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Abstract: The reproducing kernel Hilbert space (RKHS) method is arguably the

most popular approach in machine learning to deal with nonlinearity in data. How-

ever, it has not been as widely adopted in statistical analyses as might be expected.

One reason is that its statistical properties have not yet been adequately understood

and, in particular, its asymptotic inference. In this paper, we introduce a symmet-

ric periodic Gaussian kernel and show, in the generic regression setting where the

regression function is in the Sobolev spaces, that the method under consideration is

asymptotically normal. This asymptotic distribution also provides an explanation

to the estimation efficiency of regularization method using the Gaussian reproduc-

ing kernel. We include simulation results to illustrate the finite sample properties

of the method.

Key words and phrases: Asymptotic normality, estimation efficiency, Gaussian re-
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1. Introduction

The method of regularization with reproducing kernel has gained tremen-

dous popularity in machine learning literature to deal with nonlinearity in the

data; see, for example, Wahba (1999), Schölkopf and Smola (2002) and Hofmann,

Schölkopf and Smola (2008). The key reason for such popularity is the compu-

tational efficiency of the method that has led to successful applications in many

areas of research. In machine learning literature, much attention has been paid

to the consistency of the method, while, in statistical analysis, asymptotic infer-

ence is of more interest. As far as we know, little research has been undertaken

on the asymptotic distribution of the estimated function. Our asymptotic results

developed in this article deal with this statistical interest.

In statistical analysis, many problems can be considered as the nonparamet-

ric regression model

https://doi.org/10.5705/ss.202016.0440
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yi = g0(xi) + εi, i = 1, 2, . . . , n, (1.1)

where (xi, yi), i = 1, . . . , n, are IID samples of (X,Y ), g0 is an unknown regression

function in a Hilbert space (denoted by H, hereafter), and ε is the random error,

which is independent of X with E(εi) = 0 and E(ε2i ) = σ2. Denote by f the

density function of X, supported on [0, π] without loss of generality. The goal

is to estimate the unknown regression function g0 based on data (xi, yi)
n
i=1. The

method of regularization estimates the true regression function g0 by minimizing

the penalized loss function

ĝ = argming∈H[L(g|data) + λJ(g)]. (1.2)

In (1.2), the first term L(g|data) assesses the fitness of function g to observed

random samples, while J(g) penalizes the complexity of g, with the parameter

λ that balances the fitness and the complexity. Compared with other regression

methods, the method of regularization with reproducing kernel enjoys several

advantages in computation. First, the solution of this method is guaranteed to

exist and is unique. Second, the solution can be represent by the linear combi-

nations of the kernel function evaluated at sample points. Third, it is convenient

to extend to multivariate cases. Furthermore, for some specific kernels, the so-

lutions of this RKHS method can be expressed by a series of orthogonal basis

functions, which facilitates the theoretic analysis of its asymptotic performance.

For any Sobolev space in which the regression function g0 is considered, there

is a corresponding inherent kernel that generates the space. Even though statis-

tical properties of using those kernels have been extensively studied, for example

by Yuan and Cai (2010) and Shang and Cheng (2013), only a few practition-

ers really use those kernels because they are very complicated and do not have

explicit forms for multivariate spaces. Hence, in existing studies, other reproduc-

ing kernels such as Gaussian reproducing kernel and polynomial kernel are often

used instead. Using standard empirical processes and other techniques for deriv-

ing consistency, convergence rates for kernel based learning, especially for sup-

port vector machines(SVMs), have been obtained. See for example Williamson,

Smola and Schölkopf (2001), Mendelson (2002), Kosorok (2008) and Steinwart

and Christmann (2008).

Among all the reproducing kernels, the Gaussian reproducing kernel is the

most popular in practice. Some theories for using the Gaussian reproducing

kernel have been studied in machine learning literature. Keerthi and Lin (2003)

proved the consistency of SVMs with the Gaussian reproducing kernel. Steinwart,

Hush and Scovel (2006) provided explicit descriptions for the RKHS correspond-
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ing to the Gaussian reproducing kernel and discussed the applications of their

results in analyzing the learning performance of SVMs. Steinwart and Scovel

(2007) generated a fast convergence rate for SVMs using the Gaussian reproduc-

ing kernel by proposing a new geometric noise condition. More recently, Eberts

and Steinwart (2013) derived the optimal rates for SVMs using a Gaussian re-

producing kernel under certain smoothness conditions. Nonetheless, asymptotic

normality has not yet been studied, which impedes its application in making

statistical inference.

Because the eigen-decomposition for the Gaussian reproducing kernel is very

complicated and the eigen-functions are unbounded, theoretical analysis for asymp-

totic properties is very difficult. To gain insights into the performance of the

Gaussian reproducing kernel, Lin and Brown (2004) systematically analyzed the

asymptotic properties for the method that uses the periodic Gaussian kernel.

Their results only explained the consistency of the method. By deriving the

asymptotic distributions, our work gives a clearer explanation of the estimation

efficiency of the method that uses the Gaussian reproducing kernel.

In this paper, we introduce a symmetric periodic Gaussian kernel that pos-

sesses a number of advantages. First, this kernel has a much closer approximation

to a Gaussian reproducing kernel than the periodic Gaussian kernel. In this sense,

our results can provide deeper insights on the statistical properties of the method

of regularization with the Gaussian reproducing kernel. Second, the method is

applicable to regression functions that are not necessarily periodic on their sup-

port. In addition, it also allows us to implement the eigen-decomposition and

simultaneous diagonalization to derive asymptotic theory. Our estimator achieves

the same consistency rate as in Lin and Brown (2004), which is optimal in es-

timating functions in any finite order of Sobolev spaces, and is asymptotically

minimax in estimating functions in the infinite order Sobolev Space. Moreover,

the so-called functional Bahadur representation(FBR, Shang and Cheng (2013))

is derived for our estimated function, and is applied to derive the asymptotic

normality for our method and for that of Lin and Brown (2004).

The paper is organized as follows. In Section 2, we make a brief review of the

RKHS and relevant notations, and introduce our symmetric periodic Gaussian

kernel. Estimation procedures are discussed in Section 3. Our main asymptotic

results are shown in Section 4. In Section 5, we derive the asymptotic bias and

variance for our method and that of Lin and Brown (2004), and compare the

two methods using three examples. Simulation studies are contained in Section

6. Proofs are presented in the online Supplementary Material.
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2. Symmetric Periodic Gaussian Kernel Hilbert Space

2.1. Reproducing kernel Hilbert space (RKHS)

The reproducing kernel Hilbert space (RKHS), developed by Aronszajn (1950),

is a Hilbert space of functions in which all the evaluation functionals are bounded.

Let X be an arbitrary set of real values, H be a Hilbert space of functions sup-

ported on X , and || · ||H be the norm on H. H is a RKHS if, for all x ∈ X , there

exists a positive number M such that,

Lx(f) = |f(x)| ≤M ||f ||H for all f ∈ H,

where Lx is called evaluation functional.

According to this definition, if f and g are two functions in RKHS with small

||f − g||H, then f and g are also close pointwise. A more intuitive definition of

RKHS is provided by using a reproducing kernel(RK) as a representer of an

evaluation functional.

A function K(·, ·) denfined on X × X is a RK if it is symmetric positive

definite: for any t1, t2, . . . , tN ∈ X and a1, a2, . . . , aN ∈ R, N = 1, 2, . . . ,

N∑
i,j=1

aiajK(ti, tj) ≥ 0.

As stated in Moore-Aronszajn Theorem (Aronszajn (1950)), every symmetric

positive definite function corresponds to a unique RKHS of real-valued functions.

More concisely, the RK generates a Hilbert space of functions as

K = {g(·) =

m∑
i=1

αiK(ti, ·) : m ∈N , ti ∈ X , αi ∈ R},

with inner product defined such that

〈K(ti, ·),K(tj , ·)〉K = K(ti, tj). (2.1)

It can be proved that K is a RKHS. In addition, functions in K satisfy the

reproducing property:

〈K(t, ·), g(·)〉K = g(t) for every g ∈ K.

In this discussion, we see how a RK generates a RKHS. Conversely, a RKHS

defines a unique RK as follows. Let K be a RKHS endowed with inner product

〈·, ·〉K. By Riesz representing theorem, for each t ∈ X , there exists a function

Kt(·) such that 〈Kt(·), g(·)〉K = g(t). If K(s, t) = 〈Ks(·),Kt(·)〉K, then K(·, ·) is

a reproducing kernel.

By applying Mercer’s theorem (1909) on the integral operator defined by the
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reproducing kernel, we present another view on reproducing kernel Hilbert space.

Let

LKg(·) =

∫
X
K(·, t)g(t)dt.

Mercer (1909) states that any integral operator defined by a reproducing kernel

has a spectral decomposition. And the reproducing kernel can be represented by

K(s, t) =

∞∑
k=0

λkφk(s)φk(t).

Here λk’s are the eigen-values of K(·, ·) with the φk(·) as the corresponding eigen-

function,

Kφk(·) =

∫
X
K(·, t)φk(t)dt = λkφk(·).

Furthermore, φk(·)’s satisfy

〈φi, φj〉K =
δi,j
λi
,

where δi,j is the Kronecker delta, and the eigen-functions form a sequence of

orthogonal basic functions. Since RKHS and RK are one-to-one correspondence,

the RKHS can be defined alternatively by these eigen-values and eigen-functions,

K =

{
g : g(t) =

∞∑
k=1

gkφk(t),

∞∑
k=1

g2k
λk

<∞

}
,

where gk =
∫
X g(t)φk(t)dt. We then call the λk’s and φk(·)’s the eigen-values

and eigen-functions for RKHS K. As any function in RKHS can be represented

by a series of orthogonal basic functions, the asymptotic behaviour of derived

estimator can thus be analyzed more conveniently.

2.2. Symmetric periodic gaussian kernel Hilbert space

We first introduce the periodic Gaussian kernel and its corresponding RKHS.

Smola, Schölkopf and Müller (1998) proposed the periodic Gaussian kernel to

estimate periodic functions on a compact interval, say [0, π] without loss of gen-

erality.

Kω,0,π(s, t) =

∞∑
k=−∞

Kω(s− t− kπ, 0) with s, t ∈ [0, π] (2.2)

where

Kω(s, t) =
1√
2πω

e−(s−t)
2/ω2

(2.3)

is the well-known Gaussian reproducing kernel.
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To study the asymptotic performance of their estimator, Lin and Brown

(2004) introduced two RKHSs: an infinite order Sobolev space with periodic

functions,

S∞ω[a,b] = {g ∈ L2(a, b) :g is (b− a)− periodic with

∞∑
m=0

ω2m

m!2m

∫ b

a
[g(m)(t)]2dt <∞}.

and an m-th order Sobolev space with periodic functions,

Sm[a,b] = {g ∈ L2(a, b) :g is (b− a)− periodic with∫ b

a
[g(t)]2 + [g(m)(t)]2dt <∞};

The norm of the estimated function is a natural penalty function for J(g) in (1.2);

see for example Evgeniou, Pontil and Poggio (2000). In some cases, the explicit

form of this norm or penalty can be derived with the help of Green functions

and Fourier transforms. For example, the norms or penalties with respect to the

period Gaussian kernel can be written as,
∞∑
m=0

ω2m

2mm!

∫ π

0
[g(m)(t)]2dt.

The RKHS generated by periodic Gaussian kernel (2.2) is the infinite order

Sobolev space S∞ω[0,π].
We introduce the symmetric periodic Gaussian kernel

Hω(s, t) = Kω,−π,π(s, t) +Kω,−π,π(s,−t). (2.4)

Here, Kω,−π,π(s, t) =
∑∞

k=−∞Kω(s− t− 2kπ, 0) is the periodic Gaussian kernel

with period 2π. Denote by H∞ω[−π,π] the RKHS corresponding to Hω(s, t). This

RKHS consists of symmetric functions on [−π, π], and is a subspace of infinite

order Sobolev space. As we can see, H∞ω[−π,π] is an infinite order Sobolev space

with symmetric functions.

Proposition 1. Let H∞ω[−π,π] be the RKHS corresponding to kernel Hω, then

H∞ω[−π,π] =

{
g : g(t) =

∞∑
k=0

gkξk(t),

∞∑
k=0

g2k
λk,ω

<∞

}
=
{
g : g(−t) = g(t), g ∈ S∞ω[−π,π]

}
with λk,ω = e−(k

2ω2)/2, ξ0(t) = π−(1/2), ξk(t) =
√

2/π cos(kt).

For the m-th order Sobolev space with symmetric functions,
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Hm[−π,π] =
{
g : g(−t) = g(t), g ∈ Sm[−π,π]

}
.

Similar to Proposition 1, we have

Hm[−π,π] =

{
g : g(t) =

∞∑
k=0

gkξk(t),

∞∑
k=0

g2k
ρk

<∞

}
with ρ0 = 1 and ρk = k2m + 1.

Theorem 1. Suppose Kω(s, t) and Hω(s, t) are defined in (2.3) and (2.4) respec-

tively, and x1, x2, . . . , xn is any set of values on [0, π]. Let ω = n−a for a > 0.

Then, for any δ > 0 and M > 0,

sup
maxi |αi|<M,x∈[δ,π−δ]

∣∣∣∣∣
n∑
i=1

[Hω(xi, x)αi −Kω(xi, x)αi]

∣∣∣∣∣→ 0 as n→∞. (2.5)

Thus, the symmetric periodic Gaussian kernel is close to the Gaussian repro-

ducing kernel when ω → 0. The results in Section 4 facilitate the understanding

of the asymptotic performance of estimators that are based on the Gaussian

reproducing kernel.

3. The method of regularization with a symmetric periodic Gaussian

kernel

Suppose (xi, yi) are IID samples from model (1.1). The method of regulariza-

tion with a symmetric periodic Gaussian kernel estimates g0 as follows. Consider

a loss function Ln(g) with a penalty function J(g),

Ln(g) =
1

n

n∑
i=1

(yi − g(xi))
2, and J(g) = ||g||2Hω = 〈g, g〉Hω ,

where 〈g, g〉Hω is defined in the same way as 〈g, g〉K in (2.1). Then, the estimator

is the solution of

ĝ = argming{Ln(g) + λJ(g)}. (3.1)

Proposition 2 (representer theorem,Wahba (1990)). If g0 ∈ H∞ω0[−π,π] for ω0 >

ω or g0 ∈ Hm[−π,π], then there exist constants α1, α2, . . . , αn such that

ĝ(t) =

n∑
i=1

Hω(xi, t)αi. (3.2)

The representer theorem indicates that the solution of (3.1) can be found

in the space generated by basis functions Hω(xi, ·), i = 1, 2, . . . , n. Denote this

function space by Hn = {g(t) =
∑n

i=1Hω(xi, t)αi}. This result is important to
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both numerical implementation and theoretical study. It follows that for any

function g ∈ Hn,

Ln(g) =
1

n
(Y −Hα)>(Y −Hα) and J(g) = α>Hα,

where Y = (y1, y2, . . . , yn)>, α = (α1, α2, . . . , αn)> and H = (Hij) is a n × n
matrix with Hij = Hω(xi, xj). Then

Ln(g) + λJ(g) =
1

n
(Y −Hα)>(Y −Hα) + λα>Hα.

Thus, estimating g in (3.1) is equivalent to estimating α. The solution is,

α̂ = (H + nλ)−1Y.

4. Asymptotic Analysis

To obtain the asymptotic performance of our method, we need some assump-

tions.

Assumption 1. {xi}ni=1 are IID samples of variable X. The density function

f(x) of X is supported on [0, π] and satisfies 0 < c < f(x) < C < ∞ for some

constants c and C;

Assumption 2. {εi}ni=1 is a sequence of IID random variables that are indepen-

dent of X; E(εi) = 0 and E(ε2i ) = σ2;

Assumption 3.a. g0 ∈ H∞ω0[−π,π];

Assumption 3.b. g0 ∈ Hm[−π,π].

To facilitate the theoretical calculation, we standardize our symmetric peri-

odic Gaussian kernel as

H̃ω(s, t) =
Hω(s, t)√
f(s)f(t)

.

We also denote this kernel by Hω(s, t) for simplicity.

Proposition 3. Let Hω(s, t) be the standardized symmetric periodic Gaussian

kernel, then

Hω(s, t) =

∞∑
k=0

λk,ωφk(s)φk(t)

with λk,ω’s and φk(t)’s satisfying

(i) λk,ω = e−(k
2ω2)/2;

(ii) φ0(t) = 1/
√
πf(t) and φk(t) = (

√
2 cos(kt))/

√
πf(t);
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(iii)
∫ π
0 φi(t)φj(t)f(t)dt = δi,j ;

(iv) 〈φi(t), φj(t)〉Hω = δi,j/λi;

(v) supk supt |φk(t)| <∞.

Let ||g||2Hω = 〈g, g〉Hω as defined above. For the asymptotic analysis, we take

||g||0 = [Ef (g2(X))]1/2 =

[∫ π

0
g2(t)f(t)dt

]1/2
,

||g||λ = (||g||20 + λ||g||2Hω)1/2,

〈g1, g2〉0 =
1

4
(||g1 + g2||20 − ||g1 − g2||20),

〈g1, g2〉λ = 〈g1, g2〉0 + λ〈g1, g2〉Hω .

Theorem 2 (simultaneous diagonalization). For any g ∈ Hω, if gk = 〈g, φk〉0
with the φk given in Proposition 3, then

g(t) =

∞∑
k=0

gkφk(t),

with

||g||20 =

∞∑
k=0

g2k, J(g) =

∞∑
k=0

g2k
λk,ω

.

4.1. Consistency

The consistency for RKHS-based learning has been established using gen-

eral empirical processes; see for example Mendelson (2002) and Steinwart and

Christmann (2008). Based on the technique in Silverman (1982), the consistency

rates for regularization estimators of model (1.1) in H∞ω[−π,π] and Hm[−π,π], can

also be derived and are given below. It can been seen that, the consistency rate

is minimax for the estimator in the infinite order Sobolev space, as shown in Lin

and Brown (2004). The rate is also optimal for nonparametric regression in the

mth order derivative function space; see, for example, Stone (1982).

Hereafter, for any two sequences a and b that depend on n, take a ∼ b if

limn→∞ a/b = c with 0 < c <∞.

Theorem 3. Suppose Assumptions 1, 2 and 3 hold. When ω = ω0 and λ ∼
(lnn)1/2/n, the regularization estimator ĝ satisfies

||ĝ − g0||20 = Op

(
(lnn)1/2

n

)
.
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When ω2 < ω2
0/2 and λ ∼ (lnn)1/4/(nω)1/2, the regularization estimator ĝ sat-

isfies

||ĝ − g0||20 = Op

(
(lnn)1/2

nω

)
.

Theorem 4. Suppose Assumptions 1, 2 and 3.b hold. The regularization esti-

mator ĝ derived with λ = o(1) and (− lnλ)1/2/ω ∼ n1/(2m+1) satisfies

||ĝ − g0||20 = Op

(
n−2m/(2m+1)

)
.

4.2. Asymptotic normality

Here, we present our main results for the asymptotic normality of the regu-

larization estimator we introduced.

Let Hωt = Hω(t, ·). For any ∆g ∈ Hω, write

Snλ(g) = − 2

n

n∑
i=1

(yi − g(xi))Hωxi
+ 2λg;

DSnλ(g)∆g =
2

n

n∑
i=1

∆g(xi)Hωxi
+ 2λ∆g.

Let Sλ(g) = Ef{Snλ(g)} and DSλ(g)∆g = Ef{DSnλ(g)∆g}.

Lemma 1 (Functional Bahadur representation). Suppose Assumptions 1, 2 and

3.a hold. When ω = ω0 and λ ∼ (lnn)1/2/n = o(1) as n→∞, we have

||ĝ − g0 + (DSλ(g0))
−1Snλ(g0)||2λ = Op

(
lnn

n2

)
.

We apply this FBR to get point-wise asymptotic normality for the estimators

in the two Sobolev spaces.

Theorem 5. Suppose Assumptions 1, 2 and 3.a hold, and that parameter λ

and ω satisfy the conditions in Lemma 1. With g0(t) =
∑∞

k=0 g0,kφk(t), for any

x0 ∈ [−π, π], there exists a constant σ2x0
> 0 such that

lim
n→∞

σ2

(lnn)1/2

∞∑
k=0

(
1 +

λ

λk,ω

)−2
φ2k(x0) = σ2x0

. (4.1)

with g?(t) =
∑∞

k=0(λk,ωg0,k)/(λ+ λk,ω)φk(t),√
n

(lnn)1/2
(ĝ(x0)− g?(x0))

d−→ N
(
0, σ2x0

)
. (4.2)

Theorem 6. Suppose Assumptions 1, 2 and 3.b hold. When λ = o(1) and
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(− lnλ)1/2/ω ∼ n1/(2m+1) as n→∞, we have

||ĝ − g0 + (DSλ(g0))
−1Snλ(g0)||2λ = Op

(
n−4m/(2m+1)

)
. (4.3)

For any x0 ∈ [−π, π], there exists a constant σ̃2x0
> 0 such that

lim
n→∞

σ2n−1/(2m+1)
∞∑
k=0

(
1 +

λ

λk,ω

)−2
φ2k(x0) = σ̃2x0

. (4.4)

If g0(t) =
∑∞

k=0 g0,kφk(t) and g?(t) =
∑∞

k=0(λk,ωg0,k)/(λ+ λk,ω)φk(t), then

nm/(2m+1)(ĝ(x0)− g?(x0))
d−→ N

(
0, σ̃2x0

)
. (4.5)

5. Comparison of Estimation Efficiency

We compare the periodic Gaussian kernel and the symmetric periodic Gaus-

sian kernel by their estimation efficiencies and asymptotic distributions. Lin and

Brown (2004) did not obtained the asymptotic distribution for their estimators.

Here, we establish the asymptotic normality for the method in Lin and Brown

(2004), and then we compare the asymptotic bias and variance with those of our

method.

Theorem 7. Under Assumptions 1 and 2, suppose g0 ∈ S∞ω0[0,π]
and ω0 is a

fixed value. Let the ηk’s and ψk’s be the eigen-values and eigen-functions of the

standardized periodic Gaussian kernel Kω,0,π. Write g0(t) =
∑∞

k=0 g0,kψk(t). If

ω = ω0 and λ ∼ (lnn)1/2/n = o(1), then for any x0 ∈ [0, π], there exists a

constant a2x0
> 0 such that

lim
n→∞

σ2

(lnn)1/2

∞∑
k=0

(
1 +

λ

ηk

)−2
ψ2
k(x0) = a2x0

. (5.1)

For g?(t) =
∑∞

k=0(ηkg0,k)/(λ+ ηk)ψk(t), we have√
n

(lnn)1/2
(ĝ(x0)− g?(x0))

d−→ N
(
0, a2x0

)
. (5.2)

Theorem 8. Suppose Assumptions 1 and 2 hold, and that g0 ∈ Sm[0,π]. If λ = o(1)

and (− lnλ)1/2/ω ∼ n1/(2m+1) as n→∞, then for any x0 ∈ [0, π], there exists a

constant ã2x0
> 0 such that

lim
n→∞

σ2n−1/(2m+1)
∞∑
k=0

(
1 +

λ

ηk

)−2
φ2k(x0) = ã2x0

. (5.3)

If g0(t) =
∑∞

k=0 g0,kψk(t), then for g?(t) =
∑∞

k=0(ηkg0,k)/(λ+ ηk)ψk(t), we have

nm/(2m+1)(ĝ(x0)− g?(x0))
d−→ N

(
0, ã2x0

)
. (5.4)
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For any kernel K, denote the asymptotic bias and variance of the regular-

ization estimator at point x by Bg0,K,λ(x) and Vg0,K,n,λ(x), respectively. For

g0(t) =
∑∞

k=0 g0,kφk(t) =
∑∞

k=0 g̃0,kψk(t), by Theorems 5 and 7 we have

Bg0,Kω,0,π,λ(x) = −λ
∞∑
k=0

g̃0,k
λ+ ηk

ψk(x),

Vg0,Kω,0,π,n,λ(x) =
σ2

n

∞∑
k=0

(
1 +

λ

ηk

)−2
ψ2
k(x),

Bg0,Hω,λ(x) = −λ
∞∑
k=0

g0,k
λ+ λk,ω

φk(x),

Vg0,Hω,n,λ(x) =
σ2

n

∞∑
k=0

(
1 +

λ

λk,ω

)−2
φ2k(x).

The asymptotic variance here is not associated with the true regression functions.

For simplicity, we assume that the predictor is uniformly distributed on [0, π],

and σ2 = 1. Under these assumptions we have

(i) η0 = 1, η2k−1 = η2k = e−2k
2ω2

;

(ii) ψ0(t) = 1, ψ2k−1(t) =
√

2 sin(2kt), ψ2k(t) =
√

2 cos(2kt);

(iii) λk,ω = e−(k
2ω2)/2;

(iv) φ0(t) = 1, φk(t) =
√

2 cos(kt).

The asymptotic variances of the two methods are, respectively,

Vg0,Kω,0,π,n,λ(x) =
1

n(1 + λ)2
+

2

n

∞∑
k=1

(
1 + λe2k

2ω2
)−2

;

Vg0,Hω,n,λ(x) =
1

n(1 + λ)2
+

2

n

∞∑
k=1

(
1 + λek

2ω2/2
)−2

cos2(kx).

With a common λ, the variance of using Hω is smaller than that of using Kω/2,0,π.

However, as the values of λ depend on the trade-off mentioned in Section 1, the

variances of using the two kernels are not easy to compare in general. Instead,

we use three examples to show their differences. The calculations are given at

the end of the supplementary material.

Example 1 (g0(t) = C). The constant function is a smooth periodic function

and satisfies all the conditions in both methods. For any λ and ω, we have

Bg0,Kω,0,π,λ(x) = Bg0,Hω,λ(x) = − λC

λ+ 1
,
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Vg0,Kω/2,0,π,n,λ(x) > Vg0,Hω,n,λ(x).

Thus, our method has the same bias as that of Lin and Brown (2004), but with

a smaller variance when the true regression function is constant.

Example 2 (g0(t) = sin(t)). This function is periodic on [0, π] and satisfies the

conditions for both methods. We have

Bg0,Kω,0,π,λ(x) = Bg0,Hω,λ(x)

=

∞∑
k=1

4λ

π(4k2 − 1)(λ+ e−2k2ω2)
cos(2kx)− 2λ

π(λ+ 1)
.

However, neither has uniformly smaller variances than the other. As a conse-

quence, neither has smaller mean squared error (MSE) than the other when the

optimal λ is used.

Example 3 (g0(t) = cos(t)). This function is not periodic on [0, π]. We have

Bg0,Kω,0,π,λ(x) = −
∞∑
k=1

8kλ

π(4k2 − 1)(λ+ e−2k2ω2)
sin(2kx);

Bg0,Hω,λ(x) = −
∞∑
k=1

8kλ

π(4k2 − 1)(λ+ e−ω2/2)
sin(2kx).

It follows that ∫ π

0
B2
g0,Kω/2,0,π,λ(x)dx >

∫ π

0
B2
g0,Hω,λ(x)dx,

Vg0,Kω/2,0,π,n,λ(x) > Vg0,Hω,n,λ(x).

In this case, our symmetric periodic Gaussian regularization achieves smaller

integrated MSE than the periodic Gaussian regularization of Lin and Brown

(2004).

6. Simulation

Lin and Brown (2004) did simulations which suggested that their method

is comparable to, or even better than, the other such nonparametric smoothing

methods as smoothing splines. In our simulation, we only need to compare their

finite sample performances, but we also compare with the method of the Gaussian

regularization to show its similarity with our method. Data are generated from

the model (1.1) with noise N(0, 1) and the design variable uniformly distributed

on [0, π]. Consider eight regression functions, the first four of which were used in

Lin and Brown (2004), and are periodic on [0, π]; the others are not periodic.



1020 ZENG AND XIA

−
−

−
−

−
−

Figure 1. Plots of the eight regression functions

g1(t) = sin2(2t− π)It≥π/2,

g2(t) = −2t+ (4t− π)It≥π/4 + (−4t+ 3π)It≥3π/4,

g3(t) =
1

2− sin(2t− π)
,

g4(t) = 2 + sin(2t− π) + 2 cos(2t− π) + 3 sin2(2t− π)

+4 cos2(2t− π) + 5 sin3(2t− π),

g5(t) = sin2

(
3t

2
− 3π

4

)
It≥π/2,

g6(t) = −2t+

(
10t

3
− 5π

6

)
It≥π/4,

g7(t) =
1

2− cos(t− π/4)
,

g8(t) = 2 + sin(t) + 2 cos(t) + 3 sin2(t) + 4 cos2(t) + 5 sin3(t).

Plots of these functions are shown in figure 1.

For periodic Gaussian regularization, following Lin and Brown (2004), we
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approximate Kω,0,π by KJ
ω,0,π =

∑J
k=−J Kω(s− t− kπ, 0). In fact

0 < Kω,0,π(s, t)−KJ
ω,0,π(s, t) < 10−20 ∀s, t ∈ [0, π] for 2J + 1 > 3ω.

Here we choose J = 4. In practice, J = 1 is enough. For the selection of λ and

ω, we did a grid search over points (ω, λ) : ω = 0.3k1 − 0.1, λ = exp(−0.4k2 + 7),

for k1 = 1, . . . , 10 and for k2 = 1, . . . , 50 so as to minimize Mallows’ Cp; see Lin

and Brown (2004) for the details.

For the symmetric periodic Gaussian regularization, the kernel Hω is ap-

proximated by

HJ
ω (s, t) =

J∑
k=−J

[Kω(s− t− 2kπ, 0) +Kω(s+ t− 2kπ, 0)],

where J is the same as in the periodic kernel above. Similar to periodic Gaussian

regularization, the parameter (ω, λ) is searched to minimize Mallows’ Cp over the

same collection of possible values.

For each model with sample sizes n=50, 100, 200, we repeated the simu-

lations 100 times. For each replication, k, the mean squared error (MSE) was

calculated as MSEk = (1/n)
∑n

i=1(ĝ(xki) − g0(xki))
2, n the sample size and

{xki}ni=1 the sample points. The averaged mean squared error (AMSE) over the

100 replications was then calculated as

AMSE =
1

100

100∑
k=1

MSEk.

Table 1 lists the AMSEs for different combinations of regression functions

and sample sizes. We have some observations. First, the AMSE decreases as

the sample size grows, which supports our theoretical consistency. Second, our

symmetric periodic Gaussian regularization has almost identical performance to

Gaussian regularization in all simulations which reflects the approximation in

Theorem 1. Third, for periodic functions (functions 1-4), our method is com-

parable to, or slightly better than, that of Lin and Brown (2004). Our method

can achieve much better performance when the true regression function is not

periodic, as with functions 5-8.

As Lin and Brown (2004) demonstrated that the periodic Gaussian regular-

ization is comparable to, or better than, the smoothing splines in their simula-

tions, our simulations indicate that our method can do even better.

In conclusion, our newly introduced reproducing kernel performs satisfacto-

rily for nonparametric estimation problem, and is almost identical to that of the

popularly used Gaussian regularization. Based on Theorem 1 and the identical
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Table 1. AMSEs for the Gaussian regularization, the symmetric periodic Gaussian regu-
larization, and the periodic Gaussian regularization on eight different regression functions

Symmetric Periodic
Function Regression Sample Gaussian Periodic Gaussian
Type Functions Size kernel Gaussian kernel kernel
Periodic g1(t) 50 0.120 0.128 0.173
Functions 100 0.064 0.069 0.084
on [0, π] 200 0.038 0.036 0.041

g2(t) 50 0.145 0.152 0.135
100 0.068 0.077 0.084
200 0.042 0.043 0.036

g3(t) 50 0.099 0.099 0.126
100 0.052 0.053 0.057
200 0.030 0.031 0.029

g4(t) 50 0.225 0.209 0.183
100 0.108 0.097 0.081
200 0.054 0.050 0.039

Non-periodic g5(t) 50 0.110 0.112 0.123
Functions 100 0.055 0.056 0.070
on [0, π] 200 0.033 0.034 0.039

g6(t) 50 0.126 0.137 0.159
100 0.057 0.070 0.103
200 0.039 0.038 0.080

g7(t) 50 0.093 0.092 0.096
100 0.045 0.046 0.057
200 0.022 0.022 0.030

g8(t) 50 0.166 0.143 0.698
100 0.073 0.065 0.514
200 0.040 0.035 0.376

numerical performance in Table 1, the kernel we introduced and our associated

results collectively shed some light on the success of the Gaussian reproducing

kernel.

Supplementary Materials

The supplementary materials include all the proofs of the our theoretical

results in the present paper.
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