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S1 Proofs

Proor or LEMMA M. Let 7" and P denote the test statistic and the
corresponding p-value for testing H, respectively. When testing H, a type
3 error occurs if H is rejected and 87 < 0. Then, the type 3 error rate is
given by Pr(P < a,0T <0).

When 6 > 0, we have

Pr(P < a,0T <0)=Pr2F(T) < a,T <0)

- (TR (%)) = £ (Fy! (%))

(51 (3) =2
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The inequality follows from the assumption that Fj is stochastically increas-
ing in 6. Similarly, when 6 < 0, we can also prove that Pr(P < a,0T <

0) < 2. 0

N[

PrROOF OoF THEOREM [(i). Induction will be used to show that Procedure
1 strongly controls the mdFWER at level a. First consider the case of
n = 2. We show control of the mdFWER of Procedure M in all possible
combinations of true and false null hypotheses while testing two hypotheses
H, and Hs.

Case I: H; is true. Type 1 or type 3 error occurs only when H is rejected.
mdFWER = Pr(P, < a) < a.

Case II: Both H; and H, are false. We have no type 1 errors but only
type 3 errors.
mdFWER
= Pr({P, <o, 710, <0} U{P < a,T16; > 0,P, < a/2,Tob, < 0})

< PT(Pl Soz,Tlé’l <0)+PT(P2 SO{/Q,TQ@Q <O>
3o

< @ n Q@
-2 4 4
The first inequality follows from Bonferroni inequality and the second fol-

lows from Lemma 0.

Case III: H; is false and Hs is true. The mdFWER is bounded above
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Pr( make type 3 error when testing H;)
+ Pr( make type 1 error when testing Hs)
S PT(Pl §a,T191 <O)+PT(P2 SCY/Q)
< o @
—+-—=a
-2 2

The first inequality follows from Bonferroni inequality and the second fol-
lows from Lemma @ and P, ~ U(0,1) since Hs is true.

Now assume the inductive hypothesis that the mdFWER is bounded
above by a when testing at most n — 1 hypotheses by using Procedure [
at level a.. In the following, we prove the mdFWER is also bounded above
by a when testing n hypotheses Hi,..., H,. Without loss of generality,
assume H; is a false null (if H; is a true null, the desired result directly

follows by using the same argument as in Case I of n = 2). Then, the
mdFWER is bounded above by
Pr( make type 3 error when testing Hy)

+ Pr( make at least one type 1 or type 3 errors when testing Hs, ..., H,)

The inequality follows from the induction assumption, noticing that H,, ..., H,

are tested by using Procedure M at level /2. Thus, the desired result fol-
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lows.

(ii). We now prove that the critical constants are unimprovable. For in-
stance, when H, is true, it is easy to see that the first critical constant, «,
is unimprovable. For each given k =2,...,n, when §; >0, =1,... .k —1
and 0, = 0, that is, H;,7 = 1,...,k — 1 are false and H}, is true, we present
a simple joint distribution of the test statistics 71, ..., Ty to show that the
kth critical constant of this procedure is also unimprovable.

Define Z;, ~ N(0,1) and Z; = &7 1(|2®(Z;y1) — 1)), = 1,...,k — 1,
where ®(-) is the cdf of N(0, 1). Let ¢; denote Z;’s upper a/2" quantile. Tt
is easy to check that for each i = 1,... k, Z; ~ N(0,1). Thus, —¢; is Z;’s
lower a/2" quantile. In addition, by the construction of Z;’s, it is easy to
see that the event Z; > ¢; is equivalent to the event Z; 11 ¢ (—qi+1, Git1)-

Let T, = Z; + 6;,i = 1,...,k, thus T; ~ N(0;,1). Then, as 6; — 0+ for

1=1,...,k—1, we have
k—1
mdFWER = ) Pr(Ti >q,...,Tjo1 > -1, T; < —¢))
j=1

+Pr(Th>q,. , The1 > qe—1, Tk & (— Qs qk))

k-1
= ZPT(Zl > Qs i1 2 Q51 Zi < —q5)
=1
+ Pr(Zi > qi, s Z1 2 @1, Z1 & (=, @)
k-1
= > Pr(Z; < —¢) + Pr(Z ¢ (—ax, @)
=1



« (0%
2 T 90

= Q.

k—1

=1

<

Thus, the kth critical constant of Procedure [ is unimprovable and hence
each critical constant of Procedure 0 is unimprovable under arbitrary de-

pendence. O

ProOOF OF LEMMA B. Note that when 6; > 0 and 05 = 0, we have

mdFWER
= Pr(P<a6Ti<0)+Pr(P<a6T >0,P<a)
= Pr(Pb<aTi<0)+Pr(P<aTi>0,P<aT,>0)
+Pr (P <a,T1 >0,P <aT,<0)
= Pr2Fy(Ty) <a)+ Pr(2(1 — Fo(Th)) < o, 2(1 — Fy(T3)) < «)
+Pr(2(1 — Fo(Th)) < a,2Fy(T3) < «)
= Pr(lh <)+ Pr(Th>c,Ty > )+ Pr(T1 > e, Ty < 1)
= Iy (c1) +1—=Fy(ca) = Folca) + Flo, 0)(c2, c2) + Folcr) — Flo, 0)(ca, 1)
= a+ Fy (1) — Fy (c2) + Flo, 0)(c2, c2) — Flo,0)(c2, c1). (S1.1)
Specifically, under Assumption 0 (independence), (8I-1) can be simplified
as,
a+ Fp, (c1) — Fy, (c2) + Fp, (c2) Fo(ca) — Fy,(c2) Fo(cy)

= a+ Fy(c) —aFy (c2).
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Similarly, when #; < 0 and 6, = 0, we can prove that

mdFWER =1 + Fgl (Cl) — Fgl (Cg) + F(gl’o)(cl, Cl) — F(gl’o)(cl, Cg). ]

Proor orF LEMMA B. By using the same arguments as in Theorem [,
we can easily prove control of the mdFWER of Procedure 2 in the case of
n = 2 when H; is true or both H; and H, are false. In the following, we
prove the desired result also holds when H; is false and Hs is true.

Note that H; is false and Hs is true imply 6; # 0 and 6y = 0. To show
that the mdFWER is controlled for #; > 0 and 6y = 0, we only need to
show by Lemma B that a + Fy, (c1) — aFy,(c2) < a. This is equivalent to

show
Fy, (c2) (Fo(ca) — Fo(er)) < Fy(ca) — Fyy (1) (S1.2)

For proving (§8122), it is enough to prove the following, as 0 < Fy(cy) <

L
Fy, (c2) (Fo(c2) — Foler)) < Folco) (Fy, (c2) — Fp, (1)) (51.3)
Dividing both sides of (813) by Fy, (c2) Fo(cz2), we see that we only need
to prove,
1 Fy(er) < 1 Fel(cl)’
Fo(ca) Fy,(c2)

which follows directly from (B3) and Assumption 2 (MLR).
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Similarly, to show that the mdFWER is controlled for §; < 0 and
0, = 0, we only need to show by Lemma B that 1+ «aFp, (¢;) — Fp, (c2) < a.

This is equivalent to showing

(1= a) (1 = Fy,(c1)) < Fp,(c2) = Fpy ().

Writing 1 — a as (1 — Fy(e1)) — (1 — Fo(eo)) and writing Fp, (co) — Fy, (c1)
as

(1 = Fy,(c1)) — (1 — Fp,(c2)), we get that it is equivalent to prove

(1= Fy(er)) — (1= Fylea))] (1 = Foy(e1)) < (1= Fy, (1)) — (1 — F (e2)IS1.4)

Since 0 < 1 — Fy(c1) < 1, to prove inequality (SI4), it is enough to prove

the following,

(1= F, (1) [(1 = Foler)) — (1 = Folca))]

< (1= Foler)) [1 = Foy ()] = [1 = Fy (c2)] .- (S1.5)

Dividing both sides of (8I3) by (1 — Fp, (¢1)) (1 — Fo(c1)), we see that prov-

ing (8T4) is equivalent to showing

1-— Fgl (CQ) S 1-— F0(02)7 (Sl6>
1 —F91(01> 1 —Fg(cl)
which follows directly from (B8) and Assumption 2 (MLR). By combining

the arguments of the above two cases, the desired result follows. O
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PROOF OF THEOREM E. The proof is by induction on number of hypothe-
ses n. We already proved strong control of the mdFWER for n = 2 in
Lemma B. Let us assume the result holds for testing any n = k hypotheses,
that is, mdFWER < « while testing any k pre-ordered hypotheses. We now
argue that is will hold for n = k+ 1 hypotheses. Without loss of generality,
assume H; is a false null, as in the proof of Theorem [I.

Let Vk(;l ) denote the total number of type 1 or type 3 errors commit-
ted while testing Ho,..., Hy.1 and excluding H;. Then, by the inductive
hypothesis, the mdFWER while testing the k£ hypotheses Ho, ..., Hxyq is
Pr(Vk(;l ) > 0) < a. Then, the mdFWER of testing k& + 1 hypotheses

Hy, ..., Hyyq is defined by

Pr ({P1 <a, Ty <0} U{P < a, 76, >0,V D > o})
— Pr(P,<a, T <0)+ Pr(P, <a,Ti >0)-Pr (ka;j) > o)

< PT’(PlgOé,T191<O)+OCPT(P1§04,T19120>- (Sl7>

The equality follows by Assumption 0 (independence) and the inequality
follows by the inductive hypothesis. Note that (§I70) is the same as (B3)
under independence, which is equal to the mdFWER of Procedure B in
the case of two hypotheses. So again by applying Lemma B, we get that

mdFWER < « for n = k 4+ 1. Hence, the proof follows by induction. n
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PrROOF OF THEOREM B . Without loss of generality, we assume 6; > 0 if
0; #0 for i =1,...,n. Also, if there exists an 7 with 6; = 0, by induction,
we can simply assume iy = n. Thus, to prove the mdFWER control of
Procedure B, we only need to consider two cases:

(i) 0; >0fori=1,...,n;

(i) §; >0fori=1,...,n—1and 6§, = 0.

Case (i). Consider the general case of §; > 0,7 = 1,...,n. By Assumption
B, the test statistics T1,...,7T, are positively regression dependent. For
j=1,...,n—1,let E,_; denote the event of making at least one type 3
error when testing Hji4,..., H, using Procedure @ at level a. By using

induction, we prove the following two lemmas hold.

Lemma 1. Assume the conditions of Theorem B. For j =1,...,n—1, the

following inequality holds.

P’f‘(En_j|T1 > Co, ... ,T} > CQ) < (818)

Proor oF LEMMA M. We prove the result by using reverse induction.
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When j = n — 1, we have

PT(En,j‘Tl > 62,...,7}‘ > CQ)

= PT(Tn<Cl|T1 >CQ7...,Tn_1 >02>

P’I“(Tn < Cl)PT(Tl > CQ,...,Tn_l > CQ|Tn < Cl)
PT(Tl >Cg,...,Tn_1 >02)

IN

Pr(T, <c) <a.

The inequality follows from Assumption B.
Assume the inequality (§IR) holds for j = m. In the following, we

prove that it also holds for j = m — 1. Note that

Pr(En—m—i-l‘Tl > Co, ... S > CQ)

— Pr ({Tm <er ({Tm > ) ﬂEn_m) Ty > cpy o Ty > 02>
= Pr(Tn<a|li>c,..., Tt > )

+ Pr ({Tm > e} () Eneml|Tt > €2y, Tt > (;2)
= Pr(Tn<a|li>c,...., Tt > )

+ Pr (Tm >02‘T1 >CQ,...,Tm,1 >CQ) Pr (Enfm‘Tl >CQ,...,Tm >CQ)

< PT(Tm<01’T1>CQ,...,Tm,1>Cg)
+ aPr (Tm > CQ}Tl >CQ,...,Tm_1 > 02)
< «.

Therefore, the desired result follows. Here, the first inequality follows from
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the assumption of induction and the second follows from Lemma B below.

O
Lemma 2. Assume the conditions of Theorem 3. For j =1,...,n—1, the
following inequality holds:
Pr (T] < cl|T1 > coy .., L5 > 02)
+ aPr (TJ >02’T1 >co,.., T >02) < a. (51.9)

Specifically, for 7 =1, we have
Pr(Ty < c) 4+ aPr(T) > ¢) < a.

PrOOF OoF LEMMA B. To prove the inequality (§8I79), it is enough to show

that
Pr (T] < cl‘Tl > coy. ., Ty > cg) < aPr (TJ < cg‘Tl > coy.., Ty > cz),
which is equivalent to
(1—a)Pr (T] < CQ}Tl >co,.., T > 62)
< Pr (TJ < CQ{TI >coy. ., L > 02) — Pr (TJ < cl‘Tl > Coy .., 51 > CQ).
Note that
1 —a= Pro—o(Tj < cz) — Pro,—o(T; < c1).

Thus, the above inequality is equivalent to

PT’(,I']‘<01|T1>CQ,...,T‘]‘_1>CQ)

Pro.—o(T; < co)—Prg.—o(T; <c1) < 1— ,
b 0(] 2) b O(] 1>_ PT(]}<CQ|T1>CQ,...,7}‘_1>02)
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which in turn is implied by

B Prg,—o(T; < c1)
Pro,—o(T; < c2)

1 Pr (T] <01|T1 >Coy ., G > 02)

- Pr(Tj<02|T1>02,...,Tj,1>62)'

(S1.10)

Note that by Assumption B, we have

Pr(T; < ¢) < Prg,—o(T; < c1)
Pr(T; < c3) = Pro,—o(T; < c2)

Thus, to prove the inequality (SII0), we only need to show that

Pr(T; <a|Ty > e, ..., Tjm1 > ) C Pr(Ty <)
PT(CTJ <02|T1 >CQ,...,1—:’]'_1 >02) - PT’(T} <CQ>7

which is equivalent to

PT’(T1>CQ,...,T;',1>CQ’T17‘<01) SPT’(T1>CQ,...,T‘]‘,1>CQ|T'J‘<CQ),

which follows from Assumption B. Therefore, the desired result follows.

IN

]

Based on Lemmas [0 and B, we have

mdFWER = Pr(Ty < ¢1) + Y Pr(Ti > ca,..., Tjoy > ¢, T < 1)

=2

PT‘(Tl <Cl)—|—P7’<T1 >CQ>ZPT(TQ >CQ,...,T1J',1 >02,T'j <Cl‘T1 >CQ)
=2

PT(Tl < Cl> + P’I“(Tl > CQ)P’/‘(En_1|T1 > CQ)

Pr(Ty < c1) + aPr(Ty > c3)
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Therefore, the mdFWER is controlled at level « for Case (i). Here, the first

inequality follows from Lemma 0 and the second follows from Lemma B.

Case (ii). Consider the general case of §; > 0,i=1,...,n—1 and 0,, = 0.
Under Assumption B, T;,7 = 1,...,n—1 are positively regression dependent

and under Assumption B, 7T,, is independent of T;’s . Note that

mdFWER
n—1
= ZPT(Tl >co, .., T >, T < ¢q)
j=1
+ Pr(Th > co.. ., Ty >0, T < 1)+ Pr(Ty >ca,..., Ty > )

n—1
= ZPT(Tl > CQ,...,T};l > Cg,j}' < Cl)+CYPT(T1 > CQ,...,Tn,1 > CQ).
j=1

The second equality follows from Assumption B.

Form =1,...,n — 1, define

Ap =) Pr(Ti>cy... . Tjo1 > e, Ty < c) +aPr(Ty > co,... Ty > 3).
j=1

Thus, mdFWER = A,,_;. By using induction, we prove below that A,, < «

form=1,....,n—1.

For m =1, by using Lemma B, we have

Ay =Pr(Ty <c)+aPr(T) > c) < a.
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Assume A,, < a. In the following, we show A,,.1 < a. Note that

Am—|—1
m+1
= ZPT(TI >CQ,...,7},1 >C2,7} <C1)
7j=1
+ OéPT(Tl >62,...,Tm >02,Tm+1 >Cg)
= ZPT(TI >CQ,...,T‘]‘_1 >CQ7T‘j <Cl)
j=1
+ Pr(Ty > coy..., Ty > ) [Pr(Toyr < c1|Ty > co, ..., Ty > )

+ OdPT’(Tm+1 > CQ|T1 > Co, ... ,Tm > Cz)]

PT(T1>CQ,...,T‘]'_1>CQ7T‘]‘<Cl)+OéP7"(T1>CQ,...7Tm>CQ)

M

1

J

|
[P
3

<a. (S1.11)

The first inequality follows from Lemma B and the second follows from the
inductive hypothesis. Thus, A,, < « for m = 1,...,n — 1. Therefore,

mdFWER = A,,_1 < «a, the desired result.

Combining the arguments of Cases (i) and (ii), the proof of Theorem B

is complete. |

PROOF OF PROPOSITION 2. From the proof of Theorem 0 and by Lemma
0, it is easy to see that we only need to prove the mdFWER control of
Procedure 2 when H, is false and Hs is true, i.e., #; # 0 and 65 = 0.

Case I: 6§, > 0 and 60, = 0. By Lemma B, the mdFWER of Procedure 2 is
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controlled at level « if we have the following:
Fy,(c1) — Fo,(c2) + Flo,,0)(c2,¢2) — Flg,0)(ca, 1) < 0.

After rewriting Fig, )(z,y) as Pr(Ty < z,T5 < y) and then dividing through

by Pr(Ty < cg), we get,

Pr(T; <c
PT(TQ SCQ|T1 SCQ)—PT(T2§01‘T1 §C2) S 1-%
Dividing by Pr(T; < e|Th < ¢3), we get,

1 Pr(Ty < ci|Th < ¢)

Pr (T, < c|Ty < ¢)

Pr(Ty <
< ! o Prifisc)) (S1.12)

Pr (TQ S CQ‘Tl S 02) PT’(Tl S CQ)

For proving (SI12), it is enough to prove the following inequality, as

1
Pr(Ta<c2|T1<c2) = 1
Pr (T < |y < Pr(Ty <
- r(Ty < a1y < ) <1- r(Ty —_Cl). (S1.13)
Pr(Ty < co|Ty < ) Pr(Ty < e)
By Assumption B and (B3), it follows that —iggif; < ?Zl EZ?;, which is equiva-
1

Pr(T><c1) <1_ Pr(Th<ci)

lent to, 1— Pr(Th<cy) — Pr(Ti<cz

. Thus for proving (8I12), it is enough

=

to prove the following:

1—PT(T2§01‘T1§02)Sl—PT(TzSCl). (8114)
Pr (Tg §02|T1 SCQ) P’I“(TQ SCQ)

But, (8I12) is equivalent to showing

Pr(Ty < co|Ty < ¢1) > Pr(T) < eo]Ty < ¢),
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which follows directly from Assumption B.
Case II: ¢; < 0 and 6, = 0. Similarly, by Lemma B, the mdFWER of

Procedure 2 is controlled at level « if we have the following:
1+ Fp,(c1) — Fo,(c2) + Flo, 0)(c1, 1) — Flo,09(c1,¢2) <o, (S1.15)

which after some rearrangement and rewriting 1 —a as Fy(co) — Fy(cq1) gives,

(Fo(e2) — Flo,0)(c1,¢2)) — (Foler) — Flo, 0)(c1,¢1))

< (1=Fy(a))— (1= Fy(ca)). (51.16)
Thus, proving (SI13) is equivalent to proving that
Pr(Ty > ¢, Ty <c3) — Pr(Ty > c1,Ty <) < Pr(Ty >c¢;) — Pr (11 > c).
Dividing through by Pr(Ty > ¢;), we get

Pr (Tg Z 01|T1 2 Cl) — Pr (TQ Z CQ|T1 Z Cl)

P’I“(Tl Z Cg)

Thus to prove (8I1H), it is enough to prove the following,

1 Pr (TQ Z CQ|T1 Z Cl) <1 PT(Tl Z CQ)
Pr (TQ Z Cl|T1 Z Cl) - PT’(Tl Z 01)7

which is equivalent to proving,

Pr (TQ Z C2|T1 Z Cl) > PT(Tl > 02)
Pr (T2 Z C1|T1 Z Cl) - PT(Tl Z Cl).

(S1.18)
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Pr(Ti>c2) Pr(Ta>c2)
» Pr(Thv>c1) — Pr(Ta>c1)”

By Assumption B and (81), it follows that for §; < 0

Thus to prove (8I13), it is enough to prove the following,

> > >
Pr (T2 = CQ‘T]_ = Cl) Z PT’(TQ = Cz)‘ (8119)
Pr (Tg Z 01|T1 Z 61) P?”(TQ Z Cl)
But (8I19) is equivalent to showing
Pr (T1 Z 01|T2 Z CQ) Z Pr (Tl Z Cl|T2 Z Cl), (8120)

which follows directly from Assumption B. By combining the arguments of

the above two cases, the desired result follows. O

Proor or ProrosiTION B. By Corollary 0, without loss of generality,
assume that 6; > 0,7 = 1,2 and 03 = 0, that is, H; and H, are false and Hj

is true. Note that

mdFWER
= PT(Tl S Cl) + PT(Tl Z CQ,TQ S Cl) (8121)

+ Pr(Ty > 3, To > 2, T5 ¢ (¢1,¢2)) -

In the following, we prove that

Pr(Ty > ¢y, To < ¢1) + Pr(Ty > ¢, Ty > ¢9,T5 ¢ (¢1,¢2))

< Pr(Ty > ¢, T5 ¢ (c1,¢2)) - (S1.22)
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To prove (8I=22), it is enough to show the following inequality:

PT(TQ S ClyTl) + Pr (T2 2 Cg,Tg §é (Cl,Cg)‘Tl)

< Pr(Ts3 ¢ (c1,09)|Th) . (S1.23)
Note that
Pr(Ty > ¢, T35 < ¢1|Th)
= Pr(T3 <c|Th) — Pr(Ty < c, T3 < 1|Th) (S1.24)
and
Pr(Ty > ¢, T35 > ¢o|Th) (S1.25)

= 1- PT’(TQ < CQ|T1) — PT’(T?, < CQ|T1) + Pr (TQ < 027T3 < CQ|T1> .

In addition, we have

Pr (Tg ¢ (01,62)|T1) =1 + P’I“(Tg S Cl|T1) — P?"(Tg < CQ|T1). (8126)

Thus, in order to show (SI23), by combining (ST=24)-(8I28), we only need

to prove the following inequality:

Pr (TQ < CQ,Tg < 02|T1) — Pr (T2 < CQ,Tg < 01|T1>

< PT(TQ < CQ‘T]_) — PT(TQ < Cl‘Tl). (8127)
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Note that (8I227) can be rewritten as

Pr (T2 < CQ,Tg < Cl|T1)

Pr (T2 < CQ,Tg < CQ‘Tl) |:1

T, < c¢|T
S P?”(TQ < CQ’T]_) |:1 — PT( 2 = 01| 1):| .

PT(TQ < CQ|T1)
Thus, to prove (8I27), it is enough to show

1— Pr (TQ < CQ,Tg S 01|T1) <1_ PT(TQ S Cl|T1)

B Pr (T2 < CQ,Tg < CQ’T]_)

Pr (T2 < CQ,T3 < 02|T1> - PT’(TQ < C2|T1).

That is,

P’I“(Tg S Cl‘Tl) < Pr (T2 < Cg,Tg S 61|T1)
PT‘(TQ < CQ|T1) - Pr (TQ < CQ,Tg < CQ|T1)‘

By Assumption B (BMLR), we have

P?"(TQ S xszl)
P?"(Tg S 3}’2’T1)

PT(TQ S xl’Tl)
PT(Tg S xl’Tl)‘

>

By (8I=3T), to prove (8I30), it is enough to show

PT(Tg < C1|T1) < Pr (T2 < CQ,T3 < 01|T1)
PT’(Tg < CQ|T1) - Pr <T2 < CQ,Tg < 02|T1)'

That is,

Pr (T2 < CQ|T3 < CQ,Tl) < Pr (T2 < CQng < Cl,Tl) .

(S1.28)

(S1.29)

(S1.30)

(S1.31)

(S1.32)

(S1.33)

The inequality (81=33) holds under Assumption B. Therefore, the inequality

(8T=22) holds.

Based on (8I21)-(ST=22) and Proposition 1, we have

mdFWER = P?“(Tl < Cl) + Pr (Tl > CQ,Tg gé (Cl,Cg)) < a.
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Thus, the desired result follows. O]

Proor oF THEOREM d. By Corollary [, without loss of generality, assume
that §; > 0, =1,...,n—1and 0, = 0, that is, H;,2 = 1,...,n — 1 are

false and H,, is true. Note that

mdFWER
n—1

= ZPT(lecQ,...,T‘j_lZCQ,T}‘SCl) (8134)

7j=1
+ PT(Tl 2 Co,y ... 7Tn—1 Z CQ,TTL ¢ (61702>).

In the following, we prove that

Pr(Ty > co,...,Tho > o, Th1 < ¢4)
+ Pr(Th > co,..., Ty > 2,15 ¢ (c1,¢2))

S Pr (T1 Z CQ,...,Tn_Q Z CQ,Tn ¢ (01,62)). (8135)
To prove (8I33), it is enough to show the following inequality:
Pr(Th-1 < alTy,...,Th-2)

+ Pr(Th—1 > c2, T, ¢ (cr,2)|Th, ..., Tr2)

< Pr(T, ¢ (ci,c0)|Th,- .. Tos). (S1.36)

By using the same argument as in proving (§SI=23) in the case of three hy-

potheses, we can prove that the inequality (S1=38) holds under Assumptions
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B and [@. Then, by combining (§81234) and (813H), we have

mdFWER
n—2
<> Pr(li >, Ti > 0,1 < ¢) (S1.37)

J=1

+ Pr(Ty > co,...,Tho > ¢, T, ¢ (c1,02)).

Note that the right-hand side of (8137) is the mdFWER of Procedure
2 when testing Hy,...,H, o, H,. By induction and Proposition 1, the

mdFWER is bounded above by «, the desired result. O]
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