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Abstract: The minorization–maximization (MM) principle provides a powerful tool

for optimization in statistical applications. A challenging and subjective issue in

developing an MM algorithm is to construct an appropriate minorizing function.

For numerical convenience, our (AD) approach to constructing the minorizing func-

tion as the sum of separable univariate functions yields general class of MM algo-

rithms. We employ the assembly technique (A-technique) and the decomposition

technique (D-technique). The A-technique introduces a bank of complemental as-

sembly functions which are often the building blocks of various MM algorithms.

The D-technique decomposes the objective function into three parts and separately

minorizes them. We illustrate the utility of the proposed approach in multiple

applications. Numerical experiments demonstrate its advantages.

Key words and phrases: Case II interval censored data, complemental assembly,

compound zero-inflated, transmission tomography, truncation.

1. Introduction

With the popular EM algorithm as its special case, the minorization–maximi-

zation (MM) principle (Becker, Yang and Lange (1997); Lange, Hunter and Yang

(2000)) is an important and useful tool for optimization problems and has a

broad range of applications in statistics because of its conceptual simplicity, ease

of implementation and numerical stability.

Let Yobs denote the observed data, `(θ|Yobs) the log-likelihood function, the

vector of parameters θ =
(
θ1, . . . , θq

)> ∈ Θ, and Θ the parameter space. The

maximum likelihood estimate (MLE) of θ, θ̂ = arg maxθ∈Θ `(θ|Yobs), optimizes

an objective function. The MM principle provides a general tool for constructing

iterative algorithms with monotone convergence (Hunter and Lange (2004)). A

minorizing function Q
(
θ|θ(t)

)
is first constructed to satisfy

https://doi.org/10.5705/ss.202016.0488


964 TIAN, HUANG AND XU

Q
(
θ
∣∣θ(t))6`(θ|Yobsobs), ∀ θ,θ(t)∈Θ and Q

(
θ(t)
∣∣θ(t))=`

(
θ(t)
∣∣Yobs), (1.1)

where θ(t) denotes the t-th approximation of θ̂. Note that Q
(
·
∣∣θ(t)) function lies

under `(·|Yobs) and is tangent to it at the point θ = θ(t). The surrogate function

Q
(
·
∣∣θ(t)) is then maximized to obtain

θ(t+1) = arg max
θ∈Θ

Q
(
θ
∣∣θ(t)) (1.2)

as the (t+ 1)-th approximation of the θ̂.

Since

`
(
θ(t+1)

∣∣Yobs) > Q
(
θ(t+1)

∣∣θ(t)) > Q
(
θ(t)
∣∣θ(t)) = `

(
θ(t)
∣∣Yobs), (1.3)

the MM iteration (1.2) possesses the ascent property, driving the target function

`(θ|Yobs) uphill. The MM principle can be dated back to (Ortega and Rheinboldt

(1970 p.253–255)) and the acronym MM was first given by (Hunter and Lange

(2000a)).

Due to its versatility and desirable properties, MM algorithms have been

developed for quantile regressions (Hunter and Lange (2000b)), the propor-

tional odds model (Hunter and Lange (2002)), the Bradley–Terry model (Hunter

(2004)), variable selection (Hunter and Li (2005); Yen (2011)), discriminant anal-

ysis (Lange and Wu (2008)), discrete multivariate distributions (Zhou and Lange

(2010b)), the dominant mode (Zhou and Lange (2010a)), constrained estimation

(Mkhadri, N’Guessan and Hafidi (2010)), sparse logistic PCA (Lee and Huang

(2013)), distance majorization (Chi, Zhou and Lange (2014)), geometric and sig-

nomial programming (Lange and Zhou (2014)), the generalized heron problem

(Chi and Lange (2014)). Lange, Chi and Zhou (2014) recently gives an excellent

overview.

In developing an MM algorithm, it is sometimes quite challenging to con-

struct an appropriate minorizing function. This is often done case by case and

involves a subjective use of Jensen’s inequality or convexity. In practice, espe-

cially in high-dimensional situations, it is numerically appealing to construct a

surrogate function as the sum of separable univariate functions since it bypasses

the difficulty of multi-dimensional optimization. In this paper, we propose a

new assembly and decomposition (AD) approach for constructing a surrogate

function as the sum of separable univariate functions in a general class of MM

algorithms. The AD method employs the A-technique and the D-technique. The

A-technique introduces the notions of assemblies and complemental assemblies

to guide the minorization process as they are the building blocks of the MM algo-

rithms in many applications. The D-technique decomposes the objective function
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(or more generally some intermediate minorization function) into three parts and

then minorizes them separately.

The rest of the paper is organized as follows. Section 2 briefly reviews various

forms of the Jensen’s inequality as it plays an important role in the minorization.

The AD method is introduced in Section 3. Section 4 uses four representative

examples to illustrate the AD machinery in constructing a surrogate function

as the sum of separable univariate functions. In Section 5, we investigate the

theoretical behaviors of the AD MM algorithms such as the local and global

convergences. Numerical experiments are conducted in Section 6 to assess their

practical performance. Some concluding remarks are given in Section 7.

2. Jensen’s Inequality

Let ϕ(·) be a concave function. If X is a random variable taking values in

the domain of ϕ(·), then Jensen’s inequality states that

ϕ
(
E(X)

)
> E

{
ϕ(X)

}
, (2.1)

provided that both E(X) and E[ϕ(X)] exist.

(a) The continuous version of Jensen’s inequality is

ϕ

(∫
X
τ(x) · g(x) dx

)
>
∫
X
ϕ
(
τ(x)

)
· g(x) dx, (2.2)

where X ⊂ R, τ(·) is a real function, and g(·) is a density on X.

(b) The discrete version of Jensen’s inequality is

ϕ

(
n∑
i=1

αixi

)
>

n∑
i=1

αiϕ(xi), (2.3)

where αi > 0 and
∑n

i=1 αi = 1. Note that the right-hand side of (2.3), i.e.,∑n
i=1 αiϕ(xi), is completely additively separable.

(c) Let ψ(·) be a convex function. The supporting hyperplane inequality is

ψ(x) > ψ(x0) + (x− x0)ψ′(x0). (2.4)

3. The Assembly–Decomposition (AD) Method

Suppose that F is a function of n variables x1, . . . , xn. We say that F

is completely additively separable if there exists univariate functions f1, . . . , fn
such that F (x1, . . . , xn) =

∑n
i=1 fi(xi). We aim to construct a surrogate function



966 TIAN, HUANG AND XU

as the sum of separable univariate functions in a general class of MM algorithms.

3.1. The assembly technique

We first define eight function families. Any function in each family can be

written as a linear combination of assemblies (basis functions) which we refer

to as complemental assemblies. By introducing the notions of assemblies and

complemental assemblies, the A-technique guides the direction in which the mi-

norization process should be worked.

1) The log-generalized-gamma function family LGGk(θ). A function g1(θ) ∈
LGGk(θ), if g1(θ) = c0+c1 log(θ)+c2

(
−θk

)
, θ ∈ R+, where c0 ∈ R, c1, c2 > 0

and k ∈ N+. Two complemental assemblies:
{

log(θ),−θk
}

. When k = 1, it

reduces to the log-gamma function family, denoted by LG(θ). When k = 2,

it reduces to the log-Rayleigh function family, denoted by LR(θ).

2) The log-beta function family LB(θ). A function g2(θ) ∈ LB(θ), if g2(θ) =

c0 + c1 log(θ) + c2 log(1 − θ), θ ∈ [0, 1], where c0 ∈ R and c1, c2 > 0. Two

complemental assemblies: {log(θ), log(1− θ)}.

3) The log-extended-beta function family LEB(θ). A function g3(θ) ∈ LEB(θ),

if g3(θ) = c0 + c1 log(θ) + c2 log(1 − θ) + c3(−θ), θ ∈ [0, 1], where c0 ∈ R
and c1, c2, c3 > 0. Three complemental assemblies: {log(θ), log(1− θ),−θ}.
When c3 = 0, it reduces to the log-beta function family.

4) The log-inverted-beta function family LIB(θ). A function g4(θ) ∈ LIB(θ), if

g4(θ) = c0 + c1 log(θ) + (c1 + c2){− log(θ+ 1)}, θ ∈ (0, θ0), where θ0 =̂
{
c1 +√

c1(c1 + c2)
}/
c2, c0 ∈ R and c1, c2 > 0. Two complemental assemblies:

{log(θ),− log(θ + 1)}.

5) The log-extended-gamma function family LEG(θ). A function g5(θ)∈LEG(θ),

if g5(θ) = c0+c1 log(θ)+c2(−θ)+c3 log(θ+1), θ ∈ R+, where c0 ∈ R, c1, c2 >

0 and c3 > 0. Three complemental assemblies: {log(θ),−θ, log(θ + 1)}.
When c3 = 0, it reduces to the log-gamma function family.

6) The log-inverted-gamma function family LIG(θ). A function g6(θ) ∈ LIG(θ),

if g6(θ) = c0+c1{− log(θ)}+c2(−1/θ), θ ∈ (0, θ0), θ0 =̂ 2c2/c1, where c0 ∈ R
and c1, c2 > 0. Two complemental assemblies: {− log(θ),−1/θ}.

7) The log-Gumbel-maximum function family LGM(θ). A function g7(θ) ∈
LGM(θ), if g7(θ) = c0 + c1

(
− e−c2θ

)
+ c3(−θ), θ ∈ R, where c0 ∈ R and

c1, c2, c3 > 0. Two complemental assemblies: {−e−c2θ,−θ}.



AN ASSEMBLY AND DECOMPOSITION (AD) APPROACH 967

8) The log-Dirichlet function family LDq(θ). A function g8(θ) ∈ LDq(θ), if

g8(θ) = c0 +
∑q

j=1 cj log(θj),θ ∈ Tq =̂
{
θ: θj > 0,θ>11q = 1

}
, where c0 ∈ R

and cj > 0. There are q complemental assemblies: {log(θj)}qj=1, extending

the log-beta function family.

Assembling the eight function families, we obtain a bank of assemblies and

complemental assemblies:

B =
{
± log(θ), log(1− θ), ± log(θ + 1); −θk, −θ−1; −e−c2θ

}
. (3.1)

As we aim to separate the surrogate function into the sum of separable univari-

ate functions and these complemental assemblies are the building blocks for the

MM algorithms in many applications. We use this bank to guide our separation

process. We work towards decomposing the surrogate function into the sum of

separable univariate functions each of which comes from this bank of assemblies.

In principle, we can include additional function families and their complemental

assemblies into this bank to make it more complete and the A-technique is hence

more versatile. However, as shown in multiple examples in Section 4, the bank

with eight function families already gives enough guidance in designing MM al-

gorithms with separable univariate functions and closed-form updating formulas.

3.2. The decomposition technique

3.2.1. Decomposition of the target function into three parts

Assume that as guided by the A-technique, the target function `(θ|Yobs) can

be written as

`(θ|Yobs) = `0(θ) +

n1∑
i=1

`1i

(
a>ihi(θ)

)
+

n2∑
i=1

`2i(fi(θ)), (3.2)

where

• `0(θ) =
∑q

i=1 `0i(θi) is completely additively separable, each `0i(·) is a uni-

variate function,

• `1i(·) is a univariate concave function, ai =
(
ai1, . . . , aipi

)>
, {hij(θ)}pij=1 may

be non-linear,

• `2i(·) is a univariate convex function, and each fi(·) is a linear combination

of complemental assemblies.

The D-technique, or essentially the equation (3.2), decomposes the target func-

tion into three parts. Each part is dealt with differently. For the first part, the
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separation is already done. For the second part, by (2.3),

Q1i

(
θ
∣∣θ(t)) =

pi∑
j=1

aijhij
(
θ(t)
)

a>ihi
(
θ(t)
) `1i(a>ihi(θ(t))

hij
(
θ(t)
) · hij(θ)

)
(3.3)

minorizes the concave function `1i
[
a>ihi(θ)

]
at θ = θ(t) if for any i ∈ {1, . . . , n1},

aijhij
(
θ(t)
)
> 0 for all j = 1, . . . , pi. For the third part, by (2.4),

Q2i

(
θ
∣∣θ(t)) = `2i

(
fi
(
θ(t)
))

+
{
fi(θ)− fi

(
θ(t)
)}
`′2i

(
fi
(
θ(t)
))
, (3.4)

minorizes the convex function `2i[fi(θ)] at θ = θ(t) for any i ∈ {1, . . . , n2}. After

combining the three parts, the surrogate function

Q12

(
θ
∣∣θ(t)) = `0(θ) +

n1∑
i=1

Q1i

(
θ
∣∣θ(t))+

n2∑
i=1

Q2i

(
θ
∣∣θ(t)) (3.5)

minorizes the target function `(θ|Yobs).
For each part, the corresponding surrogate function is the sum of separable

univariate functions. The surrogate function (3.5) may not be the sum of sepa-

rable functions itself since the univariate parameters in three parts may not be

the same. But as illustrated in our examples in Section 4, in those situations,

it is much easier to further minorize (3.5) and construct a surrogate function as

the sum of separable univariate functions. It may also be of interest to ask how

general the D-technique is. The A-D method is generally applicable when (3.2)

holds for some intermediate minorizing function.

3.2.2. Double minorization

In practice, we often encounter the situation where

`(θ|Yobs) = `0(θ)−
n3∑
i=1

bi log
(

1− a>ihi(θ)
)
, (3.6)

(e.g., see Examples (4.3) in Section 4) where the {`0(θ),ai,hi(θ)} are defined

in (3.2), bi > 0 and 0 < a>ihi(θ) < 1. The second part of (3.6) does not take

the form of (3.2). In this situation, we provide another technique referred to as

double minorization. By applying (2.3) with n = 2 to the log(·) function, we

have

− log
(

1− a>ihi(θ)
)
> c

(t)
i +

1− ω(t)
i

ω
(t)
i

log
(
a>ihi(θ)

)
=̂ Q3i

(
θ
∣∣θ(t)), (3.7)

where
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c
(t)
i =− logω

(t)
i −

1− ω(t)
i

ω
(t)
i

log
(

1− ω(t)
i

)
and ω

(t)
i = 1− a>ihi

(
θ(t)
)
. (3.8)

Therefore, the surrogate function

Q3

(
θ
∣∣θ(t)) = `0(θ) +

n3∑
i=1

biQ3i

(
θ
∣∣θ(t))

= c+ `0(θ) +

n3∑
i=1

bi

(
1− ω(t)

i

)
ω
(t)
i

log
(
a>ihi(θ)

)
(3.9)

minorizes the target function `(θ|Yobs) in (3.6). Here (3.2) holds for the interme-

diate minorizing function Q3

(
θ
∣∣θ(t)).

4. Applications

We use four examples to illustrate our method. To our knowledge, the algo-

rithms based on the AD method are new and not previously reported.

4.1. Poisson model for transmission tomography

Suppose that there are n detectors and Yi is the transmission measurement

of the i-th detector. We consider the model

Yi
ind.∼ Poisson

(
ri + sie

−[Aπ]i
)
, i = 1, . . . , n,

where ri is the mean number of background counts of the i-th detector, si is the

blank scan counts,A =
(
aij
)

is the n×q system matrix with a>i =
(
ai1, . . . , aiq

)
as

its i-th row (i.e., A> = [a1, . . . ,an]), [Aπ]i =̂ a>iπ denotes the i-th line integral

of the attenuation map π =
(
π1, . . . , πq

)>
, with πj the unknown attenuation

coefficient in the j-th pixel and q the number of pixels. The EM algorithm does

not exhibit a closed-form solution for the M-step (Lange and Carson (1984);

Fessler (2000)). (Lange and Fessler (1995)) considered a special case where ri = 0

and hence the log likelihood function is concave. Let Yobs = {yi}ni=1 be the

observations and {ri, si, aij} known nonnegative constants. The log likelihood

function is

`(π|Yobs) = c+

n∑
i=1

{
−si exp

(
−a>iπ

)}
+

n∑
i=1

{
yi log

(
ri + sie

−a>iπ
)}

=̂ c+

n∑
i=1

`1i
(
a>iπ

)
+

n∑
i=1

`2i(gi(π)). (4.1)

It is easy to check that (3.2) holds. For `1i(·) of a>iπ, we construct weight
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ωij = aij/
∑q

j=1 aij and write a>iπ =
∑q

j=1 ωij
{
ω−1ij aij

(
πj − π(t)j

)
+ a>iπ

(t)
}

. By

(3.3), we obtain the minorizing function

Q1i

(
π
∣∣π(t)

)
= −

q∑
j=1

siωij exp
(
−ω−1ij aij

(
πj − π(t)j

)
− a>iπ(t)

)
. (4.2)

For `2i(·) of gi(π) = a>iπ, by (3.4), we obtain the minorizing function

Q2i

(
π
∣∣π(t)

)
= yi log

(
ri + si exp

(
−a>iπ(t)

))
−
(
a>iπ − a>iπ(t)

) yisi exp
(
−a>iπ(t)

)
ri + si exp

(
−a>iπ(t)

) . (4.3)

Therefore, the overall surrogate function

Qv
(
π
∣∣π(t)

)
= c+

n∑
i=1

Q1i

(
π
∣∣π(t)

)
+

n∑
i=1

Q2i

(
π
∣∣π(t)

)
= c1 +

q∑
j=1

n∑
i=1

Q3,ij

(
πj
∣∣π(t)

)
(4.4)

minorizes `(π|Yobs) in (4.1), where

Q3,ij

(
πj
∣∣π(t)

)
= −siωij exp

(
−ω−1ij aij

(
πj − π(t)j

)
− a>iπ(t)

)
+
aijyisi exp

(
− a>iπ(t)

)
ri + si exp

(
−a>iπ(t)

) (−πj)

∈ LGM
(
πj
)
.

The parameters in (4.4) are separated and updated by

πj = π
(t)
j −

∑n
i=1 aijsi

{
exp

(
−a>iπ(t)

)
−yi exp

(
− a>iπ(t)

)
/ri + si exp

(
− a>iπ(t)

)}
−
∑n

i=1 a
2
ijsiω

−1
ij exp

(
a>iπ

(t)
) .

(4.5)

4.2. Multivariate compound zero-inflated generalized Poisson distri-

bution

Let Z0 ∼ Bernoulli (1−φ0), x = (X1, . . . , Xm)>, Xi ∼ ZIGP(φi, λi, πi) for i =

1, . . . ,m, and (Z0, X1, . . . , Xm) be mutually independent. A random vector y =

(Y1, . . . , Ym)> follows a multivariate compound zero-inflated generalized Poisson

distribution if

y
d
= Z0 x =

00, with probability φ0,

x, with probability 1− φ0,
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where φ0 ∈ [0, 1), φ = (φ1, . . . , φm)> ∈ [0, 1)m, λ = (λ1, . . . , λm)> ∈ Rm+ and

π = (π1, . . . , πm)> ∈ [0, 1)m. We write y ∼ CZIGPm(φ0,φ,λ,π). The joint pmf

of y is

γ
I(y=00)
1 × {(1− φ0)γ2}I(y 6=00) (4.6)

where

γ1 = φ0 + (1− φ0)
m∏
i=1

{
φi + (1− φi)e−λi

}
,

γ2 =

m∏
i=1

{
φi + (1− φi)e−λi

}I(yi=0)
{

(1− φi)
λi(λi + πiyi)

yi−1e−λi−πiyi

yi!

}I(yi>0)

.

Suppose that y1, . . . ,yn
iid∼ CZIGP(θ), where θ = (φ0, φ1, . . . , φm, λ1, . . . , λm,

π1, . . . , πm)> and yj =
(
Y1j , . . . , Ymj

)>
for j = 1, . . . , n. Let yj =

(
y1j , . . . , ymj

)>
and Yobs =

{
yj
}n
j=1

be the observations. Let n0 =
∑n

j=1 I
(
yj = 00

)
. The log-

likelihood function

`(θ|Yobs)

= c0 + n0 log

(
φ0 + (1− φ0)

m∏
i=1

{
φi + (1− φi)e−λi

})
+ (n− n0) log(1− φ0)

+

n∑
j=1

I(yj 6= 0)

m∑
i=1

[
I(yji = 0) log

(
φi + (1− φi)e−λi

)
+I(yji 6= 0)

{
log(1− φi) + log(λi) +

(
yji−1

)
log
(
λi + πiyji

)
− λi − πiyji

}]
,

which can be decomposed as

`(θ|Yobs) = `0(θ)+`1(θ)+

n∑
j=1

m∑
i=1

I(yj 6= 0)
{
I
(
yji = 0

)
`2i(θ)+I

(
yji 6= 0

)
`3ji(θ)

}
,

where c0 is a constant not involving θ,

`0(θ) = c0 + (n− n0) log(1− φ0)

+

n∑
j=1

I(yj 6= 0)

m∑
i=1

[
I(yji 6= 0)

{
log(1− φi) + log(λi)− λi − πiyji

}]
,

`1(θ) = n0 log

(
φ0 + (1− φ0)

m∏
i=1

{
φi + (1− φi)e−λi

})
,
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= n0 log

(
(1, 1)

(
φ0

(1− φ0)
∏m
i=1

{
φi + (1− φi)e−λi

})) = n0 log
(
a>h1(θ)

)
,

`2i(θ) = log
(
φi + (1− φi)e−λi

)
,

= log

(
(1, 1)

(
φi

(1− φi)e−λi

))
= n0 log

(
a>h2i(θ)

)
,

`3ij(θ) =
(
yji − 1

)
log
(
λi + πiyji

)
,

=
(
yji − 1

)
log

((
1, yji

)(λi
πi

))
=
(
yji − 1

)
log
(
a>jih3i(θ)

)
.

From this it can be seen that the parameters in `0(θ) are separated and `0(θ) is a

linear combination of 1+4m assemblies: log(1−φ0) and {log(1−φi), log(λi),−λi,
−πi}mi=1, where {log(λi),−λi} are a pair of complemental assemblies. It is easy

to find that `1(θ), `2i(θ) and `3ji(θ) are concave functions of linear combinations

a>h1(θ),a>h2i(θ) and a>jih3i(θ), respectively. Thus (3.2) holds and we apply the

D-technique. By (2.3), we construct the surrogate functions for `1(θ), `2i(θ) and

`3ji(θ) separately, , which are combined to be Q∗
(
θ
∣∣θ(t)) for `(θ|Yobs),

Q∗
(
θ
∣∣θ(t))

= `0(θ) +
n0φ

(t)
0

γ
(t)
1

log(φ0)

+n0

(
1− φ

(t)
0

γ
(t)
1

){
log(1− φ0) +

m∑
i=1

log
(
φi + (1− φi)e−λi

)}

+

n∑
j=1

m∑
i=1

I
(
yj 6= 0

)
I
(
yji = 0

) [φ(t)i
β
(t)
i

log(φi)+

(
1−

φ
(t)
i

β
(t)
i

){
log(1−φi)−λi

}]

+

n∑
j=1

m∑
i=1

I
(
yji > 0

){λ(t)i (yji − 1
)

λ
(t)
i + π

(t)
i yji

log(λi) +
π
(t)
i yji

(
yji − 1

)
λ
(t)
i + π

(t)
i yji

log(πi)

}
,

where β
(t)
i = φ

(t)
i +

(
1 − φ(t)i

)
e−λ

(t)
i , i = 1, . . . ,m. We find that we did not com-

pletely separate all the parameters since
∑m

i=1 log
(
φi + (1 − φi)e−λi

)
take the

same form as `2i(θ). The technique based on (2.3) can be applied to these terms

and we can then obtain the completely additively separable function Q(θ|θ(t))
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to minimize `(θ|Yobs) as follows,

Q
(
θ
∣∣θ(t)) = Q

(
φ0
∣∣θ(t))+

m∑
i=1

{
Q
(
φi
∣∣θ(t))+Q

(
λi
∣∣θ(t))+Q

(
πi
∣∣θ(t))} , (4.7)

where

Q
(
φ0
∣∣θ(t)) =

n0φ
(t)
0

γ
(t)
1

log(φ0) +

(
n− n0φ

(t)
0

γ
(t)
1

)
log(1− φ0) ∈ LB(φ0),

Q
(
φi
∣∣θ(t)) =

n0φ
(t)
i

(
γ
(t)
1 − φ

(t)
0

)
γ
(t)
1 β

(t)
i

+

n∑
j=1

I(yj 6= 0)I(yji = 0)φ
(t)
i

β
(t)
i

 log(φi)

+

[
n0

(
1− φ

(t)
0

γ
(t)
1

)(
1−

φ
(t)
i

β
(t)
i

)

+

n∑
j=1

I(yj 6= 0)

{
1−

φ
(t)
i I(yji = 0)

β
(t)
i

}]
log(1− φi) ∈ LB(φi),

Q
(
λi
∣∣θ(t)) =


n∑
j=1

I(yj 6= 0)I(yji > 0)(λi + πi)yji
λi + πiyji

 log(λi)

−

[
n0

(
1− φ

(t)
0

γ
(t)
1

)(
1−

φ
(t)
i

β
(t)
i

)

+

n∑
j=1

I(yj 6= 0)

{
1−

φ
(t)
i I
(
yji = 0

)
β
(t)
i

}]
λi ∈ LG(λi),

Q
(
πi
∣∣θ(t)) =


n∑
j=1

I(yj 6= 0)I
(
yji > 0

)
π
(t)
i yji

(
yji − 1

)
λ
(t)
i + π

(t)
i yji

 log(πi)

−


n∑
j=1

I
(
yj 6= 0

)
I
(
yji > 0

)
yji

πi ∈ LG(πi).

The parameters are completely separated and the iteration is explicitly
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φ
(t+1)
0 =

n0φ
(t)
0

nγ
(t)
1

,

φ
(t+1)
i =

n0φ
(t)
i

(
γ
(t)
1 − φ

(t)
0

)/
γ
(t)
1 β

(t)
i +

∑n
j=1 I(yj 6= 0)I(yji = 0)φ

(t)
i

/
β
(t)
i(

n− n0φ(t)0

/
γ
(t)
1

) ,

λ
(t+1)
i =

∑n
j=1 I(yj 6= 0)I(yji > 0)(λi + πi)yji/(λi + πiyji)

n0
(
1−φ(t)0

/
γ
(t)
1

)(
1−φ(t)i

/
β
(t)
i

)
+
∑n

j=1 I(yj 6=0)
(
1−φ(t)i I(yji=0)

/
β
(t)
i

) ,

π
(t+1)
i =

∑n
j=1 I(yj 6= 0)I(yji > 0)π

(t)
i yji(yji−1)

/(
λ
(t)
i +π

(t)
i yji

)
∑n

j=1 I(yj 6= 0)I(yji > 0)yji
, i = 1, . . . ,m.

(4.8)

4.3. Left-truncated normal distribution

A left-truncated normal distribution, LTN
(
µ, σ2; a

)
, has the density function

f
(
y;µ, σ2, a,∞

)
=

1

c
√

2πσ
exp

(
−(y − µ)2

2σ2

)
· I(y > a),

where
(
µ, σ2

)
are two unknown parameters, a is a known constant, c = 1 −

Φ((a − µ)/σ), and Φ(·) is the cdf of the standard normal distribution. Suppose

that Y1, . . . , Yn
iid∼ LTN

(
µ, σ2; a

)
and Yobs = {yi}ni=1 are the observations. The

log-likelihood function

`
(
µ, σ2

∣∣Yobs)=−n log(2π)

2
−
n log

(
σ2
)

2
−

n∑
i=1

(yi − µ)2

2σ2
−n log

(
1−Φ

(
a− µ
σ

))
.

The last term is a special case of the second term in (3.6) with n3 = 1. By (3.7)

and (3.8),

−n log

(
1− Φ

(
a− µ
σ

))

> −n logω(t) − ns(t)1 log
(

1− ω(t)
)

+ ns
(t)
1 log

(
Φ

(
a− µ
σ

))
,

where

ω(t) = 1− Φ

(
a− µ(t)

σ(t)

)
and s

(t)
1 =

1− ω(t)

ω(t)
. (4.9)

Thus the surrogate function

Q∗
(
µ, σ2

∣∣µ(t), σ2(t)) = c
(t)
1 −

n log
(
σ2
)

2
−
∑n

i=1(yi − µ)2

2σ2
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+ ns
(t)
1 log

(
Φ

(
a− µ
σ

))
(4.10)

minorizes `
(
µ, σ2

∣∣Yobs) at
(
µ, σ2

)
=
(
µ(t), σ2(t)

)
, where c

(t)
1 is a constant not

depending on
(
µ, σ2

)
. Directly maximizing (4.10) with respect to

(
µ, σ2

)
cannot

yield closed-form solutions for
(
µ(t+1), σ2(t+1)

)
due to the presence of log[Φ((a−

µ)/σ)]. To overcome this difficulty, let

τ
(
x;µ, σ2

)
=

1√
2πσ

exp

(
−(x− µ)2

2σ2

)
,

and define the weight function

g
(
x;µ(t), σ2(t),−∞, a

)
=
τ
(
x;µ(t), σ2(t)

)
· I(x < a)

Φ
((
a− µ(t)

)
/σ(t)

) =
τ
(
x;µ(t), σ2(t)

)
· I(x < a)

1− ω(t)
.

Applying the integral version of Jensen’s inequality to log[Φ((a−µ)/σ)], we have

log
(

Φ
(a− µ

σ

))
= log

(∫ a

−∞

τ
(
x;µ, σ2

)
g
(
x;µ(t), σ2(t),−∞, a

) · g (x;µ(t), σ2(t),−∞, a
)

dx

)
(2.2)

>
∫ a

−∞
log

(
τ
(
x;µ, σ2

)
g
(
x;µ(t), σ2(t),−∞, a

)) · g (x;µ(t), σ2(t),−∞, a
)

dx

= c
(t)
2 +

∫ a

−∞
log
(
τ
(
x;µ, σ2

))
· g
(
x;µ(t), σ2(t),−∞, a

)
dx

= c
(t)
3 −

log
(
σ2
)

2
−
σ2(t) +

(
µ(t) − µ

)2
2σ2

+
σ2(t)

(
a+ µ(t) − 2µ

)
g
(
a;µ(t), σ2(t),−∞, a

)
2σ2

, (4.11)

where c
(t)
3 is a constant not depending on

(
µ, σ2

)
. By (4.10) and (4.11), the

surrogate function

Q
(
µ, σ2

∣∣µ(t), σ2(t)) = c
(t)
4 −

n
(

1 + s
(t)
1

)
2

log
(
σ2
)
−
ns

(t)
1

{
σ2(t) +

(
µ(t) − µ

)2}
2σ2

+
ns

(t)
1 σ2(t)

(
a+ µ(t) − 2µ

)
g
(
a;µ(t), σ2(t),−∞, a

)
2σ2

−
∑n

i=1(yi − µ)2

2σ2
, (4.12)
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minorizes `
(
µ, σ2

∣∣Yobs) at
(
µ, σ2

)
=
(
µ(t), σ2(t)

)
, where c

(t)
4 is a constant not

depending on
(
µ, σ2

)
. The MM iterations are explicitly given by

µ(t+1) =
ȳ + s

(t)
1

{
µ(t) − σ2(t)g

(
a;µ(t), σ2(t),−∞, a

)}
1 + s

(t)
1

,

σ2(t+1) =

∑n
i=1

(
yi − µ(t+1)

)2
+ ns

(t)
1 δ(t)

n(1 + s
(t)
1 )

,

(4.13)

where δ(t) =̂ σ2(t)+
(
µ(t)−µ(t+1)

)2−σ2(t)(a+µ(t)−2µ(t+1)
)
g
(
a;µ(t), σ2(t),−∞, a

)
.

4.4. Case II interval-censored data

Consider a failure time study that consists of n independent subjects from a

homogeneous population with survival function S(t). Let Ti denote the survival

time of interest for subject i, i = 1, . . . , n. Suppose that interval-censored data

on the Ti’s are observed and given by

Yobs = {(Li, Ri]; i = 1, . . . , n},

where Ti ∈ (Li, Ri]. Let
{
sj
}m
j=0

denote the unique ordered elements of {0, Li, Ri;
i = 1, . . . , n}. Take αij = I(sj ∈ (Li, Ri]) and pj = S

(
sj−1

)
−S

(
sj
)
, i = 1, . . . , n,

j = 1, . . . ,m. The log-likelihood function is

`(p|Yobs) =

n∑
i=1

log(S(Li)− S(Ri))

=

n∑
i=1

log

(
m∑
j=1

αijpj

)
=̂

n∑
i=1

`1i

(
m∑
j=1

αijpj

)
,

where p = (p1, . . . , pm)′,
∑m

j=1 pj = 1, pj > 0 (j = 1, . . . ,m) and `1i(·) = log(·)
is concave. By (3.3), we obtain the minorizing function

Q(p|p̂) =

m∑
j=1

{
n∑
i=1

αijp
(t)
j∑m

j=1 αijp
(t)
j

log

(∑m
j=1 αijp

(t)
j

p
(t)
j

pj

)}
∈ LDm(p). (4.14)

It is easy to see that the parameters in Q(p|p̂) are separated and the MM itera-

tions are explicitly given by

p
(t+1)
j =

∑n
i=1 αijp

(t)
j /

∑m
j=1 αijp

(t)
j∑m

j=1

∑n
i=1 αijp

(t)
j /

∑m
j=1 αijp

(t)
j

. (4.15)
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5. Convergence Properties

We establish the theoretical properties of the proposed AD algorithms such

as local convergence, global convergence, and convergence rate. The proofs are

relegated to the supplementary materials.

5.1. Local and global convergence

Let `(θ) be the function to maximize and Q
[
θ|θ(t)

]
be the minorizing func-

tion, where θ is the parameter vector and θ(t) is its current estimate. Denote

the maximizer of Q[·|θ] by M(θ). Following Proposition 15.3.1 and Proposition

15.4.3 of (Lange (2010)), we first give general and verifiable conditions for proving

the local and global convergence of an AD MM sequence.

Proposition 1. If the minorizing function Q
(
θ
∣∣θ(t)) is strictly concave, then the

proposed MM algorithm based on the AD approach is locally attracted to a local

optimum θ∞ at a linear rate equal to the spectral radius of I−d20Q(θ∞|θ∞)−1d2`

(θ∞).

The mapping functions θ(t+1) = M
(
θ(t)
)

of the examples in Section 4 are

differentiable and the surrogate functions in (4.4), (4.7) and (4.14) are strictly

concave. The local convergence results follow directly by Proposition 1.

Corollary 1. With an initial value θ(0), the sequences
{
θ(t)
}

generated by the

MM algorithms that update the estimates by (4.5), (4.8) and (4.15), respectively,

are convergent to a local optimal θ∞.

A function f : Rq → R
⋃
{−∞,+∞} is coercive if and only if f(x) → +∞

as ||x||2 → +∞, where || · ||2 denotes the standard Euclidean norm.

Proposition 2. If −`(θ) is coercive, the subset
{
θ ∈ Ω : `(θ) > `

(
θ(t)
)}

of

parameter domain Ω is compact and all stationary points of `(θ) are isolated. The

minorizing function Q
(
θ
∣∣θ(t)) constructed by the AD approach is strictly concave

and differentiable in both θ and θ(t). Then the MM sequence θ(t+1) = M
(
θ(t)
)

converges to the stationary point of `(θ). If `(θ) is strictly concave, then the

limiting point of
{
θ(t)
}

is the maximum.

We thus have the following result for the examples in Section 4.

Corollary 2. If the differentiability and coerciveness of −`(θ) hold, all stationary

points of −`(θ) are isolated and the subsets
{
θ ∈ Ω : `(θ) > `

(
θ(t)
)}

of parameter

domain Ω are compact, for examples 1, 2 and 4 in Section 4. Then the sequence
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of iterates in (4.5), (4.8) and (4.15) converge to the stationary points of `(θ),

respectively. If the strict concavity of `(θ) hold for the three examples, then the

sequence of iterates in (4.5), (4.8) and (4.15) converge to the maximum points of

`(θ), respectively.

5.2. Convergence rate

The convergence rate is usually used to characterize the convergence behavior

of an iterative algorithm. It is well known that the convergence rate of an MM or

EM algorithm is, in general, linear. Consider an MM or EM mapping function

M(θ) that maximizes the objective function `(θ) via the minorizing function

Q
(
θ|θ(t)

)
. If

{
θ(t)
}

converges to some optimal point θ∞ of `(θ) and M(θ) is

continuous, then θ∞ is a fixed point and θ∞ = M(θ∞). By Taylor expansion,

θ(t+1) − θ∞ ≈ dM(θ∞)
(
θ(t) − θ∞

)
, where dM(θ∞) is the differential of the

mapping M at θ∞ and often referred to as the matrix rate of convergence. The

spectral radius of dM(θ∞) is usually defined as the local convergence rate of

the sequence θ(t+1) = M
(
θ(t)
)
. (Mclachlan and Krishnan (2008)) and (Lange

(2010)) showed that

dM(θ∞) = I−
{
d2Q(θ∞|θ∞)

}−1
d2`(θ∞). (5.1)

The formula (5.1) is data-dependent and by the law of large numbers, can be

approximated by

E[dM(θ∞)] = I−
[
E

{
d2Q(θ∞|θ∞)

n

}]−1
E

{
d2`(θ∞)

n

}
. (5.2)

The spectral radius of E{dM(θ∞)} characterizes the local convergence rate of

the sequence. By (5.2), it relies on how well the expected curvature of the

objective function is approximated by that of the minorizing function. A smaller

convergence rate implies a faster convergence.

6. Numerical Experiments

We conducted numerical experiments to assess the practical performance of

the proposed AD MM algorithms for the examples in Section 4. The simulation

was coded in R and run in a desktop in Intel(R) Core(TM) i7-2600 with CPU

3.40 GHz, and the stopping criterion was set to be∣∣`(θ(t+1)
∣∣Y textitobs

)
− `
(
θ(t)
∣∣Yobs)∣∣∣∣`(θ(t)∣∣Yobs)∣∣+ 1

< 10−6.

The first three examples are parametric: the Poisson model for transmission
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Table 1. Simulation results for examples 1-3.

Settings No. of Par. Method K Time L MSE Rate
(q, n) PET
(20, 300) 20 MM 406 0.5186 −131.72 0.8658 0.9918
(20, 600) 20 MM 352 0.8774 −277.34 0.4068 0.9898
(40, 300) 40 MM 1106 3.6457 −137.72 2.5496 0.9977
(40, 600) 40 MM 795 3.9729 −296.91 1.0368 0.9965
(60, 300) 60 MM 3677 14.7528 −81.62 5.0082 0.9994
(60, 600) 60 MM 1622 12.3621 −197.98 2.8783 0.9985
(m,n) CZIGP
(50, 200) 151 MM 26 0.1378 5.2626×105 0.1522 0.8937

EM 60 0.8826 5.2626×105 0.2201 0.9368
(50, 1000) 151 MM 23 0.3877 2.6281×106 0.0491 0.8816

EM 59 2.4772 2.6281×106 0.0497 0.9133
(100, 200) 301 MM 26 0.2281 1.0563×106 0.1537 0.8966

EM 60 1.5357 1.0563×106 0.2199 0.9409
(100, 1000) 301 MM 23 0.6975 5.2552×106 0.0491 0.8826

EM 59 4.4465 5.2552×106 0.0445 0.9153
(200, 200) 601 MM 26 0.4098 2.1058×106 0.1562 0.8991

EM 60 2.8083 2.1058×106 0.2237 0.9451
(200, 1000) 601 MM 23 1.2729 1.0536×107 0.0487 0.8837

EM 59 8.0647 1.0536×107 0.0488 0.9178
(µ, σ2, n) LTN
(4, 4, 200) 2 MM 23 0.0006 −202.87 0.1774 0.6547

2 EM 47 0.0023 −202.87 0.1752 0.8510
(4, 4, 500) 2 MM 23 0.0009 −508.66 0.0704 0.6604

2 EM 47 0.0024 −508.66 0.0696 0.8548

Note: MSE = 1/R
∑R

r=1 ||θ̂ − θ0||2/q, where q indicates the number of parameters.

tomography (PET), the left-truncated normal distribution (LTN) and the mul-

tivariate compound zero-inflated generalized Poisson distribution (CZIGP). We

generated R replications from various parameter settings and compared the pro-

posed MM algorithms with the EM algorithms of (Lange and Carson (1984)),

(Fessler (2000)) and (Tian, et al. (2018)). The average values of iteration num-

bers (K), run times (Time) in seconds, the final objective values (L), the mean

squred error (MSE) and the convergence rate (Rate) via (5.2) are summarized in

Table 1. The MSE is defined as

1

R

R∑
r=1

∣∣∣∣θ̂ − θ0∣∣∣∣2
q

,

where θ0 denote the true value and q is the dimension of θ0.

In the PET example, the true coefficient vector π consists of q components.



980 TIAN, HUANG AND XU

Table 2. Simulation results for case II Interval-censored data.

Sample size Method K Time L MAE MSE
n = 50 MM 223 0.0712 −52.20 0.2318 0.0664

EM 957 0.5487 −52.19 0.2321 0.0664
n = 100 MM 321 0.3899 −114.64 0.1983 0.0539

EM 1514 3.4107 −114.63 0.1990 0.0540
n = 200 MM 441 3.8954 −241.86 0.1733 0.0476

EM 2428 37.5129 −241.83 0.1743 0.0476
n = 500 MM 604 27.2460 −633.63 0.1502 0.0423

EM 4303 380.1016 −633.46 0.1511 0.0423

Note: MAE = maxt∈(0,t0] |Ŝ(t)− S(t)|, MSE =
∫ t0
0

(Ŝ(t)− S(t))2dt.

The first q/2 components are 3 and the other q/2 components are −2. We chose

q ∈ {20, 40, 60} and n ∈ {300, 600}. The numerical results show that the Newton-

method based EM algorithms of (Lange and Carson (1984)) and (Fessler (2000))

break down in most of 500 replications since there are too many constraints

for the parameters. In the meantime, when they converge, the EM algorithms

are much slower since each iteration is computationally more expensive as the

number of parameters is large. In contrast, the AD MM algorithm works well in

these high-dimensional situations with the number of parameters varying from

20 to 60 for a samples of size of 300 to 600.

For the CZIGP example, the m-dimensional vectors φ,λ and θ were set to

be constantly 0.1, 9, and 0.7, respectively. We chose φ0 = 0.2, m ∈ {50, 100, 200}
and n ∈ {200, 1000}. For comparison, we derived the EM algorithm as well and

the details are in the supplementary materials. From Table 1, the number of

parameters varies from 151 to 601, in these high-dimensional situations, the AD

MM algorithm has a smaller convergence rate and is much faster than the EM

algorithm, requiring less than one sixth of the computation time.

For the LTN example, the true values of
(
µ, σ2

)
were set to be (4, 4). We

chose a = 1, and n = 200 or 500. The numerical results also show that the MM

algorithm has a smaller convergence rate than the EM algorithm and converges

much faster.

For the nonparametric example, case II interval-censored data, the number

of parameters is of the same magnitude as the sample size. The true survival

function was set to be S(t) = exp(−0.5t). The sample size varied from 50 to 500

and the number of parameters was up to 2,000. We report the the average values

of iteration numbers (K), run time (Time) in seconds, the final objective values

(L), the maximum absolute error (MAE) and the mean squred error (MSE) of
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Figure 1. The average run time of Case II Interval-censored Data via EM and MM
algorithms based on 500 replications for different sample sizes.

Figure 2. The real lines indicate the true survival function S(t), the dotted lines indicate
the estimated survival function Ŝ(t) via MM algorithm.
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MM algorithm and Sun (2006)’s EM algorithm for 500 replications, where the

MAE and MSE are defined as

MAE = max
t∈(0,t0]

∣∣Ŝ(t)− S(t)
∣∣,MSE =

∫ t0

0

{
Ŝ(t)− S(t)

}2
dt.

The simulation results are summarized in Table 2. The EM and MM al-

gorithms perform similarly well in estimation accuracy. Based on the iteration

number and run time, the MM algorithm converges much faster than the EM

algorithm. For illustration, we provide a plot in Figure 1 to show the significant

difference in the run time between the EM and MM algorithms with the sample

size varying from 25 to 500 with step length 25. We also give a plot in Figure 2

to show the difference between the true survival function S(t) and the estimated

Ŝ(t) via the MM algorithm for the different sample sizes.

It is of interest to theoretically compare the convergence rate constants of

different minorization schemes and will be pursued in our future work.

Supplementary Materials

The online supplementary material includes the proofs of Propositions 1 and

2, the derivation of the rate matrix for Examples 1-3 and some contents of the

old version.
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