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Abstract: An observed surrogate endpoint is often used to predict a treatment

effect on an unobserved true endpoint when it is difficult or expensive to measure

the true endpoint. Although several criteria have been proposed for identifying

surrogate endpoints, they all suffer from the surrogate paradox: a treatment has

a positive effect on the surrogate and the surrogate has a positive effect on the

endpoint; however the treatment has a negative effect on the endpoint. To avoid

this paradox, criteria have been proposed for a single surrogate that blocks the

path from the treatment to the endpoint. This requires that there is a single path

from the treatment to the endpoint and that the surrogate can block this path.

However, in many applications, a treatment may affect an endpoint through several

paths. Therefore, we use stochastic orders of random vectors to derive criteria for

multiple surrogates that avoid the surrogate paradox and can be used to predict the

sign of the treatment effect on the unobserved true endpoint. Furthermore under

the conditional independence of the treatment and the true endpoint, given the

multiple surrogates, we propose sufficient conditions for the sign-equivalence of the

treatment effects on the surrogates and on the true endpoint. Lastly, we illustrate

how these criteria can be applied to several commonly used models.

Key words and phrases: Average causal effect, prentice criteria, stochastic order,

surrogate paradox.

1. Introduction

When a true endpoint of interest is difficult or expensive to measure within

a reasonable length of time, researchers often measure a surrogate variable in-

stead. Then, the causal effect of a treatment or an intervention on the un-

measured endpoint is predicted using the causal effect of the treatment on the

measured surrogate. Several criteria for identifying reasonable surrogates have

been proposed. Prentice (1989) provided a statistical surrogate criterion that re-

quires conditional independence of the treatment and the endpoint, given the

surrogate. Frangakis and Rubin (2002) proposed the principal surrogate crite-

rion, which requires the property of causal necessity; in other words, if there is

no treatment effect on the surrogate, then this implies that there is no treatment
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effect on the endpoint. Lauritzen (2004) depicted a strong surrogate criterion us-

ing a causal diagram. This criterion requires that the surrogate blocks the path

from the treatment to the endpoint. Gilbert and Hudgens (2008) proposed the

average causal necessity and the average causal sufficiency for a reasonable sur-

rogate. Joffe and Greene (2009) summarized related statistical approaches and

discussed the relationships between these approaches. However, these criteria

all suffer from the surrogate paradox, proposed by Chen, Geng and Jia (2007).

According to this paradox, a treatment has a positive effect on the surrogate

and the surrogate has a positive effect on the endpoint; however, the treatment

has a negative effect on the endpoint. Chen, Geng and Jia (2007) and Ju and

Geng (2010) proposed criteria for consistent surrogates that avoid the surrogate

paradox based on knowledge of the causation between the surrogate and the end-

point. Wu, He and Geng (2011) proposed sufficient conditions to predict the sign

of a treatment effect on the unmeasured endpoint using the sign of the treatment

effect on the measured surrogate, based on knowledge of the association between

the surrogate and the endpoint. These conditions can be checked empirically

using observed data if the endpoint is observed in a validation study. Vander-

weele (2013) extended the results of Chen, Geng and Jia (2007) and Ju and

Geng (2010) to cases where the treatment has a direct effect on the endpoint.

These criteria apply to a single surrogate only. However, in many applications,

a treatment or an intervention affects the endpoint through several paths, which

means a single surrogate cannot block these paths. For example, a drug may

reduce the likelihood of death due to AIDS through two paths: by decreasing

HIV-1 RNA, and by increasing the CD4 count. In this case, a single surrogate

may not satisfy any criteria of the statistical, principal, and strong surrogates,

because both HIV-1 RNA and the CD4 count should be used as surrogates for

death due to AIDS. That is, the surrogate paradox may be avoided by using two

or more surrogates if it cannot be avoided when using a single surrogate. Joffe

(2013) also suggested that it is meaningful to generalize the criteria for a single

surrogate to multiple surrogates.

In this paper, we propose criteria for multiple surrogates based on stochas-

tic orders of random vectors. We provide the conditions to avoid the surrogate

paradox and use the signs of the treatment effects on multiple surrogates to pre-

dict the sign of the treatment effect on the true endpoint. We further propose

sufficient conditions for the sign-equivalence of the treatment effects on the surro-

gates and on the true endpoint under conditional independence of the treatment

and the true endpoint, given the multiple surrogates. This can be viewed as
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Figure 1. A causal diagram for two surrogates.

a multiple-surrogates version of Prentice’s criterion. Furthermore, we illustrate

how these criteria can be applied to several commonly used models. The condi-

tions required by the proposed criteria can all be tested if there is a validation

trial in which the endpoint is observed. In addition, some of the conditions can

be tested if the endpoint has been observed in the control group of a previous

trial with the same placebo.

2. Notation and Definitions

Let A denote a randomized treatment, and Y denote the true endpoint of

interest. Let S1, . . . , Sp denote p potential surrogates. If A has more than two

levels, we can compare them in a pairwise manner. Without loss of generality,

we suppose A has only two levels, with A = 1 for an active drug, and A = 0 for

a placebo. We suppose that the surrogates S1, . . . , Sp are not randomized. Thus,

there may be some confounders U that affect both the surrogates S1, . . . , Sp and

the true endpoint Y . For simplicity, we omit the observed covariate vector Z;

as such, our results can be treated as conditional on the observed Z. We depict

the causal diagram for p = 2 surrogates in Figure 1. The double-headed arrow

between S1 and S2 means that they are correlated.

Based on the notation of the potential outcome model (Rubin (1974)), let

Y (a, s) denote the potential outcome of the true endpoint under the treatment

A = a and the surrogate vector S = s, and let S(a) = (S1(a), . . . , Sp(a)) and

Y (a) = Y (a,S(a)) denote the potential outcomes of the surrogate vector and

the true endpoint, respectively under treatment A = a. In addition, we assume

that the potential outcomes S1(a), . . . , Sp(a) and Y (a) are equal to the observed

variables of S1, . . . , Sp and Y , respectively, in the treatment group with A = a.

This assumption is the so-called “consistency assumption” (Angrist, Imbens and

Rubin (1996)). Next, we define the average causal effect (ACE).

Definition 1 (ACE). The ACE of A on Y is defined as

ACEA→Y = E(Y (A = 1))− E(Y (A = 0)).

In the above definition, E(Y (a)) is the average of the potential outcomes
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that would be obtained if the treatment A = a were received by all individuals,

including those actually receiving the other treatment A 6= a.

Next, we define the distribution causal effect (DCE), which is a finer causal

measurement than the ACE, for a continuous response Y .

Definition 2 (DCE). The DCE of A on Y for a specific threshold y is defined

as

DCEA→(Y >y) = P (Y (A = 1) > y)− P (Y (A = 0) > y).

We define ACEA→Si
and DCEA→(Si>s) for a surrogate Si in a similar way.

To assess the treatment effect on a random vector of multiple surrogates, we

introduce three stochastic orders of random vectors and their related inequalities

(Rubin (1974)). We denote a value using a lowercase letter, a random variable

using an uppercase letter, and their vectors using bold letters. For a random vec-

tor X = (X1, . . . , Xn), let FX(t1, . . . , tn) = P (X1 ≤ t1, . . . , Xn ≤ tn) denote the

distribution function and FX(t1, . . . , tn) = P (X1 > t1, . . . , Xn > tn) denote the

survival function. For two vector values x = (x1, . . . , xn) and y = (y1, . . . , yn),

let x � y or y � x denote xi ≤ yi for i = 1, . . . , n. A set W ⊆ Rn is called

an upper (lower) set if y ∈ W whenever y � (�)x and x ∈ W . For example,

W1 = {(x1, x2),∀x1 ≥ 2 or x2 ≥ 2}, W2 = {(x1, x2), x1 ≥ 1 & x2 ≥ 1}, and

W3 = {(x1, x2), ∀x1 + x2 ≥ c} are three upper sets for n = 2.

Definition 3. For two random vectors X and Y, we say:

1. X is smaller than Y in the usual stochastic order (denoted by X ≤st Y) if

P (X ∈W ) ≤ P (Y ∈W ) for all upper sets W ⊆ Rn;

2. X is smaller than Y in the upper orthant order (denoted by X ≤uo Y) if

FX(t) ≤ FY(t), for all t;

3. X is smaller than Y in the lower orthant order (denoted by X ≤lo Y) if

FX(t) ≥ FY(t), for all t.

For the case of a single response, the three stochastic orders are equivalent

and are extensions of the stochastic orders on a single response variable to a

response vector. From the above definitions, it is clear that X ≤st Y implies

both X ≤uo Y and X ≤lo Y; however, the reverse is not true. Corresponding to

the three definitions above, we present three inequalities in the Appendix that

we use in the proofs of the theorems.

The effects of a binary treatment A on a vector S = (S1, . . . , Sp) of p mul-

tiple surrogates are defined by the three stochastic orders between the potential



CRITERIA FOR MULTIPLE SURROGATES 1347

Figure 2. A causal diagram where S1 and S2 block the pathways from A to Y .

outcome vectors S(1) and S(0) of the surrogates. S(A = 0) ≤st S(A = 1) means

that the treatment A = 1 versus the placebo A = 0 has a non-negative effect

on the surrogate vector in the usual stochastic order. S(A = 0) ≤uo S(A = 1)

means that the treatment A = 1 results in more surrogate outcomes in any up-

per orthant set than the placebo does, and S(A = 0) ≤lo S(A = 1) means the

treatment A = 1 moves more surrogate outcomes out of any lower orthant set

than the placebo does.

We define the strict order and the equal order below.

Definition 4. For two random vectors X and Y, we say:

1. X is strictly smaller than Y in the usual stochastic order (denoted by X <st

Y) if P (X ∈ W ) < P (Y ∈ W ) for all upper sets W ⊆ Rn, except for W

with P (X ∈W ) = P (Y ∈W ) = 0 or 1.

2. X is equal to Y in the usual stochastic order (denoted by X =st Y) if

P (X ∈W ) = P (Y ∈W ) for all upper sets W ⊆ Rn.

By this definition, S(A = 0) <st S(A = 1) means that the treatment A = 1

versus the placebo A = 0 has a positive effect on the surrogate vector, and

S(A = 0) =st S(A = 1) means that the treatment A = 1 versus the placebo

A = 0 has an equal effect on the surrogate vector.

Now, we present a numerical example to illustrate the surrogate paradox,

even when two surrogates block all pathways from the treatment to the end-

point. Consider the causal diagram shown in Figure 2, where all variables are

binary. Let A be the treatment variable, Y be the true endpoint, S1 and S2
be the two surrogate variables blocking all the pathways, and U be an unob-

served confounder affecting S1, S2, and Y . The probabilities are given as fol-

lows: P (A = 1) = 0.767 and P (U = 1) = 0.639. The conditional probabilities

P (S1 = 1|A,U) and P (S2 = 1|A,U) are given in Table 1, and P (Y = 1|S1, S2, U)

is given in Table 2.

From the given causal diagram and probabilities, we obtain the following

treatment effects:

ACEA→S1
= P (S1 = 1 | do(A = 1))− P (S1 = 1 | do(A = 0)) = 0.018,
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Table 1. Conditional probabilities of S1 and S2, given A and U .

P (S1 = 1|A,U) U = 1 U = 0 P (S2 = 1|A,U) U = 1 U = 0
A = 1 0.927 0.028 A = 1 0.580 0.727
A = 0 0.397 0.920 A = 0 0.083 0.824

Table 2. Conditional probabilities of Y given, S1, S2, and U .

P (Y = 1|S1, S2, U = 1) S2 = 1 S2 = 0 P (Y = 1|S1, S2, U = 0) S2 = 1 S2 = 0
S1 = 1 0.410 0.298 S1 = 1 0.730 0.808
S1 = 0 0.254 0.222 S2 = 0 0.469 0.002

ACEA→S2
= P (S2 = 1 | do(A = 1))− P (S2 = 1 | do(A = 0)) = 0.283,

ACEA→Y = P (Y = 1 | do(A = 1))− P (Y = 1 | do(A = 0)) = −0.069,

and the following causal effects of a surrogate on the endpoint Y , conditional on

the other surrogate:

P (Y = 1 | do(S1 = 1), S2 = 1)− P (Y = 1 | do(S1 = 0), S2 = 1) = 0.206,

P (Y = 1 | do(S1 = 1), S2 = 0)− P (Y = 1 | do(S1 = 0), S2 = 0) = 0.228,

P (Y = 1 | S1 = 1, do(S2 = 1))− P (Y = 1 | S1 = 1, do(S2 = 0)) = 0.085,

P (Y = 1 | S1 = 0, do(S2 = 1))− P (Y = 1 | S1 = 0, do(S2 = 0)) = 0.331.

We find that treatment A has positive effects on both surrogates S1 and S2, and

that each surrogate has a positive effect on the endpoint Y , conditional on the

other surrogate. However, treatment A has a negative effect on the endpoint Y .

Next, we illustrate that the surrogate paradox cannot be avoided, even if

the surrogate vector S(1) is larger than S(0) in the usual stochastic order, in

which case, treatment A has a stronger positive effect on the surrogate vector S.

From the given causal diagram and probabilities, we obtain the distribution of

(S1(0), S2(0)) and (S1(1), S2(1)), as shown in Table 3. We have (S1(1), S2(1)) >st

(S1(0), S2(0)) because

P ((S1(1), S2(1)) ∈W ) > P ((S1(0), S2(0)) ∈W ),

for all upper sets W = {(1, 1)}, {(1, 1), (1, 0)}, {(1, 1), (0, 1)}, and {(1, 1), (1, 0),

(0, 1)}. (S1(1), S2(1)) >st (S1(0), S2(0)) implies both ACEA→S1
> 0 and

ACEA→S2
> 0. As shown above, the surrogate paradox still occurs, even if

(S1(1), S2(1)) >st (S1(0), S2(0)). In the next section, we propose criteria that

avoid the surrogate paradox.

3. Criteria for Multiple Surrogates Without Models
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Table 3. Distributions of (S1(0), S2(0)) and (S1(1), S2(1)).

P (S1(0), S2(0)) S1(0) = 1 S1(0) = 0 P (S1(1), S2(1)) S1(1) = 1 S1(1) = 0
S2(0) = 1 0.294 0.057 S2(1) = 1 0.351 0.282
S2(0) = 0 0.291 0.358 S2(1) = 0 0.252 0.115

In this section, we discuss the conditions for using multiple surrogates to

avoid the surrogate paradox. Based on knowledge of the association between the

endpoint and the surrogates, we first discuss the conditions for the implication

relationships between the signs of the treatment effects on the observed surrogates

and on the unobserved endpoint. Then, we give the conditions for the equivalence

relationships between the signs.

3.1. Implication relationships between the signs of the treatment ef-

fects on the surrogates and on the endpoint

We first consider the case of knowledge on the expectation of the endpoint

Y , conditional on the surrogates S and the treatment A. For simplicity, let

f(s, a) denote E(Y | s, a). We say that a function f(s, a) increases in a vector

s = (s1, . . . , sp) if it increases in every element si, for i = 1, . . . , p.

Theorem 1. Suppose we have know the following about conditional expectation

f(s, a):

(1) Either f(s, 1) or f(s, 0) is a nonconstant increasing function of s, and

(2) f(s, 1) ≥ f(s, 0), for all s.

Then, S(1) ≥st S(0) implies ACEA→Y ≥ 0, and S(1) >st S(0) implies ACEA→Y

> 0.

Condition (1) means that at least one of f(s, 1) and f(s, 0) is increasing in s.

The increase of f(s, 0) in Condition (1) can be checked if the same placebo was

used in previous trials. If Prentice’s conditional independence criterion Y A | S
holds, then f(s, 1) = f(s, 0). Thus, Prentice’s conditional independence criterion

implies Condition (2) in Theorem 1. Therefore, in order to avoid the surro-

gate paradox when using Prentice’s statistical surrogates, we need to check the

monotonicity of f(s, 0) in s for the placebo that will be used in the new trial.

Replacing the endpoint Y in the above theorem with the indicator function

I{Y >y}, we obtain the following result on DCEA→(Y >y). Define gy(s, a) = P (Y >

y | s, A = a), and assume that gy(s, a) is not a constant function of s.
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Corollary 1. Suppose we know the following about the conditional distribution

gy(s, a):

(1) Either gy(s, 1) for any y or gy(s, 0) for any y is a nonconstant, non-negative

increasing function of s, and

(2) gy(s, 1) ≥ gy(s, 0), for all s and y.

Then, S(1) ≥st S(0) implies DCEA→(Y >y) ≥ 0, and S(1) >st S(0) implies

DCEA→(Y >y) > 0.

The above two results mean that the ACE and DCE of treatment A =

1 versus placebo A = 0 on the endpoint Y are non-negative (or positive) if

treatment A = 1 versus placebo A = 0 has a non-negative (or positive) effect on

the surrogate vector S in the usual stochastic order.

Next, we discuss the conditions under which the stochastic order of the surro-

gate vectors S(1) and S(0) can be checked simply by comparing the expectations

of the surrogate elements in the treated group with those in the control group.

For two multivariate normal vectors X and Y, X ≤st Y if and only if µX � µY
and ΣX = ΣY (Rubin (1974, p. 279)), where µX and ΣX are the mean vector

and the covariance matrix, respectively, of X, and µY and ΣY are those of Y.

Thus, for a multivariate normal distribution, the stochastic order of the two vec-

tors can be checked by pairwise comparing the elements of the two expectations,

yielding the following result.

Corollary 2. Suppose we know:

(1) Either f(s, 1) or f(s, 0) is a nonconstant increasing function of s,

(2) f(s, 1) ≥ f(s, 0) for all s, and

(3) the conditional distribution of the surrogate vector S, given A = a, is the

multivariate normal distribution N(µa,Σ) for a = 0 and 1.

Then, ACEA→Y ≥ 0 if ACEA→Si
≥ 0, for i = 1, . . . , p; and ACEA→Y > 0 if

ACEA→Si
> 0, for i = 1, . . . , p.

For the normal distributions, the sign of the ACE of treatment T on the

endpoint Y can be predicted by checking the signs of the ACE of treatment T

on each surrogate Si, for i = 1, . . . , p. Actually, Condition (3) in Corollary 2

can be relaxed to the general distributions by replacing (3) with (3′) letting S(1)

and S(0) have the densities f(S(1) − µ1 | θ) and f(S(0) − µ0 | θ) respectively.
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Condition (3′) means that S(1) and S(0) have the same density function f() and

the same parameters θ, except for the different location parameters µ1 and µ0.

Furthermore for the case of two binary surrogates, we have the following

result.

Corollary 3. Suppose we know:

(1) Either f(s, 1) or f(s, 0) is a nonconstant increasing function of s,

(2) f(s, 1) ≥ f(s, 0) for all s, and

(3) S has only two binary surrogates S1 and S2, and the odds ratios between S1
and S2, conditional on treatment A, do not depend on A; that is, ORS1,S2|A=1

= ORS1,S2|A=0, where ORS1,S2|A=a is defined as P (S1 = 0, S2 = 0 | a)P (S1 =

1, S2 = 1 | a)/{P (S1 = 0, S2 = 1 | a)P (S1 = 1, S2 = 0 | a)}.

Then, ACEA→Y ≥ 0 if ACEA→Si
≥ 0, for i = 1, 2; and ACEA→Y > 0 if

ACEA→Si
> 0, for i = 1, 2.

Corollaries 2 and 3 mean that for the cases of a normal surrogate vector and a

vector of two binary surrogates, respectively, the stochastic order of two surrogate

vectors S(1) and S(0) can be checked by pairwise comparison of the expectations

of the two corresponding variables in the two vectors if the associations (Σa or

ORS1,S2|a) between the surrogates are the same in the two treatment groups of

a = 1 and 0. This makes it easy to check the stochastic order of two vectors S(1)

and S(0).

Similarly, replacing Conditions (1) and (2) in Corollaries 2 and 3 with Con-

ditions (1) and (2) in Corollary 1, we also have that DCEA→(Y >y) ≥ 0 if

ACEA→Si
≥ 0, for every i = 1, 2, . . . , p, and thatDCEA→(Y >y) > 0 ifACEA→Si

>

0, for every i = 1, 2, . . . , p.

If we replace the usual stochastic order S(1) ≥st S(0) with a weaker order

S(1) ≥uo S(0) or S(1) ≤lo S(0), then, in order to obtain a similar result, we

require that the expectation function f(s, a) or the distribution function gy(s, a)

can be factorized to a multiplication form.

Theorem 2. Suppose we know the following about the conditional expectation

f(s, a):

(1) Either f(s, 1) or f(s, 0) can be factorized as
∏

i fi(si), where each fi(si) is a

univariate, non-negative increasing (decreasing) function of si, and

(2) f(s, 1) ≥ f(s, 0) for all s.



1352 LUO, CAI AND GENG

Then, the ACE of A on Y is non-negative if S(1) ≥uo (≤lo)S(0).

In the above theorem, we use “increasing (decreasing) . . .S(1) ≥uo (≤lo)

S(0)” to denote that “increasing . . . S(1) ≥uo S(0)” may be replaced with “de-

creasing . . . S(1) ≤lo S(0).” Replacing the expectation function f(s, a) with

the distribution function gy(s, a) in the above theorem, we have the following

corollary on the DCE.

Corollary 4. Suppose we know the following about the conditional distribution

gy(s, a):

(1) Either gy(s, 1) for any y or gy(s, 0) for any y can be factorized as
∏

i gyi(si),

where each gyi(si) is a non-negative increasing (decreasing) function of si,

and

(2) gy(s, 1) ≥ gy(s, 0) for all s and y.

Then, S(1) ≥uo (≤lo)S(0) implies DCEA→(Y >y) ≥ 0.

3.2. Equivalence relationships between the signs of the treatment ef-

fects on the surrogates and on the endpoint

In the previous subsection, we present only the implication relationships

from the signs of the treatment effects on the multiple surrogates to the sign of

the treatment effect on the endpoint. However, there may be cases where the

treatment has a positive effect on the endpoint; however this cannot be predicted

by the signs of the treatment effects on these surrogates. In this subsection, we

discuss the conditions necessary for the equivalence relationships between the

signs of the treatment effects on the surrogates and on the endpoint.

Theorem 3. Suppose that

(1) Prentice’s criterion Y A | S holds,

(2) E(Y | s1, . . . , sp) is a strictly increasing function of s1, . . . , sp,

(3) one of the following three conditions holds:

(a) surrogates S1, . . . , Sp, given A, are conditionally mutually independent,

(b) the conditional distribution of the surrogate vector S, given A = a, is

the multivariate normal distribution N(µa,Σ), for a = 0, 1,
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(c) S has only two binary surrogates S1 and S2, and the odds ratios between

S1 and S2, conditional on treatment A, do not depend on A; that is,

ORS1,S2|A=1 = ORS1,S2|A=0,

(4) all signs of DCEA→(Si>y) for i = 1, . . . , p are the same (null, positive, or

negative).

Then, ACEA→Y has the same sign (null, positive, or negative) as DCEA→(Si>y)

for i = 1, 2, . . . , p.

To predict the sign of the ACE on the endpoint Y in the above theorem,

we use the signs of the DCEs on the surrogates S. For the normal and binary

surrogates ((b) and (c), respectively, in Condition (3)), the signs of the DCE

and the ACE on S are the same. However, their signs may be different for (a),

although the requirement of normal and binary surrogates can be relaxed to

being surrogates from a one-parametric exponential family.

The conditions in Theorem 3 ensure not only that positive treatment effects

on all surrogates imply a positive treatment effect on the endpoint, but also that

a positive treatment effect on the endpoint implies positive treatment effects on

the surrogates.

Similarly, by replacing “E(Y | s)” in Condition (2) in Theorem 3 with

“P (Y > y | s) for any y,” the sign of DCEA→(Y >y) is the same as that of

DCEA→(Si>y) if the four conditions are satisfied.

4. Criteria for Multiple Surrogates with Models

In this section, we discuss the conditions necessary to predict the sign of

the treatment effect on the unobserved endpoint when the endpoint Y follows

the generalized additive model, Cox’s proportional hazard model, or the hazard

additive model.

4.1. Generalized additive model

First, we consider the following generalized additive model for the expecta-

tion E(Y | s, a):

g(E(Y | s, a)) = f1(s1) + · · ·+ fp(sp) + f0(a), (4.1)

where g is a known link function, and each fi may be a parametric, non-paramet-

ric, or semi-parametric function. This is an extension of the generalized linear

model, and includes the linear model, logistic model, and probit model.

Corollary 5. For the generalized additive model, suppose that
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(1) g is a strictly increasing function, and

(2) each fi is an increasing function, for i = 0, 1, . . . , p.

Then, the ACE of A on Y is non-negative if S(1) ≥st S(0). Furthermore, if

S(1) >st S(0) and fi (1 ≤ i ≤ p) is not constant in si, for some i, then the ACE

of A on Y is positive.

For the generalized additive model, the conditions for the equivalence rela-

tionship between the effect signs of A on S and Y are given below.

Corollary 6. For the generalized additive model, suppose that

(1) Prentice’s criterion Y A | S holds,

(2) g is a strictly increasing function,

(3) each fi (i = 0, 1, . . . , p) is an increasing function, and there is some fi (1 ≤
i ≤ p) that is not constant in si,

(4) one of the following three conditions holds:

(a) the surrogates S1, . . . , Sp, given A, are conditionally and mutually in-

dependent,

(b) the conditional distribution of the surrogate vector S, given A = a, is

the multivariate normal distribution N(µa,Σ), for a = 0, 1,

(c) S has only two binary surrogates S1 and S2, and ORS1,S2|A=1 =

ORS1,S2|A=0,

(5) the signs of DCEA→(Si>y) for i = 1, . . . , p are the same (null, positive, or

negative).

Then, ACEA→Y , DCEA→(Si>y), and ACEA→Si
, for all i = 1, . . . , p, have the

same sign (null, positive, or negative).

For the following model, the stochastic order S(1) ≥st S(0) in Corollary 5

may be replaced by a weaker order S(1) ≤lo S(0) or S(1) ≥uo S(0):

E(Y |s, a) =

m∑
j=1

p∏
i=1

gij(si, a). (4.2)

This model (4.2) includes the linear model and the log additive model.

Corollary 7. For the model given in (4.2), suppose that
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(1) gij is a non-negative strictly increasing (decreasing) function of si for every

i and j, and

(2) gij(si, a = 1) ≥ gij(si, a = 0).

Then, the ACE of A on Y is non-negative if S(1) ≥uo (≤lo)S(0).

4.2. Hazard models

In this subsection, we consider two hazard models: the Cox proportional

hazard model:

λ(y | s, a) = λ0(y) exp

{
g0(a) +

p∑
i=1

gi(si)

}
,

and the hazard additive model:

λ(y | s, a) = λ0(y) + g0(a) +

p∑
i=1

gi(si),

where gi denotes a known function and λ0(y) is a baseline hazard function.

Corollary 8. For the Cox proportional hazard model, suppose that

(1) gi(si) is a univariate decreasing function, for i = 1, . . . , p, and

(2) g0(1) ≤ g0(0).

Then, the DCE of A on Y is non-negative if S(1) ≥st S(0).

Corollary 9. For the hazard additive model, suppose that

(1) gi(si) denotes all univariate decreasing (increasing) functions, and

(2) g0(1) ≤ g0(0).

Then, the DCE of A on Y is non-negative if S(1) ≥uo (≤lo)S(0).

For both hazard models, the conditions for the equivalence relationship be-

tween the effect signs of A on S and Y are given below.

Corollary 10. For both hazard models, suppose that

(1) Y A | S, which is equivalent to g0(1) = g0(0),

(2) gi(si) denotes all univariate decreasing functions, at least one of which is not

constant,
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(3) one of the following conditions holds:

(a) the surrogates S1, . . . , Sp, given A, are conditionally mutually indepen-

dent,

(b) the conditional distribution of the surrogate vector S, given A = a, is

the multivariate normal distribution N(µa,Σ), for a = 0, 1,

(c) S has only two binary surrogates S1 and S2, and ORS1,S2|A=1 =

ORS1,S2|A=0,

(4) the signs of DCEA→(Si>y), for i = 1, . . . , p, are the same (null, positive, or

negative).

Then DCEA→(Y >y), ACEA→Y , DCEA→(Si>y), and ACEA→Si
, for i = 1, . . . , p,

have the same sign (null, positive, or negative).

5. Simulation Studies

In this section, we illustrate our results and the sensitivity of their condi-

tions using simulation studies with two surrogates. For two normal surrogates

conditional on a treatment, as shown in Corollary 2, we have ACEA→Y > 0 if

ACEA→Si
> 0, for i = 1, 2, and E(Y |S1 = s1, S2 = s2, A = a) is an increasing

function in s1, s2, and a. Below, we show the percentages of correctly predicting

ACEA→Y > 0 in 100,000 repetitions. To check the sensitivity of each condition

in Corollary 2, we also show the percentages for scenarios in which one of the

conditions in Corollary 2 is not satisfied. We consider the following six scenarios

for the conditions in Corollary 2:

Scenario 1: All conditions are satisfied,

Scenario 2: Only ACEA→S1
> 0 is not satisfied,

Scenario 3: Only ACEA→S2
> 0 is not satisfied,

Scenario 4: E(Y | S1 = s1, S2 = s2, A = a) is not an increasing function in a,

Scenario 5: E(Y | S1 = s1, S2 = s2, A = a) is not an increasing function in s1,

Scenario 6: E(Y | S1 = s1, S2 = s2, A = a) is not an increasing function in s2.

In our simulations, we used a binary randomized treatment A, two normal

surrogates S1 and S2, a continuous endpoint Y , and an unobserved confounder U

that follows a normal distribution. The data-generation mechanism is as follows:
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1. A ∼ Bernoulli(0.5),

2. the unobserved confounder U ∼ N(0, 1),

3.
S1 = α1A+ α2U + ε1,

S2 = β1A+ β2U + ε2,

(
ε1
ε2

)
∼ N

[(
0

0

)
,

(
1 ρ

ρ 1

)]
,

4. Y = γ1A+ γ2S1 + γ3S2 + γ4U + ε and ε ∼ N(0, 1).

The covariance matrices of (S1, S2), conditional on A = 1 and A = 0, are the

same, as required in Corollary 2. For each sample, the parameters α1, α2, β1,

β2, γ1, γ2, γ3, γ4, and ρ are randomly generated from the following uniform

distributions:

1. α1, α2, β1, β2, γ1, γ2, γ3 ∼ U [−3, 3],

2. γ4, ρ ∼ U [−1, 1].

If S1 and S2 block all pathways from A to Y , then there is no direct effect of A

on Y , that is, γ1 = 0. Because γ1 ∼ U [−3, 3] and P (γ1 = 0) = 0, there may be

direct effect from A to Y in our simulations.

We replicated 100,000 simulation runs with sample sizes 100, 200, 300, and

400. For each simulation, we checked the conditions in Corollary 2 to determine

which of the above six scenarios occurs. We rejected a simulation if it did not

belong to any of the six scenarios. For each scenario of the accepted simulations,

we calculated the percentage of the simulations with a positive ACEA→Y .

From the data-generating process, we can get

E(Y |A,S1, S2) =

γ1A+ γ2S1 + γ3S2 + γ4(α2, β2)

(
α2
2 + 1, α2β2 + ρ

α2β2 + ρ, β22 + 1

)−1(
S1 − α1A

S2 − β1A

)
.

Thus, the linear model E(Y | A,S1, S2) = b0+b1A+b2S1+b3S2 holds. Although

we could check the conditions in Corollary 2 using all of the parameters generated

in each simulation, we use statistical tests on b1, b2, and b3 in the simulations

to mimic what would happen in practice, where these parameters are unknown.

We judge that Conditions (1) and (2) of Corollary 2 are satisfied if b1, b2, and b3
are all significantly positive at a significance level of 0.01.

In order to confirm whether ACEA→Si
> 0(i = 1, 2) and ACEA→Y > 0, we

check H
(1)
0 : ACEA→S1

≤ 0, H
(2)
0 : ACEA→S2

≤ 0, and H
(3)
0 : ACEA→Y ≤ 0 using

a t-test with a significance level of 0.01 in each case. Note that in our simulations,
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Table 4. The percentages of a significant ACEA→Y > 0 under different conditions.

Sample size Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6
100 100.00 69.86 68.64 93.14 59.15 58.38
200 100.00 68.99 71.26 91.39 62.84 63.37
300 100.00 70.62 69.91 91.12 65.80 66.22
400 100.00 69.91 69.69 91.46 65.03 64.27

we test H
(3)
0 to check whether a significant ACEA→Y > 0 can be obtained from

the simulated data if Y is observed, although we cannot test H
(3)
0 because Y is,

in general, not observed in real trials. We summarize the percentages of correctly

predicting a significant ACEA→Y > 0 for the six scenarios in Table 4. We find

that for scenario 1, where all conditions in Corollary 2 are satisfied significantly,

a high percentage of the simulations predict a significant ACEA→Y . This might

be because we required that all conditions for ACEA→Y > 0 be simultaneously

significant in each simulation. For other scenarios, where one of the conditions is

violated, the proportions of ACEA→Y > 0 are much smaller than 100%, which

means we cannot predict a significant ACEA→Y > 0 correctly. This provides a

strong evidence that the conditions of Corollary 2 are essential to predicting a

positive treatment effect on the unobserved endpoint.

6. Application to Campaign Finance Reform Experiment Data

To illustrate the application of our criteria for multiple surrogates, we rean-

alyze the data set used by Druckman and Nelson in their experiment (Druckman

and Nelson (2003)). This data set is used to study how citizens’ conversations

reflect the influence of the elite on public opinion. A total of 78 individuals par-

ticipated in the experiment. Participants are assigned to two groups randomly.

Participants in one group are asked to read an article on a proposed campaign

finance reform that emphasizes its possible violation of free speech. The partici-

pants in the other group are asked to read an article emphasizing the potential of

the reform to limit special interests. Then, the authors measured two surrogates:

the participants’ perceptions of the importance of free speech and special inter-

ests, and their beliefs about the impact of the proposed reform on these items.

Finally, the authors measured the outcome variable, namely, the overall level of

support for the proposed campaign finance reform.

The two surrogates and the outcome are measured using questionnaires that

employ seven-point scales. We denote the random assignment by A, the two

surrogates by M (belief importance) and W (belief content), and the outcome by
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Y . High scores of M , W , and Y indicate an increase in the perceived importance,

a more positive effect of the reform, and an increase in the support of the finance

reform bill, respectively.

Because A is randomized, we can identify ACEA→M , ACEA→W , and

ACEA→Y using E(M |A = 1) − E(M |A = 0), E(W |A = 1) − E(W |A = 0),

and E(Y |A = 1) − E(Y |A = 0), respectively, which can be estimated using

the sample means. We used the Shapiro–Wilk test to test whether the vector

(M,W ) follows a joint normal distribution, indicated by a p-value greater than

0.1. Thus, we treat M and W from a two-dimensional normal distribution. We

test H0 : Σ0 = Σ1 using the likelihood ratio test, where Σ0 and Σ1 are the

covariance matrices of (M,W ), given A, equal to zero and one, respectively, to

check whether (M(A = 0),W (A = 0)) and (M(A = 1),W (A = 1)) share the

same covariance matrix. The likelihood ratio statistic is 3.845 with three degrees

of freedom and the p-value is p = 0.279. Thus, we suppose that the covari-

ance matrices of (M(A = 0),W (A = 0)) and (M(A = 1),W (A = 1)) are the

same. The point estimates of the ACE of A on M and W are −0.6882 and

0.5882, respectively, and the corresponding 90 percent confidence intervals are

(−1.288,−0.088) and (0.009, 1.168), respectively. Thus, we have ACEA→M < 0

and ACEA→W > 0. Therefore, we let M∗ = −M so that A has a positive ACE

on M∗. We fit the linear regression model of Y on A, and M∗ and W . The

coefficients of A, M∗, and W are 0.3094, 0.3028, and 0.3927, respectively. The

coefficients of M∗ and W are both significant (p = 0.006 and 0.0007, respec-

tively). As a result, E(Y |A = a,M∗ = m∗,W = w) is an increasing function

of a, m∗, and w. Based on Corollary 2, we obtain the following implication re-

lationship: ACEA→M∗ > 0 and ACEA→W > 0 imply ACEA→Y > 0. This is

consistent with the fact that the point estimate of ACEA→Y is 0.7487 and the

90 percent confidence interval is (0.121, 1.376).

Furthermore, the p-value of the hypothesis that the coefficient of A in the

linear regression model is equal to zero is 0.35. Thus, we cannot reject the null

hypothesis, and may suppose that Prentice’s criterion Y A | (M,W ) is satisfied.

We fit the linear regression model of Y on M∗ and W . The coefficients of M∗

and W are 0.3190 and 0.4063, respectively. The coefficients of M∗ and W are

both significant (p = 0.006 and 0.0007, respectively). From Theorem 3, we have

that the signs of DCEA→(M∗>y), DCEA→(W>y), ACEA→M∗ , ACEA→W , and

ACEA→Y are the same.
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7. Discussion

The statistical surrogate criterion, principal surrogate criterion, strong sur-

rogate criterion, and consistent surrogate criterion apply to the case of a single

surrogate only. In real applications, there are often multiple causal paths from

the treatment or exposure to the endpoint. Thus, the conditions required in the

above criteria cannot be satisfied and should be extended to cases with multi-

ple surrogates. Previous works have noted that the statistical surrogate criterion,

principal surrogate criterion, and strong surrogate criterion cannot avoid the sur-

rogate paradox. Although the consistent surrogate criteria proposed by Chen,

Geng and Jia (2007), Ju and Geng (2010), and Vanderweele (2013) can avoid

the surrogate paradox, they can only be used for a single surrogate and the con-

ditions in their criteria involve unobserved confounders between a surrogate and

an endpoint. Thus, they are untestable, even if the endpoint is observed. In

this paper, we have proposed criteria for multiple surrogates that do not involve

unobserved confounders. Therefore, these conditions can be tested if there are

validation trials in which the endpoint is observed. Furthermore, the monotonic-

ity of f(s, 0) required in Condition (1) in our theorems and corollaries can be

checked if the same control group was used in previous trials where the endpoint

Y was observed. Note that the monotonicity is an important additional condition

required for Prentice’s statistical criterion to avoid the surrogate paradox.

We have proposed a testing approach for easily checking the stochastic or-

ders when the surrogate vector is normal or has only two binary surrogates. This

approach can be generalized to the case of a surrogate vector with a mixture of

normal and two binary surrogates. For more general cases, nonparametric ap-

proaches, such as a goodness-of-fit test, should be considered to test the stochastic

orders.

In this paper, we have only discussed criteria for using multiple surrogates

to predict the signs of treatment effects on the unobserved endpoint. In some

real applications, if an additional validation sample with an observed endpoint Y

from a previous clinical trial is also available, then we can try to quantitatively

evaluate the treatment effects on the endpoint. Here, the validation sample from

the previous trial can be used to provide information on E(Y |s, a), such as its

point estimate or its prior distribution. Then, we can use the data from the

current trial with observed surrogates, but a missing endpoint, or can combine

the data from the current and previous trials to obtain more efficient estimates

of p(s|a) and, thus, more efficient estimates of E(Y |a) for a = 0, 1. Using the
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estimates, we can quantitatively evaluate the treatment effects ACEA→Y and

DCEA→(Y >y).

For multiple hypothesis testing on the treatment effects on multiple surro-

gates, the false discovery rate should be considered in future work.
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Appendix: Proofs of theorems and corollaries

Proof of Theorem 1. First, we introduce the following lemma.

Lemma A1. If X ≥st Y and φ(x) is any increasing function in Rn, then the

following inequality holds:

E(φ(X)) ≥ E(φ(Y)),

provided that the expectations exist. In addition, if X >st Y and φ(x) is any

increasing function in Rn satisfying φ(X) or φ(Y) is not constant a.s., then the

following inequality holds:

E(φ(X)) > E(φ(Y)),

provided that the expectations exist.

The proof of the first part of the lemma is available in Shaked and Shan-

thikumar (2007). Below, we prove the second part.

Proof of Lemma 1. Recall that

E(X) =

∫ ∞
0

P (X > c)dc−
∫ ∞
0

(1− P (X > −c)) dc.

We have

E(φ(X))− E(φ(Y)) =

∫ ∞
−∞
{P (φ(X) > c)− P (φ(Y) > c)}dc.

Let W (c) denote {x | φ(x) > c}. Note that W (c) is an upper set because φ(x)

is an increasing function implies that, for x ∈ W (c), any y � x also implies

φ(y) > c, which leads to y ∈W (c).
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Because X >st Y implies P (φ(X) > c) − P (φ(Y) > c) = P (X ∈ W (c)) −
P (Y ∈ W (c)) ≥ 0, the above integral is non-negative. Let D = {c | P (φ(X) >

c)− P (φ(Y) > c) > 0}. In order to show that the above integral is positive, we

need only show that m(D) > 0, where m(·) is the Lebesgue measure. By the

definition of X >st Y, P (φ(X) > c) − P (φ(Y) > c) = 0 holds if and only if

P (φ(X) > c) = P (φ(Y) > c) = 0 or 1. It is easy to show that D ⊇ {c | 0 <

P (φ(X) > c) < 1 or 0 < P (φ(Y) > c) < 1}.
For the case that φ(X) is not constant a.s., let a = inf{t | P (φ(X) > t) < 1}

and b = sup{t | P (φ(X) > t) > 0}. It is easy to see that a ≤ b because

P (φ(X) > t) is a right-continuous decreasing function in t. If a = b, then

P (φ(X) > t) = 1 when t < a, and P (φ(X) > t) = 0 when t > b. Because

P (φ(X) > t) is right-continuous, we have P (φ(X) = a) = 1, which contradicts

that φ(X) is not constant a.s.. Thus, we have proved that a < b. Then, for

∀a < c < b, we have 0 < P (φ(X) > c) < 1; thus, c ∈ D. Therefore, (a, b) ⊂ D,

and m(D) ≥ b− a > 0.

For the case that φ(Y) is not constant a.s., the proof is similar. Therefore

we obtain

E(φ(X))− E(φ(Y)) =

∫
D
{P (φ(X) > c)− P (φ(Y) > c)}dc > 0.

This completes the proof.

Below, we only consider discrete surrogates S. For the continuous case, the

proof is similar. Because f(s, a) is an increasing function in Rp (a = 0 or 1), we

have the following inequality (a = 0 or 1), from Lemma 1:∑
s

f(s, a)P (S(1) = s) ≥
∑
s

f(s, a)P (S(0) = s). (A.1)

Because A is randomized, A is independent of the potential outcome; that is,

A (S(a), Y (a)). Thus, for the case of a = 1 in (3), we have

E(Y (1)) =
∑
s

E(Y (1)|S(1) = s)P (S(1) = s)

=
∑
s

E(Y (1)|S(1) = s, A = 1)P (S(1) = s)

=
∑
s

E(Y |S = s, A = 1)P (S(1) = s)

=
∑
s

f(s, 1)P (S(1) = s) ≥
∑
s

f(s, 1)P (S(0) = s)

≥
∑
s

f(s, 0)P (S(0) = s) = E(Y (0)).
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The last inequality holds from Condition (2).

Similarly, for the case of a = 0 in (3), we have

E(Y (1)) =
∑
s

E(Y (1)|S(1) = s)P (S(1) = s)

=
∑
s

E(Y (1)|S(1) = s, A = 1)P (S(1) = s)

=
∑
s

E(Y |S = s, A = 1)P (S(1) = s)

=
∑
s

f(s, 1)P (S(1) = s) ≥
∑
s

f(s, 0)P (S(1) = s)

≥
∑
s

f(s, 0)P (S(0) = s) = E(Y (0)).

In summary, we have proved that S(1) ≥st S(0) implies ACEA→Y ≥ 0. The

proof is similar if S(1) >st S(0) is correct instead of S(1) ≥st S(0), based on the

second inequality of Lemma 1.

Proof of Corollary 1. Replacing Y with IY >y in the above proof, we obtain the

result of Corollary 1.

Proof of Corollary 2. Combining ACE(A → Si) ≥ 0, for i = 1, 2, . . . , p, and

Condition (3), we have S(1) ≥st S(0). Similarly, combining ACE(A → Si) > 0,

for i = 1, 2, . . . , p, and Condition (3), we have S(1) >st S(0). In addition, the

first two conditions in Corollary 2 are the same as the first two conditions in

Theorem 1. Thus, the conclusion of Corollary 2 is correct, based on Theorem 1.

Proof of Corollary 3. Let pija denote P (S1(a) = i, S2(a) = j). To prove S(1) ≥st

S(0), we need to show: (1) p111 ≥ p110; (2) p111 + p101 ≥ p110 + p100; (3)

p111 + p011 ≥ p110 + p010; and (4) p111 + p101 + p011 ≥ p110 + p100 + p010. From

ACEA→Si
≥ 0, (2) and (3) are correct. To prove (1), we might assume p111 < p110

first. Then from (2) and (3), we easily obtain p101 > p100 and p011 > p010.

Because 1 = p111 + p101 + p011 + p001 = p110 + p100 + p010 + p000, we have

p011 + p001 ≤ p010 + p000 from (2), and thus p011 > p010 implies p001 > p000.

Then, we have p111p001/(p101p011) > p110p000/(p100p010) because the left-hand

side has a bigger numerator and a smaller denominator, which contradicts the

condition ORS1,S2|A=1 = ORS1,S2|A=0. Thus, (1) is proved. (4) is equivalent to

p001 ≤ p000, and the proof is almost the same as that of (1).

Similarly, we can prove ACE(A → Y ) > 0 if ACE(A → S1) > 0 and

ACE(A→ S2) > 0.
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Proof of Theorem 2. First, we introduce two lemmas given in Shaked and Shan-

thikumar (2007).

Lemma A2. Let X and Y be two n-dimensional random vectors and X ≤uo

Y. For every collection {g1, g2, . . . , gn} of univariate non-negative increasing

functions, the following inequality holds:

E

[
n∏

i=1

gi(Xi)

]
≤ E

[
n∏

i=1

gi(Yi)

]
.

Lemma A3. Let X and Y be two n-dimensional random vectors and X ≤lo

Y. For every collection {h1, h2, . . . , hn} of univariate non-negative decreasing

functions, the following inequality holds:

E

[
n∏

i=1

hi(Xi)

]
≥ E

[
n∏

i=1

hi(Yi)

]
.

Similarly to the proof of Theorem 1, based on these lemmas and the condi-

tions of Theorem 2, we obtain the conclusion of Theorem 2.

Proof of Corollary 4. Replacing Y with IY >y in the above proof, we obtain the

result of Corollary 4.

Proof of Theorem 3. First, combining Prentice’s criterion and Condition (2), we

know that f(s, 1) = f(s, 0) = f(s) is strictly increasing. Using the same method

as that used in the proofs of Corollaries 2 and 3, it is easy to complete the proof

when either the second or the third condition of (3) is correct. Below, we prove

the theorem under the first condition of (3).

When the surrogates are conditionally mutually independent, the expecta-

tion of the potential outcome can be transformed as follows:

E(Y (a)) =
∑
s

E(Y (a) | S(a) = s)P (S(a) = s)

=
∑
s

E(Y | S = s, A = a)P (S(a) = s)

=
∑
s

E(Y | S = s, A = a)P (S1(a) = s1) . . . P (Sp(a) = sp)

=
∑
sp

· · ·
∑
s1

f(s1, . . . , sp)P (S1(a) = s1) . . . P (Sp(a) = sp)

= ESp(a) . . . ES1(a){f(S1(a), . . . , Sp(a))}.
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Thus, if the signs of DCE(A → (Si > y)), for i = 1, 2, . . . , p, are all positive,

then Si(1) >st Si(0), for all i. Because f is a strictly increasing function, from

Lemma 1 we have

E(Y (1)) = ESp(1) . . . ES1(1){f(S1(1), . . . , Sp(1))}
> ESp(1) . . . ES1(0){f(S1(0), . . . , Sp(1))}
> . . .

> ESp(0) . . . ES1(0){f(S1(0), . . . , Sp(0))}
= E(Y (0)).

Therefore, ACEA→Y is also positive. When the signs of DCE(A → (Si > y))

are all null or negative, the corresponding results can be derived. This completes

the proof.
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