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Abstract: In this paper, we consider a robust approach to the ultrahigh dimensional

variable screening under varying coefficient models. While the existing works focus-

ing on the mean regression function, we propose a procedure based on conditional

quantile correlation sure independence screening (CQCSIS). This proposal is appli-

cable to heterogeneous or heavy-tailed data in general and is invariant to monotone

transformation of the response. Furthermore, we generalize such a screening proce-

dure to address censored lifetime data through inverse probability weighting. The

CQCSIS can be easily implemented, due to an application of nonparametric B-

spline approximation, and computed much faster than the kernel based screening

method. Under some regularity conditions, we establish sure screening properties

including screening consistency and ranking consistency for proposed approaches.

We also attempt to construct a two-stage variable selection procedure for a further

improvement of performance of CQCSIS based on a group SCAD penalization.

Extensive simulation examples and data applications are presented for illustration.

Key words and phrases: Robust ultrahigh dimensional screening, conditional quan-

tile correlation, survival data analysis.

1. Introduction

We consider the varying coefficient model

Y = β0(T ) + β1(T )X1 + · · ·+ βp(T )Xp + ε, (1.1)

where Y is the response variable, Xj , j = 1, . . . , p are the centred predictors,

βj(·), j = 0, 1, . . . , p are unknown coefficient functions, T is an index variable, and

ε is the error. Over the past two decades, model (1.1) has been systematically

studied and extensively applied in economics, finance, the health sciences, and

the social sciences, among others; it enjoys appealing flexibility of nonparametric
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models to capture the dynamic impacts of the response on relevant covariates,

inherits good interpretability of linear models, and avoids the curse of dimen-

sionality. We refer to Fan and Zhang (2008) for a comprehensive review of

the methodology and theory of varying coefficient models via local polynomial

smoothing.

With the rapid development of information technology and data science,

much attention has been paid to identifying the truly significant features of sig-

nals. Variable selection plays a vital role to this end. Under model (1.1), many

penalized variable selection procedures have been documented including, for ex-

ample, the adaptive Lasso (Wang and Xia (2009)) and the SCAD (Wang, Li

and Huang (2008); Noh, Chung and Van, Keilegom (2012)). These methods

can be challenging in terms of estimation accuracy and computational stability

when the dimension of the feature space is extremely large. For example, in the

data analysis in Section 5, the number of predictors is as high as hundreds of

thousands while the number of observations is only hundreds. Extracting most

predictive information from such large number of candidate variables is a com-

mon research goal. Following the pioneering research work of Fan and Lv (2008),

a sure independence screening (SIS) step is now commonly adopted as a neces-

sary preliminary learning for ultrahigh dimensional data, prior to the penalized

step.

Many excellent variable screening methods for nonparametric models, espe-

cially for varying coefficient models, are in the literature (Fan, Feng and Song

(2011); Fan, Ma and Dai (2014); Song, Yi and Zou (2014); Cheng et al. (2014);

Liu, Li and Wu (2014); Xia, Yang and Li (2016)). We highlight a few relevant

works for the marginal varying coefficient model

Y = b0j(T ) + b1j(T )Xj + η, j = 1, . . . , p, (1.2)

where b0 and b1 are intercept and slope functions. Cheng et al. (2014) used the

norm of the slope function

uj = E
[
{b1j(T )}2

]
, (1.3)

to screen variables for longitudinal data. Fan, Ma and Dai (2014) proposed the

quantity

uj = E
[
{b0j(T ) + b1j(T )Xj}2

]
− E

[
{b0(T )}2

]
(1.4)

as a screener, where b0(T ) = E[Y |T ], and they showed that (1.4) is equivalent to

uj = E

[
{Cov(Y,Xj |T )}2

Var(Xj |T )

]
. (1.5)
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Slightly different from (1.5), Liu, Li and Wu (2014) proposed

uj = E

[
{Cov(Y,Xj |T )}2

Var(Xj |T )Var(Y |T )

]
(1.6)

based on the conditional correlation learning (CC-SIS). Both Cheng et al. (2014)

and Fan, Ma and Dai (2014) considered B-spline approximation for the coefficient

functions, while Liu, Li and Wu (2014) used a kernel smoothing technique. In

these works, the SIS properties were rigorously established. The aforementioned

approaches can successfully pick out a small subset of variables that contains all

truly active variables with an overwhelming probability.

These screening approaches for varying coefficient models can perform unsat-

isfactorily when the data is heteroscedastic or heavy-tailed, because their meth-

ods are oriented toward mean regression and they are not robust in the presence

of outliers. Heterogeneous data are common in many scientific investigations. A

well-known solution is the quantile regression technique (Koenker (2005)). For

ultrahigh dimensional data, He, Wang and Hong (2013) considered the feature

screening problem based on quantile regression and developed a nonparametric

screening procedure. Wu and Yin (2015) proposed a conditional quantile screen-

ing procedure. Ma and Zhang (2016) proposed to use a fused Kolmogorov filter

for variable screening, which incorporates continuous, discrete and categorical

variables, and Ma and Zhang (2016) studied screening utility based on the quan-

tile correlation originally introduced by Li, Li and Tsai (2015). None of these

robust approaches takes into account the varying effects of covariates on the re-

sponse. The current paper aims to work out a robust screening procedure for the

varying coefficient model.

There are some recent works on ultrahigh dimensional survival analysis. For

example, Zhao and Li (2012) proposed a principled sure independence screening

procedure under Cox models. To deal with ultrahigh dimensional and hetero-

geneous survival data, Song et al. (2014) proposed a rank-based independent

screening method for survival data via weighted rank correlation. Using quantile

regression technique, He, Wang and Hong (2013) proposed an inverse probability

weighted approach to deal with censoring data and Wu and Yin (2015) proposed

a censored conditional quantile screening that concentrated on redistributing

mass for censored observations. Our proposal can provide a new solution to sur-

vival screening and the performance is shown to be competitive with the existing

approaches.

We make several contributions, summarized as follows. We propose a screen-

ing method for ultrahigh dimensional varying coefficient models, which can be
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applicable to dealing with the heteroscedastic or heavy-tailed data. Our screen-

ing procedure can be implemented quickly since (i) the estimated utility merely

involves fitting four univariate nonparametric regression functions based on B-

spline approximation. This can be easily implemented in statistic software R

using the bs() function. And (ii) our B-spline based approach has a computa-

tional cost of O(pnLn), where Ln is the number of spline basis functions and n is

sample size. This is lower than the O(pn2) cost of the kernel based approach (see

Liu, Li and Wu (2014)). Our proposed utility is invariant to transformation of

the response because of the nature of conditional quantile correlation. We extend

our approach to handle ultrahigh dimensional survival data, quite appealing in

survival data analysis as it allows for the presence of a varying coefficient effect.

For example, in the breast cancer data set analyzed in this paper, it could be

more reasonable to examine genetic effects as a function of patients’ age. Under

mild technical conditions, our approach can achieve the SIS property. Compared

to nonparametric independence screening (NIS) by Fan, Ma and Dai (2014), our

method can handle data with a higher order of dimensionality. We present a two-

stage approach to refining proposed screening methods, where group penalized

variable selection procedures based on quantile regression models are adapted.

Such an additional step enhances the practical performance of our program and

leads to a broader range of applications.

The remainder of the paper is organized as follows. In Section 2, a general

screening approach based on conditional quantile correlation learning is intro-

duced; necessary conditions are listed and asymptotic properties are established.

In Section 3, an extension to censored response data is developed and related

theoretical properties are established. Section 4 provides a two-stage variable

selection procedure. Numerical studies and empirical analysis of datasets are

carried out in Section 5. Concluding remarks are given in Section 6. Proofs of

the main results are relegated to the Appendix.

2. Varying-coefficient Conditional Quantile Correlation Screening

2.1. Screening methods

In this section, we introduce an SIS procedure based on conditional quantile

correlation. Li, Li and Tsai (2015) proposed a quantile correlation for autore-

gression modeling as

qcorτ (Y,X) =
qcovτ (Y,X)√

Var{I(Y −Qτ,Y > 0)}Var(X)
, (2.1)
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where qcovτ (Y,X) = Cov{I(Y −Qτ,Y > 0), X} = E[ψτ (Y −Qτ,Y ){X −E(X)}],
Qτ,Y is the τ quantile of Y , and ψτ (u) = τ − I(u < 0) for τ ∈ (0, 1). This

correlation takes a value between −1 and 1 and is asymmetric with respect to Y

and X. Differing from classic correlation, it possesses the property of monotone

invariance in variable Y . Also, as shown by Li, Li and Tsai (2015), qcorτ (Y,X) is

closely related to the slope of the τth quantile regression of Y on X. Specifically,

denote by (a∗0τ , a
∗
1τ ) the minimizer of E{ρτ (Y −a0τ −a1τX)} with respect to a0τ

and a1τ . Then we can show that qcorτ (Y,X) = ϕ(a∗1τ ), where ϕ(·) is a continuous

and increasing function, and ϕ(a∗1τ ) = 0 if and only if a∗1τ = 0.

Following equation (2.1), we define a conditional quantile correlation (CQC)

for Y and Xj given T as

cqcorτ (Y,Xj |T ) =
qcovτ (Y,Xj |T )√

Var{I(Y −Qτ,Y > 0)|T}Var(Xj |T )
, (2.2)

where qcovτ (Y,Xj |T ) = Cov(I(Y −Qτ,Y > 0), Xj |T ). We propose the following

utility as a new screener:

uj = E[{cqcorτ (Y,Xj |T )}2]. (2.3)

In the following, we write m1j(t) = E{I(Y − Qτ,Y > 0)Xj |T = t},m2j(t) =

E(I(Y − Qτ,Y > 0)|T = t),m3j = E(X2
j |T = t) and m4j(t) = E(Xj |T = t) and

let ρj(t) = cqcorτ (Y,Xj |T = t). Thus, (2.3) is uj = E{ρ2j (T )}, where

ρj(t) =
m1j(t)−m2j(t)m4j(t)√

{m2j(t)−m2
2j(t)}{m3j(t)−m2

4j(t)}
.

We may now construct a counterpart of uj based on a sample consisting of

observations {Yi,Xi, Ti, i = 1, . . . , n}. An empirical utility is

ûj =
1

n

n∑
i=1

ρ̂2j (Ti), (2.4)

where

ρ̂j(t) =
m̂1j(t)− m̂2j(t)m̂4j(t)√

{m̂2j(t)− m̂2
2j(t)}{m̂3j(t)− m̂2

4j(t)}
, (2.5)

and where the m̂kj(t)’s are nonparametric estimators of mkj(t) for k = 1, 2, 3, 4.

In practice these functions can be estimated via local kernel smoothing or other

nonparametric approximation methods. We consider the B-spline basis approxi-

mation to obtain m̂kj(t). Due to the existence of B-spline approximation error,

the estimate of CQC, ρ̂j(t), does not enjoy asymptotic normality, which is dif-

ferent from Li, Li and Tsai (2015).
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Let Q̂τ,Y be the sample τth quantile of Y and write m(t) = E{g(X)|T = t}
for any generic function g. Suppose that {Bk(·), k = 1, . . . , Ln}, with ‖Bk‖∞ ≤ 1,

is a sequence of normalized B-spline basis functions, where Ln is the number of

knots. Then, according to the theory of B-spline approximation, there exists

a vector γ ∈ RLn such that m(t) ≈ B(t)′γ, where B(·) = (B1(·), . . . , BLn
(·))′.

Based on sample observations {(Ti, g(Xi)), i = 1, . . . , n}, one can then obtain an

estimator for γ as

γ̂ = (B′B)−1B′f , (2.6)

using the least squares method, where B = (B(T1), . . . ,B(Tn))′ and f = (g(X1),

. . . , g(Xn))′. Hence, the estimator for m(t) is

m̂(t) = Ê{g(X)|T = t} = B(t)′(B′B)−1B′f . (2.7)

Using such an idea, we can obtain a simple estimator for ûj in (2.4) with

m̂kj(t) = B(t)′(B′B)−1B′fkj , k = 1, . . . , 4,

where f1j = {I(Y1 − Q̂τ,Y > 0)X1j , . . . , I(Yn − Q̂τ,Y > 0)Xnj}′, f2j = {I(Y1 −
Q̂τ,Y > 0), . . . , I(Yn − Q̂τ,Y > 0)}′, f3j = (X2

1j , . . . , X
2
nj)
′ and f4j = (X1j , . . . ,

Xnj)
′. Then we select the set of variables

M̂ = {j : ûj > νn, 1 ≤ j ≤ p}, (2.8)

where νn is a user-specified threshold parameter.

2.2. Theoretical properties

To study the theoretical properties of the proposed screening procedure, we

letM∗ = {j : βj(t) 6= 0 for some t ∈ T } be the set of truly active variables, with

nonsparsity size sn = |M∗|. We impose regularity conditions. This might not

be the weakest but which facilitate establishing the screening consistency of the

proposed CQC screener.

(C1) The support of index variable T is bounded, say T = [a, b] with finite

constants a and b, with density f bounded away from zero and infinity.

(C2) For all j = 1, . . . , p, there exist positive constantsK1,K2 such that P (|Xj | >
x|T ) ≤ K1 exp(−K−12 x) almost surely.

(C3) The functions mkj , k = 1, 2, 3, 4, j = 1, . . . , p belong to a class of functions

B, where

B = {m(·) : |m(r)(s)−m(r)(t)| ≤M |s− t|α for s, t ∈ T },

for some positive constant M , r a nonnegative integer, and α ∈ (0, 1] such



CQCSIS AND ITS APPLICATION IN SURVIVAL ANALYSIS 651

that d ≡ r + α > 0.5.

(C4) In a neighbourhood of Qτ,Y , conditional densities fY |(Xj ,T )(y) of Y given

(Xj , T ) and fY |T (y) of Y given T are uniformly bounded away from zero

and infinity and their derivatives f ′Y |(Xj ,T )
(y) and f ′Y |T (y) are bounded.

(C5) There exist positive constants K3,K4 such that inft∈T Var{I(Y > Qτ,Y )|t}
≥ K3 > 0 and inft∈T Var(Xj |t) ≥ K4 > 0.

(C6) minj∈M∗ uj ≥ 2CLnn
−2κ for some κ > 0 and C > 0.

(C7) limn→∞ n
2κL

−1/2−d
n = 0 and limn→∞ n

2κ−ιL
−1/2
n = 0 for some 0 < ι < 1/2,

where d is defined in (C3) and κ is given in (C6).

Remark 1. Conditions (C1), (C2) and (C4) are mild distribution assumptions.

Condition (C2) requires a conditional sub-exponential tail probability for covari-

ates Xj given T , uniformly in j, which guarantees that mkj(t), k = 1, 2, 3, 4 are

finite uniformly in t ∈ T . This condition can be weakened by adding more con-

straints on the dimensionality p. Nevertheless, the sure screening property we

establish still holds and can be proved with slightly different arguments. Con-

dition (C3) is a regularity condition for the smoothness of coefficient functions

that facilitates B-spline approximation. Condition (C5) requires that the CQC

is well defined. Condition (C6) ensures that the significant covariates are identi-

fiable by marginal models since a partial orthogonality condition, {Xj : j ∈M∗}
is independent of {Xj : j 6∈ M∗}, Huang, Horowitz and Ma (2008). Condition

(C7) bounds the number of basis functions Ln from below, which implies that Ln
should not be chosen too small to ensure that the approximation error is negli-

gible. Similar requirements can be found in Fan, Feng and Song (2011) and Fan,

Ma and Dai (2014); Cheng et al. (2014) for screening in ultra-high dimensional

varying coefficient models.

Theorem 1 (Sure Screening Property). Suppose (C1)-(C5) and (C7) hold and

(i) if L−3n n → ∞ and L−2n n1−4κ → ∞ as n → ∞, then there exist positive

constants δ1, δ2 such that

P

(
max
1≤j≤p

|ûj − uj | > CLnn
−2κ
)

≤ O
(
pn
{
L2
n exp

(
−δ1L−3n n

)
+ Ln exp

(
−δ2L−2n n1−4κ

)})
;

(ii) if (C6) is further satisfied, then by taking νn = CLnn
−2κ, we have

P
(
M∗ ⊂ M̂

)
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≥ 1−O
(
snn

{
L2
n exp

(
−δ1L−3n n

)
+ Ln exp

(
−δ2L−2n n1−4κ

)})
;

and (iii) if the conditions of (ii) hold and maxj 6∈M∗ uj = o(Lnn
−2κ), we have

P
(
M̂ =M∗

)
= 1− o(1).

Remark 2. Theorem 1 suggests that we can handle NP dimensionality of order

log p = o
(
L−3n n+ L−2n n1−4κ

)
.

In comparison with Fan, Ma and Dai (2014), our CQC screening procedure

achieves a higher exponential rate for the dimensionality under similar condi-

tions. This can be partly explained by the use of an indicator function in the

proposed utility. If we take Ln = O(n1/(2d+1)), the optimal convergence rate

in nonparametric regression Stone (1982), then (C7) reduces to κ < min(ι/2 +

1/4(2d+ 1), 1/4). Accordingly, if 1/4(2d+ 1) < κ < min(ι/2+1/4(2d+ 1), 1/4),

the dimensionality we can handle is as high as log p = o
(
n2(d−1)/(2d+1)

)
, the same

order as in Fan, Ma and Dai (2014). Moreover, if κ ≤ 1/4(2d+ 1), then we can

deal with the dimensionality of order log p = o
(
n(2d−1)/(2d+1)−4κ), provided that

d > max((1 + 4κ)/2(1− 4κ), 1) in order to guarantee the consistency of screening

procedure.

Remark 3. Theorem 1(i), together with the conditions of Theorem 1(iii), implies

that with probability tending to one, maxj 6∈M∗ ûj < cLnn
−2κ for any c > 0.

Thus, by choosing νn = cLnn
−2κ, we can prove model selection consistency.

Theorem 2 (Ranking Consistency Property). If (C1)-(C7) hold, that

lim inf
n→∞

(
min
j∈M∗

uj − max
j 6∈M∗

uj

)
> 0, (2.9)

and that log p < C11δ
2
0L
−4
n n−2 logLn− log n, where C11, δ0 are constants defined

in the Appendix, then we have

lim inf
n→∞

(
min
j∈M∗

ûj − max
j 6∈M∗

ûj

)
> 0

in probability.

Remark 4. Theorem 2 indicates that the true significant variables have an over-

whelming probability of greater ûj than non-informative variables, and hence it

implies that all important predictors are ranked in the top.

Remark 5. Assumption (2.9) requires a clear separation between the CQC of

signal predictors and noisy predictors. And such a condition may not be easily
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satisfied for all high dimensional models. When this assumption is not available,

the results of Theorem 2 may not hold.

Let b = (Cov{I(Y > Qτ,Y ), X1|T}, . . . ,Cov{I(Y > Qτ,Y ), Xp|T})′. We

have that if E(‖b‖2) = O(nγ) for some γ > 0, the model after screening is

of polynomial size with probability tending to one. When the predictors are

weakly correlated or independent and the number of active predictors, sn, is of

polynomial size, the vector is quite sparse with sn nonzero entries. Under such

a setting, the condition imposed on b is valid. Our result may fail for highly

correlated regressors.

Theorem 3 (False Selection Rate). Under the conditions of Theorem 1, there

exist positive constants δ3, δ4, C̃ such that

P (|M̂| ≤ C̃n2κL−1n E(‖b‖2))
≥ 1−O

(
pn
{
L2
n exp

(
−δ3L−3n n

)
+ Ln exp

(
−δ4L−2n n1−4κ

)})
.

3. CQC Screening for Survival Data

In this section, we extend the CQC screening procedure to handle ultrahigh

dimensional survival data under a varying coefficient model. Suppose that we

observe the data {Ỹi,∆i,Xi = (Xi1, . . . , Xip)
′, Ti; i = 1, . . . , n}, consisting of n

independent copies of (Ỹ ,∆,X, T ), where Ỹ = min(Y,Z) and ∆ = I(Y ≤ Z), in

which Y represents the failure time variable and Z stands for the censoring time.

We assume that the censoring variable Z is independent of covariates.

From (2.2), it is easy to see that

cqcorτ (Y,Xj |T ) =
E{ψτ (Y −Qτ,Y )Xj |T} − E{ψτ (Y −Qτ,Y )|T}E(Xj |T )√

Var{ψτ (Y −Qτ,Y )|T}Var(Xj |T )

Then, motivated by Wang and Wang (2009), we define a weight-nested version

of CQC as

cqcorτ,w(Ỹ , Xj |T ) =

E{ψτ,w(Ỹ −Qτ,Y )Xj |T} − E{ψτ,w(Ỹ −Qτ,Y )|T}E(Xj |T )√
Var{ψτ,w(Ỹ −Qτ,Y )|T}Var(Xj |T )

(3.1)

where ψτ,w(v) = τ − w(F )I(v < 0) with 1 − F (y) = P (Y > y) being survival

distribution, and

w(F ) =

1, ∆ = 1 or F (Z) > τ ,
τ − F (Z)

1− F (Z)
, ∆ = 0 and F (Z) < τ,
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a weight function that redistributes the masses of censored observations to the

right. The indicator I(Yi−Qτ,Y < 0) is observed if the observation is uncensored

and is 0 if Ỹi = Zi > Qτ,Y . If ∆i = 0 and Zi < Qτ,Y , E{I(Y − Qτ,Y < 0)|Yi >
Zi} = {τ − F (Z)}/{1− F (Z)}. Thus, we assign weight 1 to the observed data,

while, in the ambiguous case, we distribute the weight {τ − F (Z)}/{1− F (Z)}
to the ”pseudo” observation at Zi. This weight function does not affect the

quantile fit. The redistribution-of-mass idea was introduced by Efron (1967) and

incorporated for quantile regression by Wang and Wang (2009). When data are

completely observed, this correlation reduces to that in (2.2). Hence, we use a

utility for CQC screening as

uj,w = E

[{
cqcorτ,w(Ỹ , Xj |T )

}2
]
.

Let m1j,w(t) = E{w(F )I(Ỹ < Qτ,Y )Xj |T = t}, m2j,w(t) = E{w(F )I(Ỹ <

Qτ,Y )|T = t} and m3j,w(t) = E{w2(F )I(Ỹ < Qτ,Y )|T = t}, and write ρj,w(t) =

−cqcorτ,w(Y,Xj |T = t). We have uj,w = E{ρ2j,w(T )}, where

ρj,w(t) =
m1j,w(t)−m2j,w(t)m4j(t)√

{m3j,w(t)−m2
2j,w(t)}{m3j(t)−m2

4j(t)}
.

Let F̂ (y) be the Kaplan-Meier estimator of F (y) based on {(Ỹi,∆i), i = 1, . . . , n}
and Q̂τ,Y be the sample τth quantile F̂−1(τ), an estimator of Qτ,Y when Y is

subject to right censoring. The empirical version of uj,w is

ûj,w =
1

n

n∑
i=1

ρ̂2j,w(Ti), (3.2)

with

ρ̂j,w(Ti) =
m̂1j,w(Ti)− m̂2j,w(Ti)m̂4j(Ti)√

{m̂3j,w(Ti)− m̂2
2j,w(Ti)}{m̂3j(Ti)− m̂2

4j(Ti)}
,

where

m̂kj,w(Ti) = B(t)′(B′B)−1B′fkj,w, k = 1, 2, 3,

and f1j,w = {w1(F̂ )I(Ỹ1 < Q̂τ,Y )X1j , . . . , wn(F̂ )I(Ỹn < Q̂τ,Y )Xnj}′, f2j,w =

{w1(F̂ )I(Ỹ1 < Q̂τ,Y ), . . . , wn(F̂ )I(Ỹn < Q̂τ,Y )}′, and f3j,w = {w2
1(F̂ )I(Ỹ1 <

Q̂τ,Y ), . . . , w2
n(F̂ )I(Ỹn < Q̂τ,Y )}′. Then, we select a subset of variables

N̂ = {j : ûj,w ≥ ςn, 1 ≤ j ≤ p} , (3.3)

where ςn is a pre-specified threshold parameter.

To establish the sure independent screening properties, we need regularity
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conditions that are standard in censored quantile regression (e.g. see Wang and

Wang (2009); Wu and Yin (2015)).

(D1) In a neighbourhood of Qτ,Y , F (y) is twice differentiable, the density fY (y)

and the conditional densities fY |(Xj ,T )(y) and fY |T (y) are uniformly bounded

away from zero and infinity, and their first derivatives f ′Y |(Xj ,T )
(y) and

f ′Y |T (y) are bounded uniformly.

(D2) In a neighbourhood of Qτ,Y , the conditional densities hZ|(Xj ,T )(z) and

hZ|T (z) are uniformly bounded away from zero and infinity, and their first

derivatives h′Z|(Xj ,T )
(z) and h′Z|T (z) are bounded uniformly.

(D3) P (Y ≤ Λs) > τ > 0, where Λs represents the end time of the study.

(D4) There exist positive constants K5,K6 such that inft∈T Var(w(F )I(Y <

Qτ,Y )|t) ≥ K5 > 0 and inft∈T Var(Xj |t) ≥ K6 > 0.

(D5) minj∈M∗ uj,w ≥ 2CwLnn
−2κ for some κ > 0 and Cw > 0.

Theorem 4 (Sure Screening Property). If (C1)-(C3), (C7) and (D1)-(D4) hold

and

(i) if L−3n n → ∞ and L−2n n1−4κ → ∞ as n → ∞, then there exist positive

constants δ5 and δ6 such that

P

(
max
1≤j≤p

|ûj,w − uj,w| > CwLnn
−2κ
)

≤ O
(
pn
{
L2
n exp

(
−δ5L−3n n

)
+ Ln exp

(
−δ6L−2n n1−4κ

)})
;

(ii) if (D5) is further satisfied, then with ςn = CwLnn
−2κ, we have that

P
(
M∗ ⊂ N̂

)
≥ 1−O

(
snn

{
L2
n exp

(
−δ5L−3n n

)
+ Ln exp

(
−δ6L−2n n1−4κ

)})
.

Theorem 5 (Ranking Consistency Property). If (C1)-(C3), (C7) and (D1)-(D5)

hold,

lim inf
n→∞

(
min
j∈M∗

uj,w − max
j 6∈M∗

uj,w

)
> 0, (3.4)

and log p = o(L−4n n), then we have

lim inf
n→∞

(
min
j∈M∗

ûj,w − max
j 6∈M∗

ûj,w

)
> 0

in probability.
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Let bw = (Cov{w(F )I(Ỹ < Qτ,Y ), X1|T}, . . . ,Cov{w(F )I(Ỹ < Qτ,Y ), Xp|T})′.
Then, if E{‖bw‖2} = O(nγ

′
) for some γ′ > 0, the model after screening is of poly-

nomial size with probability tending to one.

Theorem 6 (False Selection Rate). Under the conditions of Theorem 4, there

exist positive constants δ7, δ8 and C̃ such that

P (|N̂ | ≤ C̃n2κL−1n E(‖bw‖2)) ≥ 1−O
(
pn
{
L2
n exp

(
−δ7L−3n n

)
+Ln exp

(
−δ8L−2n n1−4κ

)})
.

4. Two-Stage Approaches

It is well known that results from a single SIS procedure are rather crude

(see Fan and Lv (2008); Fan, Ma and Dai (2014); Liu, Li and Wu (2014); Cheng

et al. (2014)). We do not directly determine threshold parameters νn in 2.8 and

ςn in 3.3 when carrying out an SIS procedure. Instead, we usually select the

first dn predictors in the top ranked list as important variables after screening.

With this, we can see that a large dn corresponds to small νn and ςn, and vice

verse. With a bit of abuse of notation, we use dn, slightly different from the d

in (C3), to denote the size of the screened model while to stress the dependence

on sample size. While carrying out an SIS procedure can substantially reduce

the ultrahigh dimensionality with a specified dn, a large dn yields a large model

that inevitably includes some irrelevant variables. Many papers have proposed

efficient data-driven approaches to select dn. For example, Zhao and Li (2012)

proposed a principled selection method by controlling the false positive rate; Song

et al. (2014) developed a technique based on multiple testing. These approaches

cannot guarantee that the selected set is exactly the same as the truly active

set. We propose a two-stage approach for variable selection. Similar work has

appeared in Liu, Li and Wu (2014). Simply speaking, we conduct a CQCSIS

in the first stage and continue with a group penalized variable selection in the

second stage.

Let X = (X1, . . . , Xq)
′ be the vector of retained variables after screening.

Still applying the B-spline basis approximation, we write γ = (γ′1, . . . , γ
′
q)
′, Πi =

(Π′i1, . . . ,Π
′
iq)
′ and Πij = (XijB1(Ti), . . . , XijBLn

(Ti))
′. For fully observed data,

we consider the group penalized quantile regression

min
γ

1

n

n∑
i=1

ρτ (Yi −Π′iγ) +

q∑
j=1

pλ(‖γj‖B), (4.1)

where ‖γj‖B = {γ′j
∫ 1
0 B(t)B′(t)γj}1/2, ρτ (u) = u{τ − I(u < 0)}, pλ(·) is a
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nonnegative and nonconcave penalty function such as the SCAD (Fan and Li

(2001)) or the MCP (Zhang (2010)).

Let γ̂ be the minimizer of (4.1). Without loss of generality, we let βj(t), j =

1, . . . , s be the nonzero coefficient functions and βj(t) ≡ 0, j = s+1, . . . , q, where

q may depend on n. To derive the asymptotic theory for γ̂, we make assumptions

that are common in quantile regression, and similar to those in Noh, Chung and

Van, Keilegom (2012); Wang, Li and Huang (2008), and Lee, Noh and Park

(2014).

(E1) The conditional density fU |X(u|x) of U given X = x is bounded away from

zero and infinity uniformly in u and x.

(E2) There exists a positive constant M such that |Xk| ≤ M for all 1 ≤ k ≤ q.

The eigenvalues of the matrix E{XX′|U = u} are uniformly bounded away

from zero and infinity for all u.

(E3) The density fε(·) of random error ε = Y −X′β(T ) is continuous at 0 and

bounded away from zero and infinity.

Proposition 1. If the conditions of Theorem 1 and (E1)-(E3) hold, λ→ 0, and

λ/{(q/n)1/2Ln} → ∞ as n→∞, we have that

(i) β̂j , j = 1, . . . , s are nonzero and β̂j = 0, j = s + 1, . . . , q with probability

approaching one;

(ii) ‖β̂j − βj‖L2
= Op(

√
Ln/n+ L−dn ), j = 1, . . . , s.

Remark 6. Part (i) says that the proposed group penalization selects relevant

covariates and identifies irrelevant covariates with probability tending to one.

Part (ii) provides the convergence rate for the estimated nonzero coefficient func-

tions. From this, we can see that Ln � n1/(2d+1) is the optimal convergence rate.

In this case, we have ‖β̂j − βj‖L2
= Op(n

−d/(2d+1)) for penalized varying coeffi-

cient quantile regression, the same as that for penalized varying coefficient mean

regression (Wang, Li and Huang (2008)). The proof of Proposition 1 can be

finished by following the arguments in Noh, Chung and Van, Keilegom (2012);

and the details are omitted.

It is usually difficult to directly solve (4.1) because of nonconvexity. We pro-

pose to implement such a nonconvex optimization via a first order approximation.

Our algorithm can be viewed as a combination of the local linear approximation

(LLA) of Zou and Li (2008) and of the algorithm by Tang, Wang and Zhu (2013).

We use the Bayesian Information Criterion (BIC) proposed by Lee, Noh and Park

(2014) to obtain the best regularized parameter. The details are as follows.
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Let H =
∫ 1
0 B(t)B(t)′dt and take H = A′A. Let γ∗j = Aγj , so A = H1/2

with Π∗ij = A−1Πij , an Ln-vector. Then, ‖γj‖B = ‖γ∗j ‖2 and (4.1) is to

min
γ∗

1

n

n∑
i=1

ρτ (Yi − (Π∗i )
′γ∗) +

p∑
j=1

pλ

(∥∥γ∗j ∥∥2) . (4.2)

Suppose we have appropriate initial estimates γ∗,initj = Aγinitj , j = 1, . . . , q, where

γinitj ’s are the initial estimates for (4.1). We apply Taylor’s expansion to the

penalty function, pλ(‖γ∗j ‖2), at the point γ∗,initj , so that

pλ

(∥∥γ∗j ∥∥2) ≈ pλ

(∥∥∥γ∗,initj

∥∥∥
2

)
+

Ln∑
k=1

p′λ

(∥∥∥γ∗,initj

∥∥∥
2

)
∥∥∥γ∗,initj

∥∥∥
2

∣∣∣γ∗,initkj

∣∣∣ (∣∣γ∗kj∣∣− ∣∣∣γ∗,initkj

∣∣∣)
= pλ

(∥∥∥γ∗,initj

∥∥∥
2

)
− p′λ

(∥∥∥γ∗,initj

∥∥∥
2

)∥∥∥γ∗,initj

∥∥∥
2

+

Ln∑
k=1

p′λ

(∥∥∥γ∗,initj

∥∥∥
2

)
∥∥∥γ∗,initj

∥∥∥
2

∣∣∣γ∗,initkj

∣∣∣ · ∣∣γ∗kj∣∣ ,
where p′λ(·) is the derivative of pλ(·). Such an approximation can be regarded as

a two-step approximation where we first apply the LLA on the penalty function,

pλ(·), yielding an `2 group regularization that can be solved by a second order

cone programming, Noh, Chung and Van, Keilegom (2012), and then we make a

further approximation for ‖γ∗j ‖2 as in Tang, Wang and Zhu (2013). Consequently,

we convert (4.2) to

min
γ∗

n∑
i=1

ρτ
(
Yi − (Π∗i )

′γ∗
)

+ n

p∑
j=1

Ln∑
k=1

ωλ,kj
∣∣γ∗kj∣∣ (4.3)

where ωλ,kj = {p′λ(‖γ∗,initj ‖2)/‖γ∗,initj ‖2}|γ∗,initkj |.
Apparently, (4.3) is a weighted `1 regularization for quantile regression, which

encourages sparsity of individual coefficients. The procedure does not yield spar-

sity of groups of coefficients because the weights assigned to the coefficients within

the same group are different, leading to unequal shrinkage for the coefficients

within a common group. To address this, we modify (4.3) to

min
γ∗

n∑
i=1

ρτ
(
Yi − (Π∗i )

′ γ∗
)

+ n

p∑
j=1

ω̃λ,j

Ln∑
k=1

∣∣γ∗kj∣∣ (4.4)

where ω̃λ,j = p′λ(‖γ∗,initj ‖2)/‖γ∗,initj ‖2 max1≤k≤Ln
|γ∗,initkj |. The minimization prob-

lem (4.4) can be solved by the linear programming
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min
{η+

i ,η
−
i ,γ
∗+
kj ,γ

∗−
kj }

τ

n∑
i=1

η+i + (1− τ)

n∑
i=1

η−i + n

p∑
j=1

Ln∑
k=1

ω̃λ,j ·
(
γ∗+kj + γ∗−kj

)
, (4.5)

such that η+i − η
−
i = Yi − (Π∗i )

′(γ∗+ − γ∗−), i = 1, . . . , n

γ∗+kj ≥ 0, γ∗−kj ≥ 0, j = 1, . . . , p; k = 1, . . . , Ln

η+i ≥ 0, η−i ≥ 0, i = 1, . . . , n,

where γ∗+=(γ∗+11 , . . . , γ
∗+
1Ln

, . . . , γ∗+q1 , . . . , γ
∗+
qLn

)′,γ∗−=(γ∗−11 , . . . , γ
∗−
1Ln

, . . . , γ∗−q1 , . . . ,

γ∗−qLn
)′, with z+ = zI(z > 0) and z− = −zI(z < 0) for any variable z. Let γ̂∗λ be

the solution. For the selection of tuning parameter, λ, we use the BIC function

BIC(λ) = log

(
n∑
i=1

ρτ

(
Yi − (Π∗i )

′γ̂∗λ

))
+ df

log n

2n
Cn, (4.6)

where df is the number of nonzero entries of γ̂∗λ and Cn is a diverging number,

say log p. Such a BIC selector has been demonstrated to be consistent in variable

selection for the quantile varying coefficient models Lee, Noh and Park (2014).

5. Numerical Studies

5.1. Monte Carlo studies

In this subsection, we report on simulations to examine the finite sample

performance of the proposed CQCSIS. Following He, Wang and Hong (2013),

we considered two criteria for evaluating the performance: the minimum model

size (MMS), the smallest number of covariates needed to include all the active

variables; and the proportion of all the active variables selected (PS) with the

screening threshold parameter specified as dn = bn/ log nc. Throughout, we took

the sample size n = 400, the number of basis Ln = bn1/5c + 1, the covariate

dimension p = 1, 000, and the number of simulations N = 200 for each example.

With code written in R and run on a PC with Intel(R) Core i5 3.30 GHz processor,

an implementation of CQCSIS with 200 sampling for each example takes about

ten minutes, not a substantial cost. We merely provide one simulation example;

other examples are given in the Supplementary Materials.

Example 1. Let X = (X1, . . . , Xp)
′ have a p-dimensional normal distribution

with mean zero and covariance matrix Σ = (σj,k)1≤j,k≤p, where σj,k = %|j−k|. We

simulated the index variable T from the unit uniform distribution and generated

the response as
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Table 1. Results of the median of minimum model size (MMS), its robust standard
deviation (RSD) and the proportion of truly active covariates selected (PS) with a pre-
specified threshold size dn = bn/ log nc for Example 1.

% = 0 % = 0.4 % = 0.8
Case Method(τ) sn MMS RSD PS MMS RSD PS MMS RSD PS
(1a) CQCSIS(0.50) 3 4 3 0.975 3 0 1.000 3 0 1.000

CQCSIS(0.75) 3 6 11 0.880 3 0 1.000 3 0 1.000
NIS 3 3 0 0.990 3 0 1.000 3 0 1.000

(1b) CQCSIS(0.50) 3 7 18 0.845 3 0 1.000 3 0 1.000
CQCSIS(0.75) 3 20 75 0.695 3 0 1.000 3 0 1.000

NIS 3 430 388 0.090 298 388 0.255 133 329 0.420
(1c) CQCSIS(0.50) 5 551 327 0.005 540 321 0.045 5 1 1.000

CQCSIS(0.75) 3 15 34 0.785 3 0 1.000 3 0 1.000
NIS 5 498 338 0.055 530 378 0.055 5 0 1.000

(1d) CQCSIS(0.50) 3 6 16 0.885 3 0 1.000 3 0 1.000
CQCSIS(0.75) 5 693 269 0.015 367 332 0.095 5 1 0.995

NIS 5 701 259 0.005 506 349 0.080 77 238 0.475

Y = 5TX1 + 3(2T − 1)2X2 + 4 sin(2πT )X3 + ε,

where the error ε was considered to be one of the cases: (1a) ε ∼ N(0, 1);

(1b) ε was Cauchy with location zero and scale one, ε ∼ C(0, 1); (1c) the error

was given as 0.5[{exp(T )/(1 + exp(T ))}X2 + 3(T − 1)2X4 + sin(2πT )X5] · (ε −
Qε,τ ) with ε ∼ N(0, 1); (1d) the error had the scale-varied Cauchy distribution

0.5[{exp(T )/(1 + exp(T ))}X2 + 3(T − 1)2X4 + sin(2πT )X5] · C(0, 1).

Cases (1a) and (1b) are thin-tailed and heavy-tailed homoscedastic models,

respectively, while Cases (1c) and (1d) are heteroscedastic models. In Case (1c),

the number of active covariates sn is 3 at the τth quantile but 5 elsewhere. In

Case (1d), the number of active covariates is 3 at the median but 5 elsewhere.

The results, including the median of MMS, its robust standard deviation

(RSD) and the average of PS out of N simulations for our CQCSIS method and

the NIS method of Fan, Ma and Dai (2014), are summarized in Table 1, where our

CQCSIS method performs substantially better than the NIS method, especially

when the data are heavy-tailed or heteroscedastic. When the error is normal, NIS

performs slightly better than CQCSIS for homoscedastic data, while the meth-

ods have comparable performance. Increasing the correlation among covariates

improves the screening performance for all methods. This is evidenced in other

studies as well and can be explained by the fact that the sets of jointly correlated

markers may be relatively more distinguishable than uncorrelated ones.
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5.2. Data analysis

5.2.1. Hospital episode statistics data

We applied the CQCSIS method to Hospital Episode Statistics (HES) data,

a statistical database of demographic, medical, and administrative information

covering all admissions to National Health Service (NHS) hospitals in England.

Although not originally collected for research, large-scale administrative data

have been increasingly used for population health research because they cover

large populations and are relatively inexpensive to acquire and amenable to com-

puterized data extraction Iezzoni (1997). For instance, epidemiological studies

using HES data have driven significant service changes in health-care delivery in

England Healthcare for London (2010). In health service research, a comparison

of in-hospital death rate between hospitals is not a good standard for monitoring

hospital performance directly, because the number of in-hospital death is likely

to be influenced by differing characteristics of admitted patients. Our interest

is then to define an indicator of quality of care in hospitals by taking account

of hospital death variation explained by the characteristics of admitted patients.

Such characteristics-adjusted death rates would be useful for managers of hospi-

tals and health policy makers to motivate quality improvements and to influence

outcomes of health care by informing consumer choices and setting professional

standards.

We used an extract of admitted patient care HES data for the 2010/2011

financial year, including over 14 million records for each episode of admitted

patient care delivered by NHS hospitals in England. In HES, episode refers

to an uninterrupted period of care under a particular hospital consultant. A

single inpatient admission in one hospital trust in HES is termed a spell; it may

include more than one episode. We obtained aggregated hospital-level data from

254 NHS hospitals whose mean number of admitted patients was 20,890 (SD =

11,932) and mean number of death was 59.7 (SD = 50.1; 10% percentile = 17;

25% percentile = 26; median = 44; 75% percentile = 76; 90% percentile = 117)

in the 2010/2011 financial year. We intend to predict the number of in-hospital

death for each hospital using the aggregated characteristics of admitted patients.

There are a very large number of HES variables on patient characteristics that

are described in a 309-page HES Admitted Patient Care Data Dictionary and

are available to use subject to spending a significant amount of time to clean

the raw data. To illustrate the proposed method, we considered 315 aggregated

characteristics of admitted patients.
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In the varying-coefficient model, we considered the number of admitted pa-

tients in each hospital as the index variable T , which is actually an indicator of

the hospital size. Without loss of generality, we re-scaled T to [0, 1]. For the

highly skewed death outcome, we applied the proposed CQCSIS with τ = 0.5 to

select dn = bn/ log nc = 46 covariates in the first stage and then conducted a

group SCAD penalization based on median regression in the second stage.

The selected predictors for the median number of in-hospital death were

IMD decile groups (‘most deprived 10%’), age on admission groups (AGE =

12 years), method of admission group (‘the birth of a baby is in this Health

Care Provider’), intended management group (‘patient not to stay in hospital

overnight’), diagnosis groups (‘disease of the genitourinary system; ‘symptoms,

signs, abnormal findings, ill-defined causes’), source of admission group (‘babies

born in or on the way to hospital’), and treatment specialty group (‘accident &

emergency’). Their estimated functional coefficients are presented in Figure 1,

suggesting that the effects of selected predictors are all varying with the change

of the hospital size. By comparison, we also applied Fan, Ma and Dai (2014)’s

screening method and a group SCAD penalization based on mean regression,

which selected 2 predictors (IMD decile and treatment specialty) that overlapped

with those from our method, and 7 different predictors (1 in the method of

admission group, 2 in treatment specialty groups and 4 in the diagnosis groups).

We then applied our model and the model obtained under Fan, Ma and Dai

(2014) to predict the actual number of in-hospital death for individual hospitals.

The prediction error of our model was smaller than that of the model obtained

under Fan, Ma and Dai (2014). In particular, there were 252 (86%) hospitals with

a predicted extra death rate within the range [−0.1%, 0.1%] from our method

compared to 248 (84%) hospitals from the method based on mean regression. It

is well understood that the distribution of in-hospital death can often contain

outlying cases. By using our CQC-based learning approaches we can safeguard

the estimation accuracy and reduce the influence from a small portion of ex-

treme medical records. The data analysis for this example was conducted within

University College London (UCL) Data Safe Haven-Identifiable Data Handling

Solution (IDHS).

5.2.2. Lung cancer data

In this subsection, we illustrate the performance of the censored CQCSIS

method proposed in Section 3 using a familiar microarray data set. The data set

was extracted from a large retrospective, multi-site, blinded study, Shedden et al.
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Figure 1. Estimated functional coefficients for the selected predictors.
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Table 2. The number of overlaps of the top dn genes selected by various methods for
Lung cancer data, where dn = 20 and 72, respectively.

CQCSIScens(0.25) CQCSIScens(0.5)
dn = 20 SIS 0 0

CRSIS 0 0
QaSIS(0.25) 0 0
QaSIS(0.5) 0 0
CQSIS(0.25) 1 1
CQSIS(0.5) 0 0
CQCSIScens(0.25) 20 8
CQCSIScens(0.5) 8 20

dn = 72 SIS 1 1
CRSIS 0 1
QaSIS(0.25) 0 1
QaSIS(0.5) 0 1
CQSIS(0.25) 2 2
CQSIS(0.5) 0 1
CQCSIScens(0.25) 72 28
CQCSIScens(0.5) 28 72

(2008), and involves 442 lung adenocarcinomas, a specific type of lung cancer that

is increasing in incidence. Gene expression data were generated by four different

laboratories under a common protocol. The same data set was examined by

various authors (Xia et al. (2016); Li et al. (2016), among others). The data

consists of measurements of 22,283 gene expressions. A total of 440 subjects,

after removing the subjects with missing measurements in overall survival time,

were included in the downstream analysis. The median follow-up time was 46.5

months, the overall censoring proportion was about 46.4%. A primary goal of

studying this dataset is to identify those genes that are associated with the

overall survival of lung cancer patients. To evaluate the gene effects we consider

functional coefficients using patient age as an index variable. Before applying

our proposed method, we standardized the expression measurements for each

gene to have mean zero and variance one. Because of the high censoring rate,

we concentrated on two quantile levels, τ = 0.25 and 0.5 for the analysis. We

compare our CQCSIS with existing approaches examined in section 5.1 and the

SIS based on the Cox proportional hazards model, Fan, Feng and Wu (2010).

Table 2 reports the results on the overlaps of selected genes by various screen-

ing procedures. When the screening parameter uses d = bn/ log nc = 72, our

proposed screening at quantile level τ = 0.25 has only one overlap (Gene ID 265)

with SIS, two overlaps (Gene ID 12834 and 265) with the conditional quantile
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Table 3. Top 20 selected genes (ID) for Lung cancer data by five screening methods:
SIS, screening based on Cox model; CRSIS, censored robust screening; QaSIS, quantile-
adaptive screening; CQSIS, conditional quantile screening; CQCSIScens, proposed cen-
sored conditional quantile correlation screening.

Rank SIS CRSIS QaSIS CQSIS CQCSIScens
τ = 0.25 τ = 0.5 τ = 0.25 τ = 0.5 τ = 0.25 τ = 0.5

1 20,612 13,344 6,253 7,426 20,022 20,612 5,596 12,834
2 2,875 12,876 7,426 6,312 2,031 4,024 12,834 7,466
3 4,051 5,782 6,974 6,253 6,691 13,085 1,310 1,310
4 7,951 10,921 6,312 16,877 4,920 8,223 18,786 16,515
5 8,236 16,422 16,877 3,949 4,921 18,286 17,193 12,234
6 9,847 1,630 4,078 9,769 8,620 2,875 18,256 5,596
7 13,085 14,638 9,769 5,752 22,233 4,313 8,543 17,193
8 4,313 436 16,933 4,078 17,266 4,835 5,719 5,719
9 14,544 15,885 5,347 15,402 4,382 15,746 12,234 8,804

10 149 7,010 20,336 9,464 565 816 7,995 1,151
11 11,626 752 5,752 16,933 9,558 17,369 20,779 9,896
12 17,303 5,184 6,781 6,361 17,714 12,334 14,012 5,604
13 12,536 2,732 3,949 6,974 20,612 4,051 16,054 4,660
14 17,369 10,150 5,703 20,336 16,763 8,466 12,720 20,921
15 4,835 7,512 6,687 6,781 17,374 10,238 9,896 9,172
16 8,934 20,723 16,986 6,687 10,027 11,626 9,845 7,479
17 3,406 22,246 5,948 5,347 2,737 12,818 8,596 20,418
18 5,145 18,471 15,402 5,398 12,834 9,847 8,588 12,757
19 9,311 2,675 9,464 3,977 21,948 3,212 7,466 7,618
20 265 363 5 10,975 9,197 14,289 15,455 5,330

screening, and zero overlap with the remaining screening procedures. SIS may

not be appropriate when the proportional hazards assumption is violated. QaSIS

and CQSIS do not account for varying-coefficients and lack of sufficient model

flexibility. Thus the genes selected from those methods may not be as important

as results from CQCSIS. The low agreement between CQCSIS and other existing

approaches suggest that using our CQCSIS might lead to new discoveries that

were unavailable in the previous literature. The results on the top 20 genes by

various methods are listed in Table 3, where there are eight genes overlapped be-

tween those by CQCSIS(0.25) and those by CQCSIS(0.25), whose IDs are 5596

12834 1310 17193 5719 12234 9896 7466. Subsequently, we applied a group

SCAD penalization then and only one significant gene (ID 12834) was retained

in the final model.
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6. Concluding Remarks

We studied variable screening problem for ultrahigh dimensional varying co-

efficient models via conditional quantile correlation. Our CQCSIS approach is

more suitable for heavy-tailed high-dimensional data sets than the traditional

correlation-based screening approaches. At the same time we require stronger

technical conditions that may not be satisfied. In practice, we can adopt guide-

lines for choosing between existing screening approaches and CQCSIS: in addition

to exploratory graphical examination, we can formally apply the model selection

test (eg. Panahi (2016)) to determine whether the data follow a heavy-tailed

distribution for complete or incomplete censored cases. After the heavy tail

distribution status is confirmed, we can use our proposed CQCSIS as well as

CQCSIScens; otherwise, we can use a conventional correlation-based screening

procedures, such as the NSIS of Fan, Ma and Dai (2014) and the CC-SIS of Liu,

Li and Wu (2014).

Like existing methods, our proposal focuses on marginal models and can

suffer from false selection. In the final model after screening, the covariates that

are marginal correlated but jointly non-informative can be recruited as redun-

dant members and those that are marginal uncorrelated but jointly informative

can be mistakenly screened out. An iterative screening or joint screening as a

supplementary procedure is usually needed. In ultrahigh dimensional varying

coefficient models, Cheng, Honda and Zhang (2016) considered forward variable

selection procedure to address this issue. However the residual sum of squares

based method is not robust to outliers. Further development of iterated or joint

screening under the CQC framework is left as a future investigation. We briefly

discuss the influence of taking different quantile levels on the performance of both

CQCSIS and an integrated version over a range of quantile levels by additional

simulations in the supplementary materials.

Supplementary Materials

The supplementary materials consist of more additional simulation studies

as well as proofs of Theorems 1-3 and 4-6.
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