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Abstract: Entropy quantifies uncertainty in a data set. Intuition tells us that miss-

ing values should increase the uncertainty in a data set, but the affect of missing

values on entropy has never been quantified. This paper develops formulae for

the entropy of incomplete normal data under different missingness mechanisms.

The results are compared to the fraction of missing information, which quanti-

fies uncertainty in parameter estimates due to missing values, to compare the two

measurements of uncertainty.
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1. Introduction

Entropy (Shannon (1948), Cover and Thomas (2006)) is a distribution-based

measure of uncertainty in a model, that can quantify the uncertainty in a data

set. Missing values are frequently found in data sets, and it makes sense that

holes in the data would affect - and, most likely, increase - the uncertainty in

the data set. However, the interplay between missing values and entropy has not

been quantified.

Multiple imputation (MI) (Rubin (1987), Schafer (1999), Harel and Zhou

(2007)) is one method for addressing missing values. MI creates multiple com-

plete data sets, which are then individually analyzed. Estimates of parameters

of interest are obtained and combined to form final estimates of the parameters.

These final estimates take into account the variability in the data and the fact

that the data is incomplete. MI also quantifies the fraction of missing informa-

tion (FMI) (Rubin (1987)), which measures the information lost to a parameter

estimate due to the incomplete data. It is clear that FMI and entropy both

measure a type of uncertainty, albeit from different sources. It is of interest to

compare the statistics to each other over varying levels of missingness, to identify

any relationship between the two. Such a comparison is a first in the literature.

https://doi.org/10.5705/ss.202016.0073


552 LAROSE, DEY AND HAREL

We need some notation. A boldface capital letter (e.g. Y) denotes a matrix.

A capital letter without boldface (e.g. Y1) denotes a random variable. A boldface

lower case letter (e.g. y1) denotes a vector. A lower case letter without boldface

(e.g. y11) denotes a scalar quantity.

Sections 2 and 3 review entropy and missing data. Sections 4 and 5 debut

our work on incomplete normal data entropy theorems for the MCAR and MAR

missingness mechanisms, respectively. Section 6 displays the results of applying

our work to simulated data. Section 7 summarizes our findings.

2. Entropy

Entropy is a numeric description of the randomness inherent in a stochastic

system. It utilizes the probability mass function (pmf) or probability density

function (pdf) of the random variable in question. Let random variable A be

discrete with support SA. The entropy of A is

−
∑
SA

p(A) ln(p(A)). (2.1)

Similarly, let random variable B be continuous with support SB. The entropy of

B is

−
∫
SB

f(B) ln(f(B)). (2.2)

When calculating the entropy of a data set, it is necessary to consider the

entropy of each individual record. Thus, the random variables in the previous

definitions denote the records in a data set. If we know that a single record has

a bivariate normal distribution, the entropy of that record is the entropy of the

bivariate normal distribution.

To calculate the entropy of all records in a data set, we must consider whether

the records are independent and identically distributed. If the records are inde-

pendent and identically distributed, the entropy of the data set is the entropy of

one record multiplied by the number of records. If the records are independent

but not identically distributed, the entropy of the data set is the sum of the

entropy of the records.

3. Missing Data

There are three mechanisms that describe the possible patterns of missing

values (Rubin (1987), Rubin (1976)): Missing Completely At Random (MCAR),

Missing At Random (MAR), and Missing Not At Random (MNAR). MCAR indi-
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cates missingness is independent of any data values, MAR indicates missingness

may depend on observed values, and MNAR indicates missingness may depend

on unobserved values. Since this paper documents the first look at entropy of in-

complete data, and MNAR requires additional considerations above and beyond

that of MCAR and MAR, we focus on the MCAR and MAR mechanisms.

3.1. Missing data notation

We describe the missingness in a data set Y, with observed and missing

elements Yobs and Ymis, using a corresponding matrix R. In R, the elements

are equal to one or zero if the element in Y is observed or missing, respectively.

The data matrix is described using the model P (Y|θ), and the missingness matrix

is described using the model P (R|φ,Yobs,Ymis).

The model for R may be simplified under MCAR and MAR mechanisms.

If the missing values are MCAR, the model for R is P (R|φ). Similarly, if the

missing values are MAR, the model for R is P (R|φ,Yobs).

3.2. Ignorability

Estimating parameters from incomplete data requires consideration of the

joint distribution of Y and R, which can be challenging. However, if MCAR or

MAR mechanisms underly the missing values, and the parameters that govern the

data are distinct from the parameters that govern the missingness mechanism,

the model for R may be ignored (Schafer (1999), Rubin (1976)). Ignorability

allows us to let P (Yobs,R|θ, φ) = P (Yobs|θ) × P (R|Yobs, φ). Since the only

parameter of interest is θ, we may then consider only P (Yobs|θ). Ignorability is

assumed throughout this work.

One interesting point concerning ignorability is whether it applies to en-

tropy estimation. While ignorability holds when maximum likelihood estimates

of interest (Little and Rubin (2002), Schafer (1999)), the particular details of R

directly affect entropy calculation. This quandary and its solution need to be

detailed to more thoroughly quantify how incomplete data affects different kinds

of analyses.

3.3. Multiple imputation

Multiple imputation allows researchers to address incomplete data sets by

simulating many possible values to complete the data, analyzing the resulting

complete data sets, and combining the point estimates and standard errors of

the analyses into a single result.
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In this paper, our focus is on normally distributed data. The algorithm to

impute missing values for normally distributed data is well established. The

process: Norm (Schafer (2008)), employs the EM algorithm (Dempster, Laird

and Rubin (1997)) and data augmentation to generate sets of replacement data

values. Sets are denoted m = 1, . . . ,M . While imputing normal data typically

requires only five to ten imputations (Rubin (1987), Schafer (1997)), more are

necessary when imputing in order to estimate FMI (Harel (2007), Schafer (1997)).

This will be addressed in the simulation sections.

Once multiple data sets are created, the originally-intended analyses can take

place. Let the parameter of interest be Q. Each analysis begets a point estimate

Q̂m, with corresponding variance Ûm. We consider several quantities of interest:

estimates of entropy, estimate of a variable mean, and estimate of a vector of

regression coefficients.

Rubin’s Rules (Rubin (1987)) are used to combine the point estimates and

variables into a single result. The combination rules are

Q̄ =
1

M

m∑
i=1

Q̂m, Ū =
1

M

m∑
i=1

Ûm,

B =
1

M − 1

m∑
i=1

(
Q̂m − Q̄

)2
, T = Ū +

(
1 +

1

M

)
B.

The variable Q̄ is the final estimate of parameter Q. The value of T is the final

variance estimate of Q.

3.4. Fraction of missing information

The fraction of missing information (FMI) measures the information in a

parameter estimate that is lost due to missing values, relative to the information

in the estimate if we had complete data (Rubin (1987)). FMI can be used to

measure how the missing values affect the uncertainty in a point estimate (Harel

(2007)). The estimate of FMI, λ̂, is

λ̂ =
r + 2/(ν + 3)

r + 1
, (3.1)

where r = (1 +m−1)B/Ū, ν = (m− 1)(1 + r−1)2, and B and Ū are from Rubin’s

Rules.
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4. Entropy under MCAR

The goal of this paper is to illustrate the behavior of entropy and compare

it to the behavior of FMI. In order to do so, we must first calculate the entropy

of an incomplete data set. We begin by developing a formula for the entropy of

bivariate normal data entropy with MCAR missingness.

Let Yn×2 = (y1,y2) be jointly distributed N2(θ), with θ = (µ,Σ). MCAR

missingness is imposed on y2. Regardless of the missingness pattern, the records

can be rearranged so that the first n1 values of y2 are observed, and the remaining

n1 + 1 to n values are missing. The MCAR mechanism itself is Rn×2 = (r1, r2),

where the first n1 values of r2 equal 1 and the remainder equal 0. Thus, only r2
is random, while r1 is a constant vector of zeros. Under the MCAR assumption,

the values of r2 equal one with equal probability, which allows us to model the

behavior of r2 using a Bernoulli(φ) distribution, where φ is the probability of a

single observation in r2 being equal to one. When we consider the data and its

missingness together, the notation is Yinc = (Y, r2) = (y1,y2, r2).

The records in Yinc are independently and identically distributed. Thus, the

entropy of the entire data set is the entropy of a single record times the sample

size n. What follows is Theorem 1, whose proof is given in the supplementary

materials.

Theorem 1. For bivariate normal data Y with MCAR missingness Bernoulli(φ)

in y2, the entropy is

H(Yinc) = −n
2

ln
(
2πeσ21

)
+
n

2
ln
(
2πeσ22

(
1− ρ2

))
−n(1−φ) ln(1−φ)−nφ ln(φ),

(4.1)

where ln(e) = 1.

By definition, we know the entropy of the complete, bivariate normal data

Ycom to be H(Ycom) = −(n/2) ln(2πeσ21) + (n/2) ln(2πeσ22(1 − ρ2)); and the

entropy of the MCAR missingness mechanism r2 to be H(r2) = −n(1−φ) ln(1−
φ)− nφ ln(φ). These facts then give us

H(Ycom) = H(Yinc)−H(r2),

which suggests that researchers can work backwards from the entropy of a com-

plete data set to obtain the value of entropy if there were no missing values,

assuming the MCAR missingness is known.

4.1. Limiting behavior of the estimate of entropy of incomplete data

To observe the limiting behavior of Equation (4.1) as the percent of missing
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values goes to zero, we calculate the limit of H(r2) as φ approaches zero. The

proof is given in the supplementary material.

Theorem 2. For bivariate normal data Y with MCAR missingness r2 ∼ Berno−
ulli(φ) in y2, limφ→0H(r2) = 0.

Thus, the entropy of incomplete MCAR data converges to the complete data

entropy as the percent of missing values decreases.

5. Entropy under MAR

We now address the MAR missingness mechanism. In our study, values of

y2 are missing based on the values of y1. Let r2i ∼ f(r2i|y1i) = Bernoulli(φ∗i ),

where φ∗i = eβ0+yo1i/(1 + eβ0+yo1i) and β0 is a parameter. Here yo1i is a fixed

realization and thus φ∗1 is not random, φ∗1 is a parameter. Thus, the probability

of y2 being observed increases as the corresponding value of y1i increases. What

follows is Theorem 3, whose proof is given in the supplementary materials.

Theorem 3. For bivariate normal data Y with MAR Bernoulli(φ∗i ) missingness,

where φ∗i = eβ0+yo1i/(1 + eβ0+yo1i), the entropy is

H(Yinc) =
n

2
ln
(
2πeσ21

)
+
n

2
ln
(
2πeσ22

(
1− ρ2

))
−

n∑
i=1

{(1− φ∗) ln (1− φ∗)} −
n∑
i=1

{φ∗ ln (φ∗)} . (5.1)

Equation (5.1) can be rewritten as

H(Ycom) = H(Yinc)−H(r2),

which suggests completely observed entropy can be obtained if incomplete data

entropy and the missingness mechanism are known.

5.1. Limiting behavior of bivariate estimate

We determine the limit of Equation (5.1) as the percent of missing values

goes to zero. The proof is in the supplementary material.

Theorem 4. For bivariate normal data Y with MAR missingness r2 ∼ Bernou−
lli(φ∗), where φ∗ = eβ0+yo1i/(1 + eβ0+yo1i), and yoi1 is fixed, then

lim
φ∗→0

[
n∑
i=1

{(1− φ∗) ln(1− φ∗)} −
n∑
i=1

{φ∗ ln(φ∗)}

]
= 0.

In this, φ∗ does not depend on i, since yoi1 is a fixed realization.
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Thus, the incomplete data entropy formula approaches the complete data

case as the percent of missing values goes to zero.

6. Simulations

There are two sets to our simulation studies: MCAR missingness and MAR

missingness. Within each set, there are two research topics. The first compares

fully-observed data entropy, complete case data entropy, and the new incomplete

data entropy via estimates, biases, and standard errors. The second compares

the new incomplete data entropy to the fraction of missing information when

estimating the mean of the incomplete variable y2, and when estimating the

regression coefficients from regressing y2 on y1.

The simulations used MI to complete the incomplete data sets. Here, we must

ensure that the assumptions of Rubin’s Rules are met before we combine point

estimates. To this end, we looked at nine different runs of the MCAR (Figure

1) and MAR (Figure 2) simulations. Clearly, the entropy values are close to the

45-degree line in the normal QQ plots, and thus we can apply Rubin’s combining

rules to the point estimates.

6.1. MCAR entropy

For each of the 250 repetitions, a thousand observations were generated from

N2

(
µ =

(
0

5

)
,Σ =

(
1 0.5

0.5 3

))
. The r2 values were simulated fromBernoulli(φ)

in such a way to calculate 50%, 25%, 10%, 5%, 2.5%, and 1% missing values.

The small rates of missing observations are to allow us to identify the behavior

of our estimator as the percent of missing values approaches zero, to complement

the mathematical derivations in previous sections.

6.1.1. How to estimate MCAR entropy

We need to identify when is it appropriate to estimate the entropy of the

missingness mechanism when estimating entropy for fully observed, complete

case, and imputed data entropy.

First, we address fully observed data. Completely observed data sets have

no incomplete records, and thus there is no need to consider the missingness

mechanism. Fully observed normal data entropy is therefore estimated by

Ĥ(Yf ) =
nf
2

ln
(
2πes21f

)
+
nf
2

ln
(
2πes22f

(
1− c2f

))
,

where σ and ρ have been estimated with s, the sample standard deviation, and
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Figure 1. Normal QQ plot of a hundred incomplete MCAR entropy estimates, all rea-
sonably close to the 45-degree line.

c, the sample correlation. The subscript f denotes estimates come from the fully

observed data. Here nf = n, the original sample size.

Second, we address complete case data. Complete case analyses involves

records with no missing values, since all incomplete records have been removed.

Therefore, we again do not consider the missingness mechanism. The complete

case entropy is estimated by

Ĥ(Ycca) =
ncca

2
ln
(
2πes21,cca

)
+
ncca

2
ln
(
2πes22cca

(
1− c2cca

))
,

where the subscript cca denotes estimates come from the complete case data.

Note that ncca is the sample size of the complete case data.
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Figure 2. Normal QQ plot of a hundred incomplete MAR entropy estimates, all reason-
ably close to the 45-degree line.

Third, we address incomplete data. Estimating the entropy of incomplete

data requires multiple steps. We begin by imputing the missing data using the R

package norm (Schafer (2008)), which supplies multiple data sets. The entropy

of each data set is obtained using

Ĥ (Ymi
) =

nm
2

ln
(
2πes21m

)
+
nm
2

ln
(
2πes22m

(
1− c2m

))
+ nm (1− pm) ln (1− pm)− nmpm ln(pm), (6.1)

where the subscript mi denotes estimates come from the mth imputed data set,

and nm = nf = n, the original sample size. Rubin’s Rules give the final estimate

of entropy, Ĥ(Ym).



560 LAROSE, DEY AND HAREL

Table 1. Bivariate MCAR results. Imputations: 100. λ: FMI for estimating µ2. ∆(m, f)
= H(Ym) − H(Yf ). ∆(cca, f) = H(Ycca) − H(Yf ). Standard errors of the point
estimates are in parentheses.

%Mis Ĥ(Yf ) Ĥ(Ym) Ĥ(Ycca) λµ2 λβ0 λβ1 ∆(m, f) ∆(cca, f)
Ĥ(Ycca)

Ĥ(Yf )

Ĥ(Ym)

Ĥ(Yf )
50 3,343.62 4,067.89 1,666.61 0.54 0.54 0.32 724.27 −1,677.01 0.50 1.22

(30.73) (38.07) (57.29) (0.04) (0.04) (0.03) (23.66) (57.44) (0.02) (0.01)
25 3,342.17 3,922.31 2,504.03 0.33 0.34 0.20 580.15 −838.14 0.75 1.17

(29.84) (35.92) (53.33) (0.03) (0.03) (0.03) (21.38) (48.15) (0.01) (0.01)
10 3,340.88 3,672.64 3,008.40 0.16 0.17 0.09 331.76 −332.48 0.90 1.10

(28.95) (39.26) (38.22) (0.03) (0.03) (0.02) (22.86) (32.95) (0.01) (0.01)
5 3,340.94 3,542.86 3,175.64 0.08 0.09 0.05 201.92 −165.30 0.95 1.06

(32.04) (38.66) (36.06) (0.02) (0.02) (0.01) (20.19) (21.72) (0.01) (0.01)
1 3,344.74 3,401.74 3,310.66 0.02 0.02 0.01 56.99 −34.08 0.99 1.02

(33.19) (35.76) (34.73) (0.01) (0.01) (0.01) (14.56) (10.83) (0.00) (0.00)

6.1.2. Results

Table 1 shows the entropy of completely observed data, Ĥ(Yf ); the entropy

of complete case data, Ĥ(Ycca); the average entropy of imputed data, Ĥ(Ym);

the FMI for estimating µ2, the mean of y2 (λµ2
); the FMI for estimating the beta

coefficients for regressing y2 on y1 (λβ0
and λβ1

, respectively); and the differences

and ratios between Ĥ(Ym) and Ĥ(Yf ) and between Ĥ(Ycca) and Ĥ(Yf ). For

each value of Percent Missing (%Mis), the first row is the average of all 250

repetitions, and the second row is the standard deviation of the 250 repetitions.

MI estimate of entropy overestimates the entropy of the full data set (see

∆(m, f)), but only by at most 20% (see Ĥ(Ym)/Ĥ(Yf )). The CCA estimate of

entropy underestimates the entropy of the full data set (see ∆(cca, f)); at its low-

est point it is half the value of fully observed data entropy (see Ĥ(Ycca)/Ĥ(Yf )).

This is most likely due to the large difference in sample sizes between the full

data and complete-case data.

The tabulated values are graphically compared in Figure 3. The horizontal

line shows the theoretical value of fully observed bivariate normal entropy under

the parameters we have specified. The black line represents the simulated esti-

mate of the fully observed data entropy. As expected, the estimate hovers around

the theoretical value. The dark grey line represents the new MI-based estimate

of entropy, which overestimates the entropy of the fully observed data. The light

grey line represents the CCA estimate of entropy, which underestimates the fully

observed entropy estimate. The bars around each point estimate indicate ± one

standard deviation. The dashed line has length equal to Ĥ(r2), the entropy of

the missingness mechanism.
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Figure 3. MCAR case. Horizontal line: theoretical fully observed entropy. Center circles:
estimated fully observed entropy. Dark grey: MI-based estimated entropy. Light grey:
CCA estimated entropy. Dotted lines: Ĥ(R). Bars: ± one standard deviation.

The fact that the MI-based estimate overestimates the fully observed data

entropy is expected, since it has been shown that additional uncertainty is intro-

duced when values are missing. In addition, the MI-based estimate overestimates

the fully observed entropy by almost the exact value of Ĥ(r2), as illustrated by

the green bars. This supports the initial idea that r2 is important in the estimate

of incomplete data entropy, whereas r2 can be ignored (under certain conditions)

when estimating other quantities (e.g. sample mean).

The result that CCA estimate increasingly underestimates the entropy of the

full data set as more data is missing is expected, as more missingness means a

smaller complete case data set, and thus less additive entropy. However, compar-

ison of CCA and MI estimates imply two things. First, the CCA error bars are

wider and thus the estimate is less reliable. Second, the CCA estimate decreases

when common sense (and our new formulae) says that it should increase, making

the CCA estimate for entropy a misleading estimate.

Figure 4 compares FMI when estimating µ2 and FMI when estimating β0
and β1 from regressing y2 on y1 to the average of the MI estimate of entropy,

while comparing both to the simulated estimate of fully observed entropy. The

graph suggests a relationship between the imputed estimate of entropy and the

fraction of missing information, and a relationship between the imputed estimate
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Figure 4. MCAR case. Black with circles: estimated fully observed entropy. Black with
triangles: FMI for estimating µ2. Grey with circles: MI-based estimated entropy. Dark
and light grey with triangles: FMI for estimating β0 and β1 from regressing y2 on y1.

of entropy and the fraction of missing information for estimating β0, especially

for the case in which Percent Observed is above 40%, with possible correlation

to the β1 case as well.

6.2. MAR case

The MAR missingness mechanism is Bernoulli(φ∗) missingness, where φ∗ =

eβ0+yo1i/(1 + eβ0+yo1i), for fixed yoi1. Using the MAR mechanism makes the records

of the data set an independent but not identically distributed sample of (y1,y2,

r2). Values of β0 were set such that the average percent missing for each case

was about 50%, 30%, 7%, 5%, 2%, and 0.5%.

6.2.1. How to estimate MAR entropy

As the records are no longer iid, entropy must be estimated using a new

formula:

Ĥ(Ymj
) =

nm
2

ln
(
2πes21m

)
+
nm
2

ln
(
2πes22m

(
1− c2m

))
−

n∑
i=1

{(
1− p∗i,m

)
ln
(
1− p∗i,m

)}
−

n∑
i=1

{
p∗i,m ln

(
p∗i,m

)}
, (6.2)

where the subscript mj denotes estimates come from the mth imputed data set,
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Table 2. Bivariate MAR results. Imputations: 100. λ: FMI estimating µ2. ∆(m, f) =
H(Ym)−H(Yf ). ∆(cca, f) = H(Ycca)−H(Yf ). Standard errors of the point estimates
are in parentheses.

PctMis Ĥ(Yf ) Ĥ(Ym) Ĥ(Ycca) λµ2
λβ0

λβ1
∆(m, f) ∆(cca, f)

Ĥ(Ycca)

Ĥ(Yf )

Ĥ(Ym)

Ĥ(Yf )
50 3,343.50 3,369.03 1,620.15 0.61 0.62 0.40 25.53 −1,723.34 0.48 1.01

(31.60) (39.12) (53.08) (0.04) (0.04) (0.04) (22.50) (53.43) (0.02) (0.01)
30 3,341.72 3,443.38 2,279.42 0.41 0.42 0.33 101.66 −1,062.30 0.68 1.03

(33.48) (35.35) (58.59) (0.04) (0.04) (0.04) (14.05) (58.15) (0.02) (0.00)
7 3,342.51 3,442.54 3,085.10 0.12 0.13 0.14 100.03 −257.42 0.92 1.03

(29.98) (30.87) (39.10) (0.02) (0.02) (0.03) (6.72) (29.93) (0.01) (0.00)
4 3,342.61 3,424.16 3,173.37 0.08 0.08 0.10 81.55 −169.24 0.95 1.02

(31.02) (31.35) (36.73) (0.02) (0.02) (0.03) (5.30) (23.62) (0.01) (0.00)
2 3,341.17 3,388.55 3,275.69 0.03 0.03 0.05 47.38 −65.48 0.98 1.01

(28.94) (29.24) (32.18) (0.01) (0.01) (0.02) (3.11) (17.42) (0.01) (0.00)
1 3,340.46 3,364.36 3,316.36 0.01 0.01 0.02 23.89 −24.10 0.99 1.01

(33.09) (33.34) (34.51) (0.01) (0.01) (0.01) (2.23) (10.82) (0.00) (0.00)

and the subscript i,m denotes an estimate from the ith record in an imputed

data set. Here nm = nf = n the original sample size. Rubin’s Rules supplies the

the final estimate of entropy, Ĥ(Ym).

6.2.2. Results

Table 2 contains the results for the MAR case with the same structure as

Table 1. Figure 5 shows the same information as Figure 3, now for the MAR

case. The MI-based estimate overestimates the fully observed data entropy, but

to a lesser degree. The CCA estimate still underestimates the entropy of the full

data set, and the bars around the CCA estimates are still larger than the bars

around the MI-based estimate.

Figure 6 compares the gap between the MI-based estimate of entropy and

the fully observed data entropy to the value of Ĥ(r2). It is clear that the value

of Ĥ(r2|y1) exceeds the difference between Ĥ(Yf ) and Ĥ(Ym), possibly due to

the fact that Ĥ(r2|y1) takes into account the entropy of y1 in addition to the

entropy of r2, since the values of r2 are determined by values of y1.

Similar to the MCAR case, Figure 7 compares FMI when estimating µ2,

FMI when estimating β0, and the estimate of fully observed entropy. While the

MCAR case shows a similarity between the MI entropy estimates and FMI, no

similar pattern exists for the MAR case. This may be, as before, because the

value for the MI entropy estimate considers the entropy of y1.
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Figure 5. MAR case. Horizontal line: theoretical fully observed entropy. Center circles:
estimated fully observed entropy. Dark grey: MI-based estimated entropy. Light grey:
CCA estimated entropy. Bars: ± one standard deviation.

Figure 6. MAR case. Horizontal line: theoretical fully observed entropy. Center circles:
estimated fully observed entropy. Dark grey: MI-based estimated entropy. Dashed line:
Ĥ(R).
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Figure 7. MAR case. Black with circles: fully observed entropy. Black with triangles:
FMI estimating µ̄2. Grey with circles: entropy of incomplete data. Dark and light grey
with triangles: FMI for estimating β0 and β1. Bars: ± one standard deviation.

7. Conclusions

This paper documents the first of many strides into the realm of entropy of

incomplete data. Our work focused on the bivariate normal case, which allows

this new work to begin by considering a well-behaved data structure.

The natural extension of the work presented here is the p-variate normal

data case. Work is already well progressed, with theorems established for the

MCAR and MAR cases. The limiting behaviors of these estimators, and related

simulation studies, are now underway.

Supplementary Materials

Supplementary materials contain the proofs of Theorems 1 through 4.
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