1 1

n

n∑
i=1

Xi

m∑
k=1

wk
fe(ατk)

(τk − I(Yi ≤ ατk + βTXi)) +Op(n
−3/4).

Consequently, √
n(β̃ − β)

D−→ N
(
0,wTA0wD

−1
)
,

where w = (w1, . . . , wm)T and A0 =
(
(min(τk, τj)(1 − max(τk, τj)))/(fe(ατk)
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fe(ατj ))
)m
k,j=1

.

This theorem can be thought of as a corollary of Theorem 3 and Remark 3(b),

because the initial estimator β̂τ satisfies (2.6) (see Koenker (2005)). Moreover,

from the theorem, we have the following findings.

Remark 4. (1) When wk is particularly chosen as wk = fe(ατk)/
∑m

k=1 fe (ατk),

the limiting variance of the AWLS estimator (2.2) is identical to that in Zou and

Yuan (2008). In other words, we can have a smaller limiting variance by choosing

proper weights. The optimal weight vector is w∗ = min1Tw=1 w
TA0w. Lagrange

multipliers lead to the optimal weight vector and the optimal limiting variance,

respectively, in the following closed forms:

w∗ =
(
1TA−1

0 1
)−1

A−1
0 1, w∗TA0w

∗D−1 =
(
1TA−1

0 1
)−1

D−1.

This is the same as the optimal weight in Remark 3(b). For a univariate lin-

ear regression, Koenker (1984) obtained the above estimation efficiency using

a direct composition. However, the computation in the latter method is not

easy to implement because the optimal weights are the solutions to m nonlinear

equations.

(2) When the density function fe is unknown, the matrix A0 can be estimated

using a plug-in estimator f̂e of fe. For example, as shown by Sun, Gai and Lin

(2013), fe(·) can be consistently estimated by the kernel estimator as f̂e(t) =

(1/n)
∑n

i=1Kh(êi−t), where êi = Yi−β̂TXi, with β̂ a root-n consistent estimator;

Kh(t) = (1/h)K(t/h), with K(·) a kernel function; and h is the bandwidth. With

the plug-in estimator f̂e, the property of the weight vector w∗ is not discussed

here.

3.2. AWLS estimation for a nonparametric regression

Consider the following nonparametric regression:

Y = r(X) + e,

where r(x) is a smooth nonparametric regression function for x ∈ [0, 1], and the

error term satisfies E(e|X) = 0 and V ar(e|X) = σ2. We now consider the AWLS

kernel estimator of r(x) for x ∈ (0, 1). As is known, x ∈ (0, 1) is not a necessary

constraint; that is, we use it only for simplicity of presentation. In this section,

we give two types of composite estimators in order to explore how the estimation

efficiency depends on the structure of the asymptotic representation.

Type-1: Expectation-based estimator. It is well known that under certain reg-

ularity conditions, such as the second-order continuous and bounded derivatives,

a commonly used kernel estimator r̂τ (x) (e.g., N–W estimator) of the regression
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function r(x) has the mean value:

E(r̂τ (x)) = r(x) +
1

2

[
r′′(x) + 2

r′(x)f ′X(x)

fX(x)

]
µ2(K)h2 + o(h2), (3.3)

where fX(x) is the density function of X, x ∈ (0, 1), µ2(K) =
∫
u2K(u)du, K(x)

is a kernel function, and h is a bandwidth satisfying h = τn−η, for constants

τ > 0 and 0 < η < 1. Then, for different values of τ = τk, k = 1, . . . ,m, we have

the following asymptotic representation: for x ∈ (0, 1) and k = 1, . . . ,m,

r̂τk(x) = r(x) +

[
1

2

{
r′′(x) + 2

r′(x)f ′X(x)

fX(x)

}
µ2(K)n−2η

]
τ2
k + εn(τk)

=: r(x) + bnξn(τk) + εn(τk), (3.4)

where bn = (1/2){r′′(x) + 2 (r′(x)f ′X(x)/fX(x))}µ2(K)n−2η and ξn(τk) = τ2
k .

Under the regularity condition in (C5), specified later, εn = r̂τ (x)− E(r̂τ (x)) +

o(n−2η). This has a mean of order o(n−2η) and a variance of order O(n−(1−η)),

and thus is of order op(n
−2η), provided that 0 < η < 1/5. The asymptotic

representation (3.4) has the same framework as that in (2.1). From (2.3), the

resulting AWLS estimator of a = r(x) is

r̃1(x) =

m∑
k=1

wkr̂τk(x)− b̃n(x)τ2, (3.5)

where τk is chosen to form bandwidths hk = τkn
−η, k = 1, . . . ,m, b̃n(x) =(∑m

k=1wkr̂τk(x)(τ2
k − τ2)

)
/
(∑m

k=1wk(τ
2
k − τ2)2

)
, and τ2 =

∑m
k=1wkτ

2
k . Unlike

the quantile linear regression, we use the expectation representation (3.4) to

construct the AWLS estimator (3.5) for the nonparametric regression function.

The construction procedure is relatively simple.

Type-2: Bahadur representation-based estimator. We can also use the Ba-

hadur representation (see, e.g., Bhattacharya and Gangopadhyay (1990); Chaud-

huri (1991); Hong (2003)) to construct a composite estimator. Under certain

regularity conditions, for different values of τ = τk, k = 1, . . . ,m, the N–W esti-

mators r̂τk(x) have the following Bahadur representation:

r̂τk(x) = r(x) +
1

vτk(x)n

n∑
i=1

Kτk(Xi − x)(Yi − r(x)) + εn(τ)

=: r(x) + bnξn(τk) + εn(τk), x ∈ (0, 1), (3.6)

where bn = 1/
√
n, and ξn(τk) = (1/ (vτk(x)

√
n))
∑n

i=1Kτk(Xi − x)(Yi − r(x)),

where vτ (x) =
∫
Kτ (u)fX(x + hu)du, with Kτ (x) = h−1K(x/h) and h = τn−η.

In this presentation, bn is a constant and the covariates ξn(τk) are related to the

function of interest r(x). Once again, εn(τ) is of order Op(n
−3(1−η)/4). Then,



COMPOSITE ESTIMATION 1379

the asymptotic representation (3.6) has the same framework as that in (2.1). If

the density fX(·) is known to lead to a given vτ , according to the corresponding

estimator (2.4), the resulting AWLS estimator can be expressed as

r̃2(x) =

m∑
k=1

wk

(
r̂τk(x)− 1

vτk(x)n

n∑
i=1

Kτk(Xi − x)(Yi − r̂τk(x))

)
, x ∈ (0, 1).

(3.7)
If fX(·) is unknown, we can use its estimator instead, and thus obtain an esti-

mator of vτ .

We now investigate the asymptotic properties of the estimators in (3.5) and

(3.7). Consider the following two regularity conditions:

(C5) Kernel function K(u) is symmetric with respect to u = 0 and satisfies∫
K(u)du = 1,

∫
u2K(u)du < ∞, and

∫
u2K2(u)du < ∞. The regres-

sion function r(x) defined above and the density function fX(x) of X have

continuous and bounded second-order derivatives and fX(x) > 0 for all x.

(C6) Kernel function K(u) is symmetric with respect to u = 0 and satisfies∫
K(u)du = 1,

∫
u4K(u)du < ∞, and

∫
u2K2(u)du < ∞. Functions

r(x) and fX(x) have continuous and bounded fourth-order derivatives and

fX(x) > 0 for all x.

Denote sk(w) = 1−
(
τ2(τ2

k − τ2)/
∑m

k=1wk(τ
2
k − τ2)2

)
, gk = wk−τ2

(
wk(τ

2
k

−τ2)/
∑m

k=1wk(τ
2
k − τ2)2

)
, A1(w) =

(
(sk(w)sj(w)/τkτj)

∫
K(u/τk)K(u/τj)

du
)m
k,j=1

, and A2 =
(
(1/τkτj)

∫
K(u/τk)K(u/τj)du

)m
k,j=1

. The following theo-

rem states some interesting results.

Theorem 5. Suppose hk = τkn
−η, k = 1, . . . ,m.

(1) Under Condition (C5) or (C6), if 0 < η < 1/5, then, we have cn(x) = o(n−2η)

or cn(x) = n−4ηc(x)
∑m

k=1 gkτ
4
k , with c(x) being a known function, and the AWLS

estimator r̃1(x) in (3.5) achieves the following asymptotic normality:
√
n1−η

(
r̃1(x)− r(x)− cn(x)

)
D−→ N

(
0,wTA1(w)w

σ2

fX(x)

)
, x ∈ (0, 1).

(2) For the AWLS estimator r̃2(x) in (3.7), under Condition (C6), if 1/5 ≤ η < 1,

then

√
n1−η

(
r̃2(x)− r(x)− n−2ηd(x)

m∑
k=1

wkτ
2
k

)
D−→ N

(
0,wTA2w

σ2

fX(x)

)
, x ∈ (0, 1),

where d(x) is a given function.

This theorem yields the following conclusions.
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Remark 5. (a) Rate-accelerated convergence. Note that under Condition (C5),

r̃1(x) achieves a rate-accelerated bias o(n−2η) rather than the classical optimal

rate O(n−2η) that the N–W estimator achieves. Under Condition (C5), when

the optimal bandwidth h = O(n−1/9) is used, r̃1(x) has the convergence rate

of O(n−4/9) without higher-order smoothness conditions on the regression and

density functions and, more importantly, without a higher-order kernel. However,

the classical N–W estimator requires that these reach a convergence rate of order

O(n−4/9). This illustrates the conclusion about the convergence rate acceleration

in Theorem 1. We also show later that by choosing a proper weight, the AWLS

estimator r̃1(x) can have a smaller variance as well. In contrast, r̃2(x) cannot

have a faster convergence rate; however the estimation variance can be reduced.

(b) Weight selection. Invoking the same argument as in Remark 4, the

optimal weight vector for the second estimator r̃2(x) has the closed form:

w∗2 =
(
1TA−1

2 1
)−1

A−1
2 1.

This is easy to compute when τk and kernel function K(·) are given. However, the

definition given before Theorem 5 tells us that A1(w) of the expectation-based

estimator r̃1(x) depends on the weight vector w as well. Thus, the corresponding

optimal weight vector for r̃1(x) has no closed form. To resolve this problem, we

approximate A1(w) by

A1 =

(
sksj
τkτj

∫
K
( u
τk

)
K
( u
τj

)
du

)m
k,j=1

,

where sk = 1− (τ2(τ2
k − τ2)/

∑m
k=1(τ2

k − τ2)2) is free of the weight vector w. A

“suboptimal” weight vector for r̃1(x) is then

w∗1 =
(
1TA−1

1 1
)−1

A−1
1 1.

This “suboptimal weight,” w∗1, can be easily computed. With the weights w∗1
and w∗2,

√
n1−η r̃1(x) and

√
n1−η r̃2(x) have the following limiting variances:(

1TA−1
1 1

)−1 σ2

fX(x)
and

(
1TA−1

2 1
)−1 σ2

fX(x)
, (3.8)

respectively. The two limiting variances could be smaller than those of the classi-

cal kernel estimators in certain scenarios. For example, when the kernel function

is chosen as K(u) = e−u
2/2/
√

2π, then

A1 =

 sksj

(2π)1/2
√
τ2
k + τ2

j

m

k,j=1

, A2 =

 1

(2π)1/2
√
τ2
k + τ2

j

m

k,j=1

.

It is known that with this kernel function, the limiting variance of the N–W

estimator is σ2/(2
√
πfX(x)), which is just a special case of the variances in (3.8)

with m = 1 and τ1 = 1. Thus, when min{τk; k = 1, . . . ,m} < 1 < max{τk; k =
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1, . . . ,m} and the above weights are used, the limiting variances of the AWLS

estimators are smaller.

(c) Kernel selection. As mentioned above, the AWLS estimators can have ei-

ther an accelerated convergence rate or a smaller limiting variance, or both. From

the technical proof, we see that the estimators still have the kernel estimation

types. A natural concern is whether the classical N–W estimator, or an adaption

of the N–W estimator, might also enjoy this rate-acceleration property through

a careful selection of the kernel function. The proof tells us that this is not possi-

ble, and that there is no such kernel function for any single N–W estimator. This

is because the AWLS estimators, and particularly the expectation-based estima-

tor r̃1(x), are not simply a weighted sum of the initial estimator with positive

weights summing to one.

3.3. AWLS estimation for a blockwise empirical likelihood estimation

The values of the model-independent parameters, the quantile τ and band-

width h in the two examples above, can be continuous. In this subsection, we

use an example to show that the value of the model-independent parameter can

be discrete.

A blockwise likelihood (see, e.g., Varin, Reid and Firth (2011)) is typically

used in models with dependent data. To reduce the data dependency, blockwise

versions of the data are considered. Let Y1, . . . , Yn be dependent observations

from an unknown d-variate distribution f(y; θ), where the parameter vector θ ∈
Θ ⊂ Rp. Information about θ and f(y; θ) is available in the form of an unbiased

estimating function u(y; θ), that is, E(u(Y ; θ0)) = 0, where θ0 is the true value

of θ and u(y; θ) is a given function vector: Rd × Θ → Rr with r ≥ p. Let τ

and l be integers satisfying τ = [n1−c1 ] and l = [c2n
1−c1 ], respectively, for some

constants 0 < c1 ≤ 1 and 0 < c2 ≤ 1, where [x] denotes the integer part of x.

Denote Bi = (Y(i−1)l+1, . . . , Y(i−1)l+τ )T , i = 1, . . . , q, where q = [(n− τ)/l] + 1. It

can be verified that q = O(nc1). Here Bi denotes a block of observations, τ is the

window width, and l is the separation between the block starting points. The

observation blocks Bi are used to construct the following estimating function:

Ui(θ, τ) =
1

τ

τ∑
k=1

u(Y(i−1)l+k; θ).

Then, the blockwise empirical Euclidean log-likelihood ratio for dependent data

is defined as
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lτ (θ) = sup

{
−1

2

q∑
i=1

(qpi − 1)2

∣∣∣∣∣
q∑
i=1

pi = 1, pi ≥ 0,

q∑
i=1

piUi(θ, τ) = 0

}
,

and the empirical Euclidean likelihood estimator of θ is defined as

θ̂τ = arg sup
θ∈Θ

lτ (θ).

Here, we only consider the case of p = r = 1. It follows from the asymptotic rep-

resentation given in the proof of Theorem 2 of Lin and Zhang (2001) that, under

certain regularity conditions, the following asymptotic representation holds:

θ̂τk = θ + bnξn(τk) + op

(
1√
n

)
, k = 1, . . . ,m, (3.9)

where bn = 1/(
√
n∆(θ)), ξn(τk) =

√
n Ū(θ, τk), Ū(θ, τ) = (1/q)

∑q
i=1 Ui(θ, τ),

and ∆(θ) = E(u′(Y ; θ)), with u′(y; θ) being the derivative of u(y; θ) with respect

to θ. Clearly, the above is also within the framework of (2.1) with unknown bn
and a parameter-dependent ξn(τk).

In this example, the positive integer τ is the model-independent parameter.

This parameter determines the size of the blocks of data points and takes discrete

values. From the asymptotic representation of the empirical likelihood (3.9), we

see that the blockwise empirical likelihood AWLS estimator has the form given

in (2.3), that is,

θ̃ =

m∑
k=1

wkθ̂τk − b̂n
¯̂
ξn, (3.10)

where

b̂n =

∑m
k=1wkθ̂τk

(√
n Ū(θ̂, τk)−

¯̂
ξn

)
∑m

k=1wk

(√
n Ū(θ̂, τk)−

¯̂
ξn

)2 ,
¯̂
ξn =

m∑
k=1

wk
√
n Ū(θ̂, τk),

with θ̂ being an initial estimator of θ.

The theoretical property and the optimal choice of the weights can be deter-

mined using Theorem 3 and Remark 3. The details are omitted here.

4. Numerical Studies

4.1. Simulations

In this subsection, we examine the finite-sample behavior of the newly pro-

posed estimator using simulation studies. To obtain thorough comparisons, we

comprehensively compare the estimator with several competitors that are based
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on an objective function composition, a direct composition, and an aggregation

for linear and nonparametric models. The mean squared error (for the paramet-

ric model) and the mean integrated squared error (for the nonparametric model)

are used to evaluate the performance of the involved estimators. We also report

the simulation results for the estimation bias. Moreover, we consider the asymp-

totic relative efficiency (RE), defined as RE(β̂, β̃) = Var(β̂)/Var(β̃), where β̃ is

the proposed AWLS estimator and β̂ is a competitor. Here RE > 1 indicates

better performance by the AWLS estimator.

Experiment 1. Consider the linear regression of the form

Y = XTβ + ε,

where β = (3, 2,−1,−2)T , the covariate vector X = (X1, X2, X3, X4)T follows a

multivariate normal distribution N(0,Σ), with Σij = 0.7|i−j| for 1 ≤ i, j ≤ 4, and

the error term ε follows the centralized Gamma(2, 2), such that its expectation

is zero.

We choose τ = 0.3 for the asymmetric distribution of the error term to

construct the common quantile regression (QR) estimator β̂τ defined in Subsec. 3,

and select τk = k/10 for k = 1, 2, . . . , 9 (m = 9) to construct the AWLS estimator

β̃ defined in (2.2). According to Zou and Yuan (2008), the CQR estimator β̂ is

defined by minimizing the following composite objective function:

(β̂TCQ, α̂τ1 , . . . , α̂τm)T = arg min
β,ατ1 ,...,ατm

n∑
i=1

m∑
k=1

ρτk(Yi − ατk − βTXi). (4.1)

According to Bradic, Fan and Wang (2011), the WCQR estimator β̂WCQ is de-

termined by minimizing the composite objective function (4.1), with weight wk
for each ρτk(·).

To obtain a consistent estimator of the density function fe(ατk), we first

use the ordinary least squares (OLS) method to estimate a preliminary esti-

mator β̂OLS , and then compute the residuals as ε̂i = Yi − XT
i β̂OLS . Then,

we estimate fe(ατk) using the nonparametric kernel density estimator through

ε̂i, i = 1, 2, . . . , n. Consequently, we obtain the optimal weights for the AWLS

estimator β̃, defined in (2.2).

For the sample sizes n = 100, 200, and 400, the empirical bias, RE, and

mean squared error (MSE) of the four estimators and the OLS estimator over

500 replications are reported in Table 1. The boxplots for the sample size n = 200

for the five estimators are depicted in Figure 1. For the different sample sizes of

n, the boxplot trends are similar. Furthermore, to check the influence of m on

the AWLS estimator, the quantile level τ takes values from 0.1 to 0.9, with three
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Figure 1. Boxplots of the estimators for β1, β2, β3, and β4 in Experiment 1.

step lengths, 0.2, 0.1, and 0.05. In these cases, the compositions are based on

5, 9, and 17 initial estimators, respectively. The boxplots of the AWLS estimators

with different choices of m and the same sample size n = 200 are presented in

Figure 2. We also perform simulations for n = 100 and n = 400. Because the

results are not significantly different, we do not report them here.

Table 1 and Figures 1 and 2 suggest the following conclusions. (1) The

AWLS estimator β̃ and the WCQR estimator of Bradic, Fan and Wang (2011)

behave comparably better than the other competitors, in the sense that the MSEs

are significantly reduced, the boxplots are observably thinned, and nearly all of

the relative efficiencies are greater than one. (2) Without composition, the QR

estimator is better than the OLS estimator owing to the skewness of the gamma

distribution. (3) In each subfigure of Figure 2, the boxplots are almost identical,

showing that the AWLS estimator for the linear quantile regression model is

robust to the choice of m.

Note that the simulation result depends on the assumption of the distribution
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Figure 2. Boxplots of the AWLS estimators for β1, β2, β3, and β4 with different m in
Experiment 1.

of the error term. As shown by a referee, if the error is Gaussian, the OLS is by far

the best method in this setting, because the basic quantile regression estimators

are much worse than the OLS in this case. In fact, our AWLS aims to combine

several quantile regression estimators, in which case, it can be guaranteed that

the AWLS estimator is better than any single quantile regression estimator.

Experiment 2. Consider the dependent data Y1, Y2, . . . , Yn generated from

the model

Yi = Xiθ + εi,

where Xi ∼ N(0, 1), θ = 5, ε1 = ε1, εi = 0.7εi−1 + εi, for i = 2, 3, . . . , n, and

εi, i = 1, . . . , n, are i.i.d. as N(0, 1). We compare the finite-sample behaviors

of the blockwise composite likelihood estimator and the AWLS estimator. To

obtain blockwise data and the composite likelihood estimator, we take c = 1/3

and τk = (k + 1)/10, k = 1, 2, . . . , 8. The simulation results for the bias, MSE,

and RE obtained for the different sample sizes and 500 repetitions are listed in
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Table 1. Simulation results for Experiment 1.

n β̂1 β̂2 β̂3 β̂4

100

AWLS
Bias −0.0016 0.0042 −0.0042 0.0015
MSE 0.0055 0.0085 0.0092 0.0058

WCQR
Bias −0.0007 0.0017 −0.0009 −0.0015
MSE 0.0053 0.0080 0.0090 0.0063
RE 0.9668 0.9457 0.9800 1.0751

CQR
Bias −0.0026 0.0021 −0.0010 −0.0008
MSE 0.0077 0.0108 0.0117 0.0080
RE 1.4032 1.2708 1.2756 1.3739

QR
Bias −0.0011 0.0036 0.0004 −0.0029
MSE 0.0077 0.0116 0.0129 0.0082
RE 1.4160 1.3636 1.4003 1.3922

OLS
Bias −0.0015 0.0037 −0.0037 0.0008
MSE 0.0098 0.0146 0.0153 0.0103
RE 1.7938 1.7138 1.6640 1.7635

200

AWLS
Bias −0.0008 −0.0002 0.0025 −0.0023
MSE 0.0026 0.0036 0.0037 0.0027

WCQR
Bias −0.0010 0.0010 0.0026 −0.0031
MSE 0.0026 0.0037 0.0039 0.0027
RE 1.0006 0.9955 1.0604 1.0281

CQR
Bias −0.0017 0.0024 0.0035 −0.0039
MSE 0.0036 0.0053 0.0053 0.0039
RE 1.4126 1.4591 1.4472 1.4630

QR
Bias −0.0010 −0.0001 0.0075 −0.0056
MSE 0.0037 0.0057 0.0060 0.0043
RE 1.4430 1.5693 1.6230 1.6188

OLS
Bias −0.0015 0.0043 0.0009 −0.0000
MSE 0.0049 0.0075 0.0073 0.0050
RE 1.9276 2.0504 1.9909 1.8754

400

AWLS
Bias −0.0023 0.0024 0.0000 −0.0015
MSE 0.0011 0.0016 0.0017 0.0012

WCQR
Bias −0.0014 0.0021 −0.0008 −0.0006
MSE 0.0011 0.0017 0.0016 0.0012
RE 1.0008 1.0129 0.9748 0.9976

CQR
Bias −0.0009 0.0033 −0.0021 −0.0002
MSE 0.0019 0.0029 0.0027 0.0018
RE 1.5535 1.5467 1.4763 1.5712

QR
Bias −0.0011 0.0030 −0.0007 −0.0012
MSE 0.0019 0.0029 0.0027 0.0018
RE 1.7319 1.7638 1.6553 1.5533

OLS
Bias 0.0005 0.0021 −0.0013 −0.0009
MSE 0.0026 0.0035 0.0034 0.0026
RE 2.3196 2.1202 2.0401 2.2269
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Table 2. Simulation results for Experiment 2.

n Bias MSE RE

100
AWLS −0.0004 0.0228 −
BCEL 0.0006 0.0254 1.1157

200
AWLS −0.0012 0.0091 −
BCEL 0.0011 0.0098 1.0764

400
AWLS −0.0007 0.0057 −
BCEL −0.0021 0.0060 1.0564

Table 2. We conclude that the proposed AWLS estimator improves upon the

bias and MSE of the original blockwise likelihood estimator.

Experiment 3. For the nonparametric regression

Yi = sin(2πXi) + 2 exp(X2
i ) + εi, i = 1, . . . , n,

where Xi ∼ U(0, 1), the errors are chosen as εi ∼ N(0, 0.52), and the sample

sizes are n = 100, 200, and 400, respectively. The common local constant (LC)

estimator (kernel estimator) is defined as

r̂h(x) =

∑n
i=1 YiK((Xi − x)/h)∑n
i=1K((Xi − x)/h)

. (4.2)

As a comparison, we define a composite estimator using the composite objective

function method: for hk = τkn
−η, k = 1, . . . ,m, the composite local constant

(CLC) estimator is the minimizer of the form:

r̂(x) = arg min
a

n∑
i=1

m∑
k=1

(Yi − a)2K

(
Xi − x
hk

)
.

This estimator has a closed representation:

r̂(x) =

∑n
i=1

∑m
k=1 YiK((Xi − x)/hk)∑n

i=1

∑m
k=1K((Xi − x)/hk)

, (4.3)

which can be regarded as an indirect composition of the LC estimators (4.2)

with different bandwidths. In addition, an aggregation (AGG) estimator (Bunea,

Tsybakov and Wegkamp (2004)) is also considered, which has the form

r̂∗(x) =

m∑
k=1

wkr̂hk(x),

where wk satisfies
∑m

k=1wk = 1. The optimal weights are obtained by L1-type

penalized least squares, defined in equation (2.1) in Bunea, Tsybakov and Wegkamp

(2004). To compute the optimal weights wk, the sample is randomly split into

two independent subsamples with equal sample size, where one (training sample)
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Table 3. MISE for the nonparametric estimators in Experiment 2.

n=100 n=200 n=400
LC 0.0397 0.0251 0.0114

CLC 0.0555 0.0475 0.0453
AGG 0.0287 0.0192 0.0121
AWLS 0.0264 0.0157 0.0109
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Figure 3. Quantile curves for the LC, CLC , AGG, and AWLS estimators in Experi-
ment 2.

is used to construct the estimators r̂hk , and the other (validation sample) is used

to aggregate them. Because the weights rely on the split, 10 random splits of the

sample are run, and then the aggregation estimator is obtained by an average

using equation (4.1) in Rigollet and Tsybakov (2007).

In this experiment, the Epanechnikov kernel K(u) = 0.75(1 − u2)1|u|≤1 is

employed, and to facilitate the computation of the optimal weights for the AWLS
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Figure 4. Quantile curves for the AWLS estimators with different values of m in Exper-
iment 2.

estimator, the integral in A1(w) is approximated using 40 grid intervals. For the

three estimation procedures, we use two-fold cross-validation to select a basic

bandwidth hop. In the LC estimation procedure, hop is used to define the LC

estimator. For the CLC, AGG, and the AWLS with bandwidths of the form

hk = τkhop, m values of τk are chosen in the range [0.5, 1.5], with a step length of

0.5/l. We consider the case l = 6. Thus, m = 13 and the resulting bandwidths

are hk = (0.5(l+k)/l)hop for k = 0, . . . , 12. The simulation results are reported in

Table 3, where the MISE is the empirical mean integrated squared error through

500 repetitions. The quantile curves of the LC, CLC, AGG, and AWLS estimators

for r(x) are also presented. Because the results are similar for different sample

sizes of n, we only show the quantile curves for n = 200 in Figure 3 to save space.

Each subfigure contains 0.05, 0.5, and 0.95 quantile curves of the nonparametric

estimator and the true curve of r(x). To evaluate the influence of m, the quantile

curves for 0.05, 0.5, and 0.95 for the AWLS estimator, with n = 200 and l = 3, 6,

and 9 (i.e., m = 7, 13, and 19), and the true curve of r(x) are presented in

Figure 4. We can see that the MISEs of the AWLS estimators are all about

0.0158.

By comparing the MISEs and the quantile curves of the four estimators in

Table 3 and Figures 3 and 4, we have the following findings: (1) the AGG works

well with small MISE compared with the LC and CLC, but the AWLS is the

best of the four estimators; (2) the CLC estimator r̂(x) given in (4.3) performs

worst among these estimators, implying that the composite objective function is
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Figure 5. Curves of the LC estimator and AWLS estimator.

not always efficient; and (3) the AWLS is robust to the choice of m.

In summary, the AWLS estimation usually works well and is not very sen-

sitive to the choice of the number of initial estimators m. Based on the limited

simulations, a value of m between 10 and 15 is recommended.

4.2. Real-data analysis

In this subsection, the cholostyramine data set in Efron and Tibshirani (1993)

is analyzed using the LC and AWLS as an illustration. The data set contains

data on 164 individuals who took part in an experiment to determine whether the

drug cholestyramine can lower blood cholesterol levels. The men were supposed

to take six packets of cholestyramine per day, but many actually took much

less. The covariate denoted by X measures “Compliance” as a percentage of the

intended dose actually taken. The response denoted by Y is “Improvement” and

marks a decrease in the total blood plasma cholesterol level from the beginning

to the end of the experiment.

The scatter plot of Y against X in Figure 5 shows that the men who took

more cholestyramine tend to exhibit bigger improvements in their cholesterol

levels, but the model structure seems complex. Thus, a nonparametric regression
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Figure 6. Boxplots of R2 for the LC estimator and AWLS estimator.

model Y = r(X) + ε is modeled for the relationship between “Improvement” and

“Compliance” (see Efron and Tibshirani (1993)). To estimate the function r(·),
the LC estimator defined in (4.2) and the AWLS estimator are employed. In the

estimation procedures, we use the Epanechnikov kernel K(u) = 0.75(1−u2)1|u|≤1

to construct nonparametric estimators, and use equal weights to build the AWLS

estimator, for simplicity. As in Experiment 2, two-fold cross-validation is used

to determine the basic bandwidth hop. In the LC estimation procedure, the

resulting bandwidth is h = 8. Then, as in Experiment 2, we choose m = 13.

Figure 5 depicts the scatter plot of “Compliance” and “Improvement” and the

curves of the LC estimator and the AWLS estimator of r(x).

We have three observations. The drug cholestyramine can lower blood choles-

terol levels, in general, when “Compliance” varies within the intervals [20, 50] and

[70, 100], the blood cholesterol levels improve rapidly, and the curves of the LC

estimator and the AWLS estimator are close to each other.

Finally, we use the R2 values of the LC estimator and the AWLS estimator

to further confirm the advantage of the new method, where R2 = 1−
∑n

j=1(Yj −
Ŷj)

2/
∑n

j=1(Yj− Ȳ )2, Ŷj is the predicted value of Yj , and Ȳ is the sample mean of

Yjs. We first use two-fold cross-validation to generate the optimal bandwidth hop,

and then use the method suggested in Experiment 2 to produce the bandwidths

hk for the composite estimation construction. The 500 values of R2 for the two
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estimators are computed by repeating this procedure 500 times. The boxplots

of the R2 values are given in Figure 6. These show that the R2 values of the

the AWLS estimators are larger than those of the LC estimators, in general. In

addition, the AWLS estimator is more stable than LC estimator owing to its

smaller variation. Thus, the AWLS fits the data better.

Supplementary Material

The online supplementary material contains the proofs of all theorems in

this paper.
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