# QUADRATIC DISCRIMINANT ANALYSIS FOR HIGH-DIMENSIONAL DATA

Yilei Wu, Yingli Qin and Mu Zhu

University of Waterloo

*Abstract:* High-dimensional classification is an important and challenging statistical problem. We develop a set of quadratic discriminant rules by simplifying the structure of the covariance matrices instead of imposing sparsity assumptions — either on the covariance matrices themselves (or their inverses), or on the standardized between-class distance. Under moderate conditions on the population covariance matrices, our quadratic discriminant rules enjoy good asymptotic properties. Computationally, they are easy to implement and do not require large-scale mathematical programming. Numerically, they perform well in finite dimensions and with finite sample sizes. We present analyses of several classic micro-array data sets.

*Key words and phrases:* Asymptotic misclassification probability, classification, covariance matrix estimate, normality, unequal covariance matrices

### 1. Introduction

In this paper, we study discriminant analysis in high dimensions. Suppose a random vector  $\mathbf{x} \in \mathbb{R}^p$ , where p is very large, comes from either class 1 ( $\mathcal{C}_1$ ) or class 2 ( $\mathcal{C}_2$ ). On the training data, the class memberships of these vectors are labelled. The goal is to classify an unlabelled observation using a *discriminant rule* that is learned from the training data. To focus on the main issues, we shall assume that the unconditional prior probabilities of both classes are equal to 1/2; discriminant rules mentioned in this paper can be modified simply by adding a constant to correct for class imbalance.

For i = 1, 2, let  $\mu_i$  and  $\Sigma_i$  be the class mean and class covariance matrix, respectively. To determine the class label of **x**, Fisher's *linear* discriminant rule (see, e.g., Anderson (1958)) that assumes  $\Sigma_1 = \Sigma_2 = \Sigma$ , classifies **x** to class 1 if

$$(\mathbf{x} - \boldsymbol{\mu})' \Sigma^{-1} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2) \ge 0, \tag{1.1}$$

where  $\boldsymbol{\mu} = (\boldsymbol{\mu}_1 + \boldsymbol{\mu}_1)/2$ , and to class 2 otherwise. If the two covariance matrices cannot be taken to be identical, then the *quadratic* discriminant rule can be used, which classifies **x** to class 1 if

WU, QIN AND ZHU

$$\ln\left(\frac{|\Sigma_1|}{|\Sigma_2|}\right) + (\mathbf{x} - \boldsymbol{\mu}_1)' \Sigma_1^{-1} (\mathbf{x} - \boldsymbol{\mu}_1) - (\mathbf{x} - \boldsymbol{\mu}_2)' \Sigma_2^{-1} (\mathbf{x} - \boldsymbol{\mu}_2) \le 0, \qquad (1.2)$$

and to class 2 otherwise. Equation (1.2) is also the Bayes rule under the assumption that  $\mathbf{x} \sim N(\boldsymbol{\mu}_i, \Sigma_i)$  if  $\mathbf{x} \in \mathcal{C}_i$ , and so is equation (1.1) when  $\Sigma_1 = \Sigma_2$ .

In practice, the parameters  $\mu_i$  and  $\Sigma_i$  are unknown and need to be estimated from training data. Let  $\hat{\mu}_i$  and  $\hat{\Sigma}_i$  be the sample mean and sample covariance matrix of class *i*. They are conventionally used as estimators of  $\mu_i$  and  $\Sigma_i$ . The common covariance matrix in (1.1) is estimated by the pooled sample covariance matrix,  $\hat{\Sigma} = (n_1 + n_2 - 2)^{-1} \{ (n_1 - 1)\hat{\Sigma}_1 + (n_2 - 1)\hat{\Sigma}_2 \}$ . When the dimension is high and the number of covariates *p* is close to or larger than the number of observations *n*, the sample covariance matrix is well-known to be a poor estimate of its population counterpart; it is often singular and cannot be directly plugged into the discriminant rules.

### 1.1. Linear discriminant analysis (LDA)

In recent years, many methods have been proposed in the literature for performing linear discriminant analysis (LDA) in high dimensions. For example, one can ignore the covariance terms and use just a diagonal matrix in (1.1) — these are referred to as "independence rules". Bickel and Levina (2004) showed that, if one simply uses the Moore-Penrose inverse of  $\hat{\Sigma}$ , then the misclassification error of (1.1) converges to 1/2 as  $p/n \to \infty$ , whereas the independence rule is at least as good. These independence rules can, and often should, be applied in conjunction with feature selection. For instance, Fan and Fan (2008) pointed out that they can perform poorly by themselves due to noise accumulation in estimating the population centroids,  $\mu_1$  and  $\mu_2$ , in high-dimensional spaces. They proposed to select a subset of important features by performing two-sample t-tests before applying the independence rule. Based on similar considerations, Tibshirani et al. (2002) shrunk class centroids toward the overall center of the data in order to reduce noise, and also estimated  $\Sigma$  with a diagonal matrix.

Another popular approach in the literature is to impose sparsity assumptions. For example, Shao et al. (2011) assumed both  $\Sigma$  and the mean difference vector,  $\mu_1 - \mu_2$ , to be sparse, and estimated them by thresholding. Fan, Jin and Yao (2013) performed variable selection by "innovated thresholding" and "higher criticism thresholding" before carrying out LDA with the selected set of features. Hao, Dong and Fan (2015) rotated the data to create sparsity prior to applying existent classifiers. Witten and Tibshirani (2011) applied a sparsity

penalty in seeking out a projection direction that maximized the between-class variance. For LDA, the (pooled) covariance matrix  $\Sigma$  affects classification only through the discriminant direction,  $\Sigma^{-1}(\mu_1 - \mu_2)$ . Thus, various methods have been proposed to avoid the estimation of  $\Sigma$  itself — e.g., Fan, Feng and Tong (2012) solved for the discriminant direction directly by minimizing the misclassification rate under a sparsity constraint; Mai, Zou and Yuan (2012) found the direction by solving a penalized linear regression problem; see also Cai and Liu (2011).

### 1.2. Quadratic discriminant analysis (QDA)

The LDA rule (1.1) assumes that two classes share the same covariance matrix, which is challenging to test in high dimensions (see, e.g.,Li and Chen (2012), Cai, Liu and Xia (2013), and many others). If the null hypothesis,  $H_0: \Sigma_1 = \Sigma_2$ , cannot be accepted for sound reasons, it may become necessary to consider quadratic discriminant analysis (QDA). However, because there are many more unknown parameters to estimate, QDA is much more challenging than LDA, especially in high dimensions, and much less work has been done about it.

As in the case of LDA, it is also natural to use just diagonal covariance matrices or to impose some sparsity conditions in order to regularize QDA. For example, diagonal quadratic discriminant analysis (DQDA) was studied by Dudoit, Fridlyand and Speed (2002), whereas Li and Shao (2015) suggested a sparse QDA (SQDA) procedure by thresholding not only the mean difference vector  $\hat{\mu}_1 - \hat{\mu}_2$ , but also the covariance matrices  $\hat{\Sigma}_i$  and their difference  $\hat{\Sigma}_1 - \hat{\Sigma}_2$ . A more recent work on sparse QDA rule is based on the dimension reduction method, QUADRO, proposed by Fan et al. (2015). QUADRO constructs a quadratic projection  $f(\mathbf{x}) = \mathbf{x}'\Omega\mathbf{x} - 2\boldsymbol{\delta}'\mathbf{x}$  by maximizing the Rayleigh quotient of f, the ratio of the variance explained by the class label to the remaining variance. The parameters,  $\Omega$  and  $\boldsymbol{\delta}$ , are encouraged to be sparse by  $\ell_1$  penalties. The estimated projection can then be used for classification. For example, the class label can be decided by the sign of  $\mathbf{x}'\hat{\Omega}\mathbf{x} - 2\hat{\boldsymbol{\delta}'}\mathbf{x} - c$  for some thresholding constant c.

Friedman (1989) proposed regularized discriminant analysis (RDA) as a way to compromise between LDA and QDA. In particular, his proposal shrinks the sample class covariance matrix  $\hat{\Sigma}_i$  twice — once toward the pooled sample covariance matrix,  $\hat{\Sigma}$ , and once again toward the diagonal matrix,  $p^{-1}tr(\hat{\Sigma}_i)I_p$ , where  $tr(\cdot)$  denotes the trace of a matrix and  $I_p$  is  $p \times p$  identity matrix.

We refer to the quantity,  $p^{-1}tr(\Sigma_i)I_p$ , simply as the trace estimator. It has

### WU, QIN AND ZHU

been used in the literature for high-dimensional hypothesis testing and classification problems, and is closely related to our methods. One reason why the trace estimator is useful is that, under some mild conditions,  $p^{-1}tr(\hat{\Sigma}_i)$  can be shown to be a consistent estimator of  $p^{-1}tr(\Sigma_i)$  even as  $p \to \infty$ .

For classification, Friedman's RDA clearly uses the trace estimator, as it shrinks the sample covariance matrix  $\hat{\Sigma}_i$  toward both the pooled covariance estimator  $\hat{\Sigma}$  and the trace estimator. Shrinking toward the trace estimator is one way to overcome the well-known bias in the sample covariance matrix that inflates large eigenvalues and deflates smaller ones. The two directions of shrinkage are controlled by separate tuning parameters,  $\lambda$  and  $\gamma$ , with

$$\hat{\Sigma}_i(\lambda) = \frac{(1-\lambda)(n_i-1)\hat{\Sigma}_i + \lambda(n_1+n_2-2)\hat{\Sigma}}{(1-\lambda)(n_i-1) + \lambda(n_1+n_2-2)},$$
$$\hat{\Sigma}_i(\lambda,\gamma) = (1-\gamma)\hat{\Sigma}_i(\lambda) + \gamma \left\{ p^{-1}tr(\hat{\Sigma}_i(\lambda))I_p \right\}.$$

There are four extreme cases. When  $\lambda = 0$  and  $\gamma = 0$ , RDA reduces to vanilla QDA. When  $\lambda = 1$  and  $\gamma = 0$ , RDA amounts to LDA. When  $\lambda = 1$  and  $\gamma = 1$ , RDA is equivalent to replacing  $\hat{\Sigma}$  in LDA with just the identity matrix — in this case, classification is based on comparing Euclidean distances  $\|\mathbf{x} - \hat{\boldsymbol{\mu}}_i\|^2$  instead of Mahalanobis distances  $(\mathbf{x} - \hat{\boldsymbol{\mu}}_i)'\hat{\Sigma}^{-1}(\mathbf{x} - \hat{\boldsymbol{\mu}}_i)$ , for i = 1, 2. When  $\lambda = 0$  and  $\gamma = 1$ , RDA is equivalent to replacing  $\hat{\Sigma}_i$  in the QDA rule (1.2) with the trace estimator,  $p^{-1}tr(\hat{\Sigma}_i)I_p$ .

For hypothesis testing, Bai and Saranadasa (1996) proposed a test statistic that replaces the pooled sample covariance matrix  $\hat{\Sigma}$  in Hotelling's two-sample  $T^2$ -statistic with the identity matrix  $I_p$  and uses just the squared Euclidean distance (rather than Mahalanobis distance) between the sample means for highdimensional problems. However, to do so, a bias-correction term must be added that depends on  $tr(\hat{\Sigma})$ . Chen and Qin (2010) generalized this to the case where  $\Sigma_1 \neq \Sigma_2$  so using the pooled estimate  $\hat{\Sigma}$  is no longer appropriate.

Aoshima and Yata (2014) used these ideas for classification. In particular, they substituted the identity matrix  $I_p$  for the sample covariance matrix  $\hat{\Sigma}$  in the LDA rule (1.1), and used the trace estimator in place of each  $\hat{\Sigma}_i$  in the QDA rule (1.2). These rules are similar to two of the four extreme cases in Friedman's RDA, corresponding to  $(\lambda, \gamma) = (1, 1)$  and  $(\lambda, \gamma) = (0, 1)$ , except for the bias-correction terms involving  $tr(\hat{\Sigma})$  and  $tr(\hat{\Sigma}_i)$ . They also investigated a few variants of their quadratic rule.

### 1.3. Handling nonnormal data

Compared with LDA, QDA is more sensitive to deviations from normality (Friedman (1989)). A common approach for relaxing the normality assumption is to assume that there exists a strictly monotone transformation for each dimension such that the transformed vector  $\mathbf{x}$  follows a multivariate normal distribution given its class label (Lin and Jeon (2003); Liu, Lafferty and Wasserman (2009); Mai and Zou (2015)). After first estimating and then applying these transformations, Lin and Jeon (2003) performed classic LDA and QDA; Liu, Lafferty and Wasserman (2009) estimated undirected graphical models; and Mai and Zou (2015) applied their direct method for sparse discriminant analysis (DSDA). In this paper, we also rely on this idea to generalize our methods.

### 1.4. Outline and summary of this paper

One can view the trace estimator as the result of two operations: pooling the diagonal elements of each sample covariance matrix, and ignoring its off-diagonal elements. Here we take the idea of the trace estimator one step further, and introduce an estimator that also pools the off-diagonal elements. We refer to the resulting QDA rule as ppQDA (for having performed two pooling operations), and the QDA rule with the trace estimator as pQDA — a special case of our more general method. We study their asymptotic performances (Section 2), and generalize them to handle nonnormal data (Section 3). Our generalization is based on first estimating a set of nonparametric data transformations and then applying our methods to the transformed data. As such, we refer to these generalized QDA rules as semiparametric ppQDA (Se-pQDA) and semiparametric pQDA (Se-pQDA), respectively. We will prove a result for Se-pQDA, but only demonstrate the performance of Se-ppQDA empirically; the proof of a similar result for Se-ppQDA is more complicated, and is left for future research.

Here is a summary of our main contributions. First, while most existing high-dimensional discriminant analysis methods focus on LDA, we fill this gap by focusing on QDA. Second, the sample covariance matrix is inconsistent when the dimension is high but, instead of making sparsity assumptions, we reduce the number of unknown parameters by simplifying the matrix structure differently. Third, using more than just the trace estimator in the QDA rule, our ppQDA rule allows us to make use of information about the correlations among different dimensions. Fourth, we relax the normality assumption for both ppQDA and pQDA, and establish theoretical results for all of them except Se-ppQDA, the semiparametric extension of ppQDA. As our methods are based on using a simple matrix structure, our methods are computationally feasible and easy to apply in practice.

We proceed as follows. In Section 2, we introduce our notation, and describe our main methods, ppQDA and pQDA. In Section 3, we propose semiparametric generalizations of our main methods for nonnormal data. Section 4 contains extensive numerical experiments. In Section 5 we provide some discussion of the relative performance of our ppQDA rule to that of the Bayes decision rule. There are concluding remarks in Section 6.

### 2. QDA by Pooling Elements of Covariance Matrices

Let  $\{\mathbf{y}_{1k} : 1 \leq k \leq n_1\}$  and  $\{\mathbf{y}_{2k} : 1 \leq k \leq n_2\}$  be training samples from the *p*-dimensional normal distributions  $N(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$  and  $N(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$ , respectively. In addition, all  $\mathbf{y}_{ik}$ s are assumed to be independent. Let  $y_{ijk}$  to denote the *j*th dimension of  $\mathbf{y}_{ik}$ , for  $j = 1, \ldots, p$ . In what follows,  $\mathbf{x} \in \mathbb{R}^p$  is used to denote a generic feature vector observation *without* a class label, and our target is to classify  $\mathbf{x}$  based on a rule learned from the training samples. The sample version of the QDA rule (1.2) is to classify  $\mathbf{x}$  to class 1 if

$$\ln\left(\frac{\left|\hat{\Sigma}_{1}\right|}{\left|\hat{\Sigma}_{2}\right|}\right) + (\mathbf{x} - \hat{\boldsymbol{\mu}}_{1})'\hat{\Sigma}_{1}^{-1}(\mathbf{x} - \hat{\boldsymbol{\mu}}_{1}) - (\mathbf{x} - \hat{\boldsymbol{\mu}}_{2})'\hat{\Sigma}_{2}^{-1}(\mathbf{x} - \hat{\boldsymbol{\mu}}_{2}) \leq 0, \qquad (2.1)$$

and to class 2 otherwise, but this does not work when p is larger than or close to n. We propose to replace the sample covariance matrices in (2.1) with simpler alternatives. Our main idea is to simplify the matrix structure in order to reduce the number of unknown parameters. When there are fewer parameters, we can expect to estimate them consistently.

### 2.1. Some basic conditions

We first describe some common conditions on the covariance matrices and sample sizes.

Let  $\Sigma_{j_1j_2}$  be the element of  $\Sigma$  in the  $j_1$ th row and  $j_2$ th column. Let  $\mathbf{1}_p = (1, 1, \ldots, 1)' \in \mathbb{R}^p$  and  $Su(\Sigma) = \mathbf{1}'_p \Sigma \mathbf{1}_p$  be the summation of all elements in  $\Sigma$ .

(C.1) For a constant c > 0,  $|\Sigma_{j_1,j_2}| < c$  for  $j_1 = 1, \ldots, p$  and  $j_2 = 1, \ldots, p$ .

(C.1') For both  $i = 1, 2, tr(\Sigma_i) = O(p), tr(\Sigma_i^2) = O(p^2)$  and  $Su(\Sigma_i) = O(p^2)$ .

(C.2) There exist n > 0 and constants  $0 < c_1 < c_2 < +\infty$  such that  $c_1 < n_i/n < c_2$  as  $n \to \infty$  for both i = 1, 2.

Condition (C.1) places a bound on all the elements of  $\Sigma$ . Throughout the

paper, we shall assume that both  $\Sigma_1$  and  $\Sigma_2$  satisfy condition (C.1). Condition (C.1) implies (C.1').

Condition (C.2) is equivalent to saying that  $n_1 \simeq n_2$ . The value *n* has the same order as  $n_1$  and  $n_2$ ; this is used later when we refer to the sample size in general, without specifying the classes.

### 2.2. Main method: ppQDA

We now describe our main idea. Given  $\Sigma_i$ , let

$$a_i = p^{-1} tr(\Sigma_i)$$
 and  $r_i = \{p(p-1)\}^{-1} \{Su(\Sigma_i) - tr(\Sigma_i)\},\$ 

be the average of its diagonal elements and the average of its off-diagonal elements, respectively. We use the structured matrix

$$A_{i} = \begin{pmatrix} a_{i} & r_{i} & \cdots & r_{i} \\ r_{i} & a_{i} & \cdots & r_{i} \\ \vdots & \vdots & \ddots & \vdots \\ r_{i} & r_{i} & \cdots & a_{i} \end{pmatrix} = (a_{i} - r_{i})I_{p} + r_{i}\mathbf{1}_{p}\mathbf{1}_{p}'$$

that has uniform diagonal elements and uniform off-diagonal elements, in place of  $\Sigma_i$ , for i = 1, 2, in the quadratic discriminant rule (1.2).

Estimators of  $a_i$  and  $r_i$ , and hence of  $A_i$  as well, are based on the sample covariance matrix,

$$\hat{a}_{i} = p^{-1} tr(\hat{\Sigma}_{i}), \hat{r}_{i} = \{p(p-1)\}^{-1} \left\{ Su(\hat{\Sigma}_{i}) - tr(\hat{\Sigma}_{i}) \right\}, \\ \hat{A}_{i} = (\hat{a}_{i} - \hat{r}_{i})I_{p} + \hat{r}_{i}\mathbf{1}_{p}\mathbf{1}'_{p}.$$

As both  $a_i$  and  $r_i$  are scalar parameters, their estimators  $\hat{a}_i$  and  $\hat{r}_i$  are consistent even when p is large.

Using  $\hat{A}_i$  to replace  $\hat{\Sigma}_i$ , for i = 1, 2, in (2.1), we call the resulting decision rule the "ppQDA rule", where each "p" is short for "pooling" as constructing  $\hat{A}_i$  involves pooling both the diagonal and the off-diagonal elements of  $\hat{\Sigma}_i$ . Specifically, the ppQDA rule classifies **x** to class 1 if

$$\hat{Q} = \ln\left(\frac{|\hat{A}_1|}{|\hat{A}_2|}\right) + (\mathbf{x} - \hat{\boldsymbol{\mu}}_1)'\hat{A}_1^{-1}(\mathbf{x} - \hat{\boldsymbol{\mu}}_1) - (\mathbf{x} - \hat{\boldsymbol{\mu}}_2)'\hat{A}_2^{-1}(\mathbf{x} - \hat{\boldsymbol{\mu}}_2) \le 0, \quad (2.2)$$

and to class 2 otherwise. Due to its special structure, the inverse of  $A_i$  can be directly calculated:

$$\hat{A}_{i}^{-1} = (\hat{a}_{i} - \hat{r}_{i})^{-1} I_{p} - \hat{r}_{i} (\hat{a}_{i} - \hat{r}_{i})^{-1} \{\hat{a}_{i} + (p-1)\hat{r}_{i}\}^{-1} \mathbf{1}_{p} \mathbf{1}_{p}^{\prime}.$$
 (2.3)

Hence, we see that no matrix inversion is required, a highly desirable property,

especially for large p.

We are able to establish that our simplified ppQDA rule has good classification performance under (C.1)-(C.2) and some additional conditions on the matrices,  $A_i$  for i = 1, 2.

- (A.1)  $a_i r_i > \delta_i > 0, p\{a_i + (p-1)r_i\} > \delta'_i > 0;$
- (A.2)  $|(a_1 r_1) (a_2 r_2)| > \delta_0 > 0;$
- (A.3)  $tr((A_i \Sigma_i)^2) = o(p^2);$
- (A.4)  $\sum_{j=1}^{p} (v_{ij} \bar{v}_i)^2 = o(p^2)$ , where  $(v_{i1}, v_{i2}, \dots, v_{ip}) = \mathbf{1}'_p \Sigma_i$  i.e.,  $v_{ij}$  is *j*th column-sum of  $\Sigma_i$  and  $\bar{v}_i = p^{-1} \sum_{j=1}^{p} v_{ij}$ .

**Theorem 1.** Let  $\hat{R}_{n,p} = \mathbb{P}(\hat{Q} > 0 | \mathbf{x} \in C_1) + \mathbb{P}(\hat{Q} \leq 0 | \mathbf{x} \in C_2)$  be the misclassification probability of the ppQDA rule (2.2). If conditions (C.1), (C.2) and (A.1) – (A.4) hold, then

$$\lim_{p \to \infty, n \to \infty} \hat{R}_{n,p} = 0.$$

In Theorem 1, we do not need to restrict the rate with which p approaches infinity relative to how fast the sample size n increases, a common requirement for high-dimensional problems. The ppQDA rule, in effect, reduces each covariance matrix to just two scalar parameters,  $a_i$  and  $r_i$ , which can be consistently estimated regardless of the dimension p. We do require a restriction of this kind later in Section 3 as we extend our ideas to a semiparametric setting (see Remark 6 below).

While Theorem 1 establishes conditions under which the ppQDA rule can be nearly perfect asymptotically, we discuss in more detail, in Section 5, the factors that control how closely the ppQDA rule can approach the Bayes decision rule when nearly perfect classification is not achievable.

**Remark 1.** As long as  $\Sigma_i$  is a positive definite matrix, the inequalities,  $a_i - r_i > 0$ and  $a_i + (p-1)r_i > 0$ , in (A.1) hold (see Lemma 1, Supplement). The condition (A.1) requires that both  $a_i - r_i$  and  $p\{a_i + (p-1)r_i\}$  be bounded away from 0, a degeneracy, even as the dimension gets high.

**Remark 2.** Condition (A.2) essentially requires that there is some difference between the two class covariance matrices,  $\Sigma_1$  and  $\Sigma_2$ , so that the two classes can be separated. Generally for multivariate normal distributions, there are two sources of information that make classification possible: differences between the mean vectors (locations), and differences between the covariance matrices. Condition (A.2) is sufficient but not necessary, since it only requires some difference

between the covariance matrices. If there is adequate signal in the mean vectors, e.g., if  $\mu_1 - \mu_2$  is fairly large, then (A.2) can be relaxed. This is discussed in more detail in the Supplement, after the proof of Lemma 2. We choose to use a condition that is solely focused on the covariance matrices for two reasons. First, there are already many papers in the literature (see Section 1) about discriminant analysis and classification based on signals from the mean vectors alone. Second, replacing  $\Sigma_i$  with  $A_i$  deals with large covariance matrices (by introducing a structural simplification). As a result, (A.2) makes classification possible even if there is no location separation at all  $(\mu_1 - \mu_2 = 0)$ .

**Remark 3.** Both (A.3) and (A.4) place a bound on the difference between the true covariance matrix  $\Sigma_i$  and its structural simplification  $A_i$ . If the true covariance matrix  $\Sigma_i$  really does have the simplified structure  $A_i$ , then our ppQDA rule is trivially optimal. What makes our proposal useful is that it can perform well even when the true covariance matrix does not have exactly the special structure. Conditions (A.3)-(A.4) make precise how much  $\Sigma_i$  can deviate from the structure that would be "ideal" for our proposal. In particular, (A.3) means that the average of squared elementwise difference between  $\Sigma_i$  and  $A_i$  is o(1). Condition (A.4) is similar to (A.3) except it is about the column sums of  $\Sigma_i, v_{i1}, \ldots, v_{ip}$ , instead of about its individual elements. Notice that the average column sum,  $\bar{v}_i$ , can be expressed as  $Su(\Sigma_i)/p = a_i + (p-1)r_i$ , which is also equal to the uniform column sum of  $A_i$  for every column. Thus, (A.4) also means that the average squared difference between the column sums of  $\Sigma_i$  and those of  $A_i$  is o(p). Some commonly used covariance structures do, in fact, satisfy these two conditions, a certified copy of the original documen autoregressive and block diagonal matrices provided that the block size q is o(p). If  $\Sigma_i$  deviates a lot from the structural simplification, then both of these conditions can be violated. For example, if half of the off-diagonal entries in  $\Sigma_i$  are zero and the other half are 0.2, then it easily can be derived that  $tr((A_i - \Sigma_i)^2) \ge 0.01p(p-1)$ , so  $tr((A_i - \Sigma_i)^2) \ne o(p^2)$  and (A.3) no longer holds.

### 2.3. Special case: pQDA

We also consider a special case that uses just the trace estimator,  $\hat{a}_i I_p$ , to replace  $\hat{\Sigma}_i$ , i = 1, 2. We call this rule "pQDA" because only the diagonal elements of  $\hat{\Sigma}_i$  are pooled and the off-diagonal elements are simply "ignored". This rule classifies **x** to class 1 if

$$\hat{Q}_0 = p \ln\left(\frac{\hat{a}_1}{\hat{a}_2}\right) + \hat{a}_1^{-1} (\mathbf{x} - \hat{\boldsymbol{\mu}}_1)' (\mathbf{x} - \hat{\boldsymbol{\mu}}_1) - \hat{a}_2^{-1} (\mathbf{x} - \hat{\boldsymbol{\mu}}_2)' (\mathbf{x} - \hat{\boldsymbol{\mu}}_2) \le 0, \quad (2.4)$$

and to class 2 otherwise.

The trace estimator,  $\hat{a}_i I_p$  is a special case of  $\hat{A}_i$ , but we can take advantage of the added structure and derive a stronger and more interpretable result under a different set of assumptions.

- (B.1) there exist positive constants  $c_3$  and  $c_4$  such that  $c_3 < \lambda_{ij} < c_4$  for i = 1, 2and  $j = 1, \ldots, p$ , where  $\lambda_{ij}$  is the *j*th eigenvalue of  $\Sigma_i$ ;
- (B.2) there exists some positive constant  $c_5$  such that  $(a_{i_1}/a_{i_2} \ln(a_{i_1}/a_{i_2}) 1) + p^{-1}a_{i_2}^{-1}(\mu_1 \mu_2)'(\mu_1 \mu_2) > c_5$  for  $(i_1, i_2) = (1, 2)$  and (2, 1).

**Theorem 2.** Let  $\hat{R}_{0,n,p} = \mathbb{P}(\hat{Q}_0 > 0 | \mathbf{x} \in C_1) + \mathbb{P}(\hat{Q}_0 \leq 0 | \mathbf{x} \in C_2)$  be the misclassification probability of the pQDA rule (2.4). If conditions (C.1), (C.2), and (B.1) - (B.2) hold, then

$$\lim_{p \to \infty, n \to \infty} \hat{R}_{0,n,p} = 0.$$

ŗ

The proof of Theorem 2 is, by and large, similar to that of Theorem 1 and the details are omitted.

**Remark 4.** Condition (B.1) requires that the  $\Sigma_i$ 's have bounded eigenvalues. The ppQDA does not require bounded eigenvalues since, although both  $A_i$  and  $a_i I_p$  have a similar structure (uniform diagonal elements and uniform off-diagonal elements),  $A_i$  has a spiked eigenvalue spectrum (provided that  $r_i$  does not degenerate to 0, the case of pQDA), whereas  $a_i I_p$  has uniform eigenvalues. Boundedness can be thought of as a way of stating closeness. As  $a_i I_p$  has uniform eigenvalues, it is intuitive that our pQDA rule performs better if the true covariance matrix  $\Sigma_i$  has eigenvalues that are closer to each other.

**Remark 5.** In quadratic discriminant analysis, there are two sources of information that are useful for class separation: the difference in the mean vectors, and the difference in the covariance matrices. In our pQDA rule, these two sources of information are parameterized by  $\mu_1 - \mu_2$  and  $a_1/a_2$  or  $a_2/a_1$ , respectively. Condition (B.2) simply requires that there is sufficient combined information for class separation from both sources. The expression  $a_{i_1}/a_{i_2} - \ln(a_{i_1}/a_{i_2}) - 1$  achieves its minimum value of 0 when  $a_{i_1} = a_{i_2}$ . Hence, classification becomes easier the larger the difference is between  $a_1$  and  $a_2$ , regardless of whether  $a_1 > a_2$  or  $a_2 > a_1$ .

### 3. Generalization to Deal with Nonnormal Data

The QDA often is more sensitive to violations of the normality assumption

than is LDA. In this section, we investigate a semiparametric method to relax the normality assumption for the pQDA rule. The ppQDA rule can be generalized similarly, but its justification is much more tedious, although it requires no additional techniques (more on this in Remark 9, Supplement). Thus, we state generalized versions of both the ppQDA rule and the pQDA rule, and include both of them in our empirical studies (Sections 4), but we only develop the theory for generalized pQDA.

For non-normal data, we follow a common approach in the literature (Lin and Jeon (2003); Liu, Lafferty and Wasserman (2009); Mai and Zou (2015)) and adopt another condition.

(D.1) there exist a set of strictly monotonic transformations

$$h(\mathbf{y}) \equiv (h_1(y_1), h_2(y_2), \dots, h_p(y_p))'$$
  
such that  $h(\mathbf{y}_{ik}) \sim N(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$  for  $k = 1, \dots, n_i$  and  $i = 1, 2$ .

This assumption is equivalent to using a Gaussian copula model to describe the dependence structure of multivariate observation  $\mathbf{y}_{ik}$  (Lin and Jeon (2003)).

To test the validity of (D.1), any high-dimensional normality test can be applied to the transformed data. However, testing normality in high dimensions is complex research problem in itself. According to Lin and Jeon (2003), an alternative may be to check the classification results directly, as it is possible for a classification rule to work reasonably well even if the underlying normality assumption is violated.

Under (D.1), the generalization of ppQDA and pQDA is straight-forward. First, we obtain a nonparametric estimate of the transformations, say

$$\hat{h}(\cdot) \equiv \left(\hat{h}_1(\cdot_1), \hat{h}_2(\cdot_2), \dots, \hat{h}_p(\cdot_p)\right)'$$

from the training sample. Then, we apply ppQDA and pQDA to the transformed data,  $\{\hat{h}(\mathbf{y}_{ik}): k = 1, \ldots, n_i; i = 1, 2\}$  and  $\hat{h}(\mathbf{x})$ . We refer to these procedures as Se-ppQDA and Se-pQDA, respectively, where "Se" is short for "semiparametric".

In what follows, we use the same notations as before to denote various distributional parameters and their estimates for the *transformed* data. For example,  $\mu_i$  and  $\Sigma_i$  now denote the mean vector and covariance matrix of the transformed sample  $\{h(\mathbf{y}_{ik}) : k = 1, \ldots, n_i\}$ , while

$$\hat{\boldsymbol{\mu}}_{i} = n_{i}^{-1} \sum_{k=1}^{n_{i}} \hat{h}(\mathbf{y}_{ik}) \quad \text{and} \quad \hat{\Sigma}_{i} = (n_{i} - 1)^{-1} \sum_{k=1}^{n_{i}} \left\{ \hat{h}(\mathbf{y}_{ik}) - \hat{\boldsymbol{\mu}}_{i} \right\} \left\{ \hat{h}(\mathbf{y}_{ik}) - \hat{\boldsymbol{\mu}}_{i} \right\}$$

denote the corresponding sample quantities based on the estimated transformation,  $\hat{h}$ . Similarly,  $a_i, r_i$  (likewise  $\hat{a}_i, \hat{r}_i$ ) continue to denote, respectively, the average of the diagonal and off-diagonal elements of  $\Sigma_i$  (likewise  $\hat{\Sigma}_i$ ), except that  $\Sigma_i$  and  $\hat{\Sigma}_i$  are now covariance and sample covariance matrices of the *transformed* data.

### **3.1.** Estimation of h

Let  $F_{ij}$  be the class-*i* marginal cumulative distribution function (CDF) for the *j*-th dimension. Let  $\sigma_{ij}^2$  be the variance of  $h_j(y_{ij})$ , the *j*-th diagonal element of  $\Sigma_i$ . Each of the assumed transformations  $h_j(\cdot)$  in (D.1) must satisfy that, if  $u \sim F_{1j}$  and  $v \sim F_{2j}$ , then after transformation, the marginal distributions of  $h_j(u)$  and  $h_j(v)$  can differ only up to a location-and-scale transform. Thus, we can set  $\mu_{1j} = 0$  and  $\sigma_{1j}^2 = 1$  for all  $j = 1, \ldots, p$ , without loss of generality. This, in turn, means that each  $h_j$  can be equivalently expressed as

$$h_j = \Phi^{-1} \circ F_{1j}$$
 or  $h_j = \sigma_{2j} \left( \Phi^{-1} \circ F_{2j} \right) + \mu_{2j},$  (3.1)

where  $\Phi$  denotes the CDF of the standard normal.

Thus the transformation  $h_j$  can be estimated using training samples from either class. Here we estimate it using data from class 1,

$$\hat{h}_j = \Phi^{-1} \circ \hat{F}_{1j},$$

where  $\hat{F}_{1j}$  is an "edge-smoothed" version of the empirical CDF (Mai and Zou (2015)),

$$\hat{F}_{1j}(t) = \begin{cases} 1 - \frac{1}{n_1^2}, & \text{if } \tilde{F}_{1j}(t) > 1 - \frac{1}{n_1^2}, \\ \tilde{F}_{1j}(t), & \text{if } \frac{1}{n_1^2} \le \tilde{F}_{1j}(t) \le 1 - \frac{1}{n_1^2}, \\ \frac{1}{n_1^2}, & \text{if } \tilde{F}_{1j}(t) < \frac{1}{n_1^2}, \end{cases}$$

and  $\tilde{F}_{1j}$  is the actual empirical CDF,  $\tilde{F}_{1j}(t) = n_1^{-1} \sum_{k=1}^{n_1} \mathbf{1}\{y_{1jk} \leq t\}$ . Our choice of using data from class 1 is entirely arbitrary. In practice, we recommend using data from the larger class to maximize estimation accuracy.

It is also possible to estimate the transformation  $h_j$  by making use of data from both classes. For example, Mai and Zou (2015) proposed such a pooled estimator for the special case in which the class covariance matrices are identical. A closer look at (3.1) suggests that a potential generalization of their pooled, two-sample estimator would be to take a weighted average of the one-sample estimators of  $h_j$ , e.g.,

$$\hat{h}_{j} = \frac{n_{1}}{n} \left( \Phi^{-1} \circ \hat{F}_{1j} \right) + \frac{n_{2}}{n} \left\{ \hat{\sigma}_{2j} \left( \Phi^{-1} \circ \hat{F}_{2j} \right) + \hat{\mu}_{2j} \right\},$$

where  $\hat{F}_{2j}$  is defined similarly as  $\hat{F}_{1j}$  above. To take full advantage of pooled estimation, one could obtain  $\hat{\sigma}_{2j}$  and  $\hat{\mu}_{2j}$  with a pooled method as well, as there is information about them not only in the transformed sample  $\{\Phi^{-1}(\hat{F}_{1j}(y_{2jk}))\}_{k=1}^{n_2}$  but also in  $\{\Phi^{-1}(\hat{F}_{2j}(y_{1jk}))\}_{k=1}^{n_1}$ . As this is not the main focus of our study, we do not pursue this more complicated strategy here.

### 3.2. Se-ppQDA and se-pQDA

Since our estimated transformations  $\hat{h}_1, \ldots, \hat{h}_p$  automatically make  $\hat{\mu}_1 = \mathbf{0}$ , the Se-ppQDA rule classifies  $\mathbf{x}$  to class 1 if

$$\hat{Q}_{\hat{h}} = \ln\left(\frac{|\hat{A}_{1}|}{|\hat{A}_{2}|}\right) + \hat{h}(\mathbf{x})'\hat{A}_{1}^{-1}\hat{h}(\mathbf{x}) - \left\{\hat{h}(\mathbf{x}) - \hat{\boldsymbol{\mu}}_{2}\right\}'\hat{A}_{2}^{-1}\left\{\hat{h}(\mathbf{x}) - \hat{\boldsymbol{\mu}}_{2}\right\} \le 0, \quad (3.2)$$

and to class 2 otherwise. Similarly, that  $\hat{\sigma}_{1j}^2 = 1$  for all  $j = 1, \ldots, p$  implies  $\hat{a}_1 = p^{-1} tr(\hat{\Sigma}_1) = 1$ , so the Se-pQDA rule classifies **x** to class 1 if

$$\hat{Q}_{\hat{h},0} = p \ln\left(\frac{1}{\hat{a}_2}\right) + \hat{h}(\mathbf{x})'\hat{h}(\mathbf{x}) - \hat{a}_2^{-1} \left\{\hat{h}(\mathbf{x}) - \hat{\boldsymbol{\mu}}_2\right\}' \left\{\hat{h}(\mathbf{x}) - \hat{\boldsymbol{\mu}}_2\right\} \le 0, \quad (3.3)$$

and to class 2 otherwise.

We are now ready to establish some results about the asymptotic performance of the Se-pQDA rule. While first estimating the transformations and then applying pQDA to transformed data is straight-forward, its performance is more intricate to analyze than that of pQDA, being affected by not only the structural simplifications of the pQDA rule itself, but also the estimation quality of the p univariate transformations and that of the key model parameters for the transformed data.

**Theorem 3.** Let  $\hat{R}_{\hat{h},0,n,p} = \mathbb{P}(\hat{Q}_{\hat{h},0} > 0 | \mathbf{x} \in C_1) + \mathbb{P}(\hat{Q}_{\hat{h},0} \leq 0 | \mathbf{x} \in C_2)$  be the misclassification probability of the Se-pQDA rule (3.3). Under (D.1), if (C.1), (C.2), and (B.1) - (B.2) hold for the transformed data, then

$$\lim_{p \to \infty, n \to \infty} \hat{R}_{\hat{h}, 0, n, p} = 0,$$

provided  $p \exp\left(-Cn^{1/3-\theta}\right) \to 0$  for some C > 0 and  $0 < \theta < 1/3$ , and that there exists some constant  $c_6 > 0$  such that  $|\mu_{2j}| < c_6$  for all  $j = 1, \ldots, p$ .

**Remark 6.** For ppQDA and pQDA, we did not need to control the rate with which p goes to infinity relative to that of n, but we need to for Se-pQDA. As we must now estimate p univariate transformations. To ensure that we can estimate these transformations reasonably well, the dimension p cannot grow too fast relative to the overall sample size n. Thus we require  $p \exp\left(-Cn^{1/3-\theta}\right) \to 0$  for some C > 0 and  $0 < \theta < 1/3$  as both p and n tend to infinity.

**Remark 7.** That every  $|\mu_{2j}|$  be bounded is introduced to avoid unnecessary difficulties in our proof. This does not really weaken our result; if  $|\mu_{2j}|$  is very large, it only makes classification easier, and the more challenging problem occurs when the marginal signals are relatively weak. This is especially relevant as we have not made any sparsity assumptions about  $\mu_1 - \mu_2$ . Situations in which signals from the mean vectors are relatively dense (Fan, Jin and Yao (2013)) are only interesting when those signals are marginally faint.

### 4. Numerical Studies

In this section, we report on the performance of pQDA, ppQDA, Se-pQDA and Se-ppQDA in simulations. Two data examples are provided in a supplementary section.

Three other methods, DSDA (Mai, Zou and Yuan (2012)), SSDA (Mai and Zou (2015)) and random forest (Breiman (2001)), are included for comparison. DSDA and SSDA are penalized linear discriminant rules, and the latter deals with nonnormal data; for these methods we used the R package dsda, provided by the authors of the methods. For random forest, we used the R package randomForest with a forest size of 1,000; for all other parameters, we simply used their default values as further adjustments did not noticeably affect the performance.

We also include a benchmark classifier, in which the true covariance matrices  $(\Sigma_1, \Sigma_2)$  and the sample means  $(\hat{\mu}_1, \hat{\mu}_2)$  are plugged into the QDA rule. We used only the true covariance matrices but not the true mean vectors in the benchmark classifier, because we wish to focus on the effect of using our structured covariance matrices for classification, and to avoid letting the estimation of the mean vectors  $\mu_1, \mu_2$  (an intricate problem in high dimensions) unduly confound our performance evaluation.

For each of our QDA procedures, we standardized the variance in each dimension j by the larger of the two within-class standard deviations,  $\max\{\hat{\sigma}_{1j}, \hat{\sigma}_{2j}\}$ . In the case of Se-pQDA and Se-ppQDA, such standardization was performed after first estimating and then applying the transformation  $h_j$ .

### 4.1. Simulated examples

We considered nine types of covariance matrix structures, the details of which are described in a supplementary section. Based on these nine structures, we created ten simulated examples, setting either p = 400 or p = 800. In all of them, the means of the two classes were taken to be  $\mu_1 = \mathbf{0}_p$  and  $\mu_2 = (3.5p^{-1/2}\mathbf{1}'_{0.6p}, \mathbf{0}'_{0.4p})'$ . Thus the signal was spread out evenly among the first 0.6p dimensions. The magnitude of the signal in each dimension was controlled so that the between-class Euclidean distance did not change with p. The ten examples differed mostly by the covariance matrices of the two classes. In all cases, we controlled the difference between the two within-class covariance matrices by a parameter  $s \equiv 3p^{-1/2}$  (see below).

- Example 1:  $\Sigma_1 = M_1$ , partly autoregressive, and  $\Sigma_2 = \Sigma_1 + sI_p$ .
- Example 2:  $\Sigma_1 = M_3$ , block diagonal, and  $\Sigma_2 = \Sigma_1 + sI_p$ .
- Example 3:  $\Sigma_1 = M_4$ , modified version of  $M_1$ , and  $\Sigma_2 = \Sigma_1 + sI_p$ . These covariance matrices have eigenvalues close to each other.
- Example 4:  $\Sigma_1 = M_1$ , partly autoregressive, and  $\Sigma_2 = M_2 + sI_p$ , also partly autoregressive, but with some elements (both diagonal and off-diagonal ones) being different from those in  $\Sigma_1$ .
- Example 5:  $\Sigma_1 = \Sigma_2 = M_1$ , partly autoregressive, and identical between the two classes.
- Example 6:  $\Sigma_1 = M_5$ , compound symmetry, and  $\Sigma_2 = \Sigma_1 + sI_p$ .
- Example 7:  $\Sigma_1 = M_6$ , also compound symmetry, and  $\Sigma_2 = \Sigma_1 + sI_p$ .
- Example 8:  $\Sigma_1 = M_7$ , compound symmetry with off-diagonal perturbations, and  $\Sigma_2 = \Sigma_1 + sI_p$ .
- Example 9:  $\Sigma_1 = M_8$ , compound symmetry with diagonal perturbations, and  $\Sigma_2 = \Sigma_1 + sI_p.$

Example 10:  $\Sigma_1 = M_9$ , unstructured, and  $\Sigma_2 = \Sigma_1 + sI_p$ .

### 4.2. Results

In all simulations, we used  $n_i = 100$  training samples, and 1,000 independent testing samples, from  $N(\mu_i, \Sigma_i)$ , i = 1, 2. Simulations were repeated for 100 times, and the average misclassification rates on the testing samples were recorded, together with their standard errors.

Table 1 shows how the methods compared on the ten examples. Our suite of methods were generally better than DSDA, SSDA and random forest. This is not surprising as both DSDA and SSDA assume sparsity and identical within-class covariance matrices, and the random forest does not make (or take advantage of)

#### WU, QIN AND ZHU

any specific distribution assumption. In each example, the best method statistically matched the benchmark classifier. There we used only the true covariance matrices but, using the sample rather than the population mean vectors, it was possible for other methods to outperform it.

In Examples 1-4, the covariance matrices are better approximated by diagonal ones, so pQDA is expected to perform well, but we see that ppQDA performed reasonably well, too. This indicates that, whenever pQDA works, ppQDA is only slightly worse than, if not as good as, pQDA.

In Example 5, the two within-class covariance matrices are the same, so LDA is actually optimal, but we see that both pQDA and ppQDA still continued to perform well.

In Examples 6-7, the covariance matrices have exactly the compound symmetry structure, so ppQDA performed considerably better than all other methods.

In Examples 8-9, the covariance matrices no longer have exactly the compound symmetry structure, due to perturbations to the various off-diagonal ( $M_7$ , Example 8) and diagonal ( $M_8$ , Example 9) elements. In Example 10, the covariance matrices are largely unstructured, except that a few randomly selected entries are much larger than others. These examples were designed to test the robustness and sensitivity of ppQDA. In all cases, ppQDA maintained good performance, sometimes with a considerable advantage over all other methods.

In Table 1, we see that both Se-pQDA and Se-ppQDA performed slightly worse than their counterparts without any nonlinear transformations. Clearly, estimating these extra transformations when they were unnecessary introduced additional errors. We also transformed data from these ten examples to be nonnormally distributed and repeated our experiments. The details of these experiments and their results are described in a supplementary section. When the data were non-normal, the advantages of Se-pQDA and Se-ppQDA over other methods became clear.

#### 5. Discussion

Our results have focused on establishing conditions under which our proposed methods (e.g., ppQDA, pQDA, Se-pQDA) can have nearly perfect performance asymptotically. In reality, perfect classification is not always possible, in which case we would like to know how well our methods can perform relative to the Bayes decision rule. In this section, we provide some answers to this question for ppQDA.

## HIGH-DIMENSIONAL QDA

|         | Example | pQDA            | ppQDA          | SepQDA         | Se-ppQDA       | DSDA       | SSDA       | $\mathrm{RF}$ | Benchmark       |
|---------|---------|-----------------|----------------|----------------|----------------|------------|------------|---------------|-----------------|
|         | 1       | 13.5(0.11)      | $14.3\ (0.12)$ | 14.1(0.12)     | $15.3\ (0.13)$ | 32.3(0.26) | 34.7(0.26) | 24.6(0.13)    | $13.7 \ (0.11)$ |
|         | 2       | 13.7(0.11)      | $14.7\ (0.12)$ | 14.2(0.12)     | $15.6\ (0.13)$ | 32.4(0.21) | 35.1(0.24) | 25.1(0.12)    | $14.1 \ (0.11)$ |
|         | ი       | 20.8(0.12)      | $21.0\ (0.14)$ | 21.2(0.11)     | $22.0\ (0.11)$ | 35.6(0.31) | 38.5(0.34) | 30.4(0.14)    | $20.5 \ (0.13)$ |
|         | 4       | 13.6(0.09)      | $14.5\ (0.11)$ | 14.3(0.10)     | $15.5\ (0.12)$ | 32.0(0.20) | 34.9(0.30) | 24.8(0.15)    | $13.5 \ (0.10)$ |
| - 400   | 5       | 20.5(0.11)      | $22.3\ (0.15)$ | 21.9(0.12)     | $24.7\ (0.15)$ | 31.7(0.26) | 34.5(0.28) | 26.8(0.13)    | $24.9 \ (0.14)$ |
| p - 400 | 9       | $38.3\ (0.41)$  | 14.0(0.10)     | 36.5(0.40)     | $16.4\ (0.11)$ | 38.8(0.26) | 38.4(0.25) | 36.4(0.28)    | $13.0 \ (0.08)$ |
|         | 2       | $13.4\ (0.10)$  | 0.00(0.00)     | 15.7(0.11)     | 2.70(0.06)     | 28.0(0.19) | 33.1(0.30) | 25.9(0.14)    | 0.00(0.00)      |
|         | ×       | $33.8 \ (0.46)$ | 16.7(0.12)     | 30.1(0.46)     | $17.7\ (0.13)$ | 38.4(0.29) | 38.8(0.25) | 34.9(0.23)    | 6.50(0.07)      |
|         | 6       | $39.3\ (0.35)$  | $26.1\ (0.14)$ | 37.1(0.35)     | 25.7(0.12)     | 42.4(0.23) | 42.4(0.23) | 39.0(0.17)    | $24.8 \ (0.12)$ |
|         | 10      | $23.1\ (0.36)$  | 9.40(0.09)     | 18.4(0.30)     | $11.0\ (0.11)$ | 35.5(0.26) | 36.1(0.25) | 28.2(0.15)    | 5.50(0.06)      |
|         | 1       | 16.7(0.11)      | $17.8\ (0.13)$ | 17.1(0.12)     | 18.6(0.14)     | 36.8(0.21) | 40.1(0.30) | 29.7(0.12)    | $17.4 \ (0.10)$ |
|         | 2       | 17.2(0.12)      | $18.2\ (0.14)$ | $17.7\ (0.14)$ | 19.2(0.15)     | 37.4(0.30) | 40.5(0.27) | 29.9(0.13)    | $17.8 \ (0.11)$ |
|         | ი       | $25.6\ (0.13)$  | $26.1\ (0.15)$ | 25.1(0.14)     | 26.6(0.15)     | 40.8(0.33) | 43.6(0.25) | 35.5(0.12)    | $24.4 \ (0.12)$ |
|         | 4       | 16.6(0.11)      | $17.7\ (0.11)$ | $17.1\ (0.10)$ | 18.7(0.11)     | 36.7(0.20) | 39.7(0.25) | 29.5(0.13)    | $17.4 \ (0.11)$ |
| - 800   | S       | 24.3(0.14)      | $26.0\ (0.16)$ | $26.2\ (0.15)$ | 29.7(0.16)     | 36.5(0.35) | 40.0(0.3)  | 31.7(0.13)    | $28.7 \ (0.13)$ |
| p = 000 | 9       | $41.7\ (0.34)$  | 18.2(0.12)     | $40.5\ (0.30)$ | 20.0(0.12)     | 42.7(0.25) | 43.1(0.25) | 40.4(0.26)    | $17.0 \ (0.10)$ |
|         | 2       | $18.9\ (0.12)$  | 0.00(0.00)     | $20.2\ (0.13)$ | 3.80(0.07)     | 37.2(0.33) | 41.3(0.31) | 32.1(0.13)    | 0.00(0.00)      |
|         | x       | $36.7\ (0.44)$  | $22.0\ (0.13)$ | 32.9(0.48)     | 21.8(0.13)     | 43.1(0.23) | 43.1(0.21) | 39.1(0.18)    | 8.40(0.08)      |
|         | 6       | $42.9\ (0.25)$  | $30.5\ (0.14)$ | 40.8(0.30)     | 29.5(0.14)     | 45.4(0.20) | 45.5(0.21) | 42.7(0.18)    | 29.4 (0.12)     |
|         | 10      | 28.0(0.38)      | 16.0(0.12)     | $22.6\ (0.32)$ | $16.6\ (0.12)$ | 40.6(0.23) | 40.8(0.23) | 34.0(0.17)    | 0.60(0.02)      |

Table 1. Average misclassification rates (%) and their standard errors. Data are generated from  $N(\mu_1, \Sigma_1), N(\mu_2, \Sigma_2)$ .

#### WU, QIN AND ZHU

To do so, we further simplify the situation by focusing on a special case where there is no signal for classification in the class means,  $\mu_1 = \mu_2 = 0$ . There are many papers in the literature about classification based on signals from the mean vectors alone, and since our main idea of replacing  $\Sigma_i$  with  $A_i$  is "only" about dealing with large covariance matrices, we think it makes things clearer if we concentrate on just the covariance matrices and ignore the mean vectors.

We focus on the population version of the ppQDA rule, as in our proof of Theorem 1 (see Supplementary Materials, Section S4), we establish that the quantity  $\hat{Q} - Q$  is dominated by the population quantity Q as  $p, n \to \infty$ . Our proof assumes (A.1)-(A.4), but this section is primarily concerned with situations in which asymptotically perfect classification is not achievable, so it would be desirable if this dominance could be established without (A.2). This is possible, provided that some mild modifications are made to (A.3) and (A.4): instead of the difference between  $A_i$  and  $\Sigma_i$  being  $o(p^2)$ , now its order must also depend on how much signal there is for classification, as measured by  $(a_{i_1} - r_{i_1})/(a_{i_2} - r_{i_2})$ for  $(i_1, i_2) = (1, 2)$  and (2, 1). A detailed proof is omitted, as the technique is similar to that used in the proof of Theorem 1.

Let  $A_1$ ,  $A_2$ ,  $\Sigma_1$  and  $\Sigma_2$  be defined as in Section 2. If  $\mu_1 = \mu_2 = \mathbf{0}$ , the quantity that drives (population) ppQDA, using the true (as opposed to estimated) parameters, is

$$Q = \ln\left(\frac{|A_1|}{|A_2|}\right) + \mathbf{x}'A_1^{-1}\mathbf{x} - \mathbf{x}'A_2^{-1}\mathbf{x},$$

whereas the Bayes decision rule is driven by

$$Q_B = \ln\left(\frac{|\Sigma_1|}{|\Sigma_2|}\right) + \mathbf{x}' \Sigma_1^{-1} \mathbf{x} - \mathbf{x}' \Sigma_2^{-1} \mathbf{x}$$

Clearly, the performance of ppQDA is close to that of the Bayes rule if  $\Sigma_i \approx A_i$  for both i = 1, 2, but we argue below that this need not necessarily be the case.

To see this, suppose first that  $\mathbf{x} \in C_1$ . Then, for any matrix B, we have

$$\mathbb{E}(\mathbf{x}'B\mathbf{x}|\mathbf{x}\in\mathcal{C}_1) = \mathbb{E}\{tr(\mathbf{x}'B\mathbf{x})|\mathbf{x}\in\mathcal{C}_1\} = \mathbb{E}\{tr(B\mathbf{x}\mathbf{x}')|\mathbf{x}\in\mathcal{C}_1\} = tr\{B\mathbb{E}(\mathbf{x}\mathbf{x}'|\mathbf{x}\in\mathcal{C}_1)\} = tr(B\Sigma_1),\$$

which immediately implies

$$\mathbb{E}(Q_B | \mathbf{x} \in \mathcal{C}_1) = \ln \left| \Sigma_2^{-1} \Sigma_1 \right| + p - tr \left( \Sigma_2^{-1} \Sigma_1 \right), \tag{5.1}$$

$$\mathbb{E}(Q|\mathbf{x}\in\mathcal{C}_1) = \ln\left|A_2^{-1}A_1\right| + tr\left(A_1^{-1}\Sigma_1\right) - tr\left(A_2^{-1}\Sigma_1\right).$$
(5.2)

But the inverse formula for  $A_i$ , given in (2.3), applies to  $A_i$  as well, so  $tr(A_i^{-1}\Sigma_1) = \{(a_i - r_i)^{-1}\}tr(\Sigma_1) - [r_i(a_i - r_i)^{-1}\{a_i + (p-1)r_i\}^{-1}]tr(\mathbf{1}_p\mathbf{1}'_p\Sigma_1).$ 

However, the definition of  $A_1$  implies  $tr(\Sigma_1) = tr(A_1)$  and

$$tr(\mathbf{1}_p\mathbf{1}'_p\Sigma_1) = tr(\mathbf{1}'_p\Sigma_1\mathbf{1}_p) = Su(\Sigma_1) = Su(A_1) = tr(\mathbf{1}'_pA_1\mathbf{1}_p) = tr(\mathbf{1}_p\mathbf{1}'_pA_1).$$

This means  $tr(A_i^{-1}\Sigma_1) = tr(A_i^{-1}A_1)$  so that (5.2) can be further reduced to

$$\mathbb{E}(Q|\mathbf{x} \in \mathcal{C}_1) = \ln |A_2^{-1}A_1| + p - tr(A_2^{-1}A_1).$$
(5.3)

Together, (5.3) and (5.1) are highly suggestive of the possibility that, given  $\mathbf{x} \in C_1$ , the performance of ppQDA can be close to that of the Bayes rule as long as  $A_2^{-1}A_1$  is close to  $\Sigma_2^{-1}\Sigma_1$  in the sense that

$$tr(A_2^{-1}A_1) \approx tr(\Sigma_2^{-1}\Sigma_1)$$
 and  $|A_2^{-1}A_1| \approx |\Sigma_2^{-1}\Sigma_1|$ ,

whereas each  $A_i$  need not be close to  $\Sigma_i$  in itself.

Moreover, for  $p \times p$ , symmetric, positive-definite matrices U, V, we can define the function,

$$\phi(U, V) = \left| \ln \left| V^{-1} U \right| + p - tr \left( V^{-1} U \right) \right|,$$

as one way to measure their difference, with  $\phi(U, V) = 0$  if U = V; the absolute value is needed because, for any  $p \times p$ , symmetric, positive-definite matrix M with eigenvalues  $\lambda_1, \ldots, \lambda_p$ , the function  $\ln |M| + p - tr(M) = \sum (\ln \lambda_j + 1 - \lambda_j) \leq 0$ with equality only when  $\lambda_j = 1$  for all j; see Remark 5. For  $\mathbf{x} \in C_1$ , our analysis shows that, on average, the Bayes rule and the ppQDA rule are simply using the same  $\phi(\cdot, \cdot)$  function to measure the differences between a different set of matrices:  $(\Sigma_1, \Sigma_2)$  for the Bayes rule and  $(A_1, A_2)$  for ppQDA.

Combined with arguments similar to those used to prove Theorem 1 (see Section S4, Supplement), our analysis also suggests that, for  $\mathbf{x} \in C_1$ , the performance of ppQDA can be asymptotically close to that of the Bayes rule if

$$\frac{\phi(\Sigma_1, \Sigma_2) - \phi(A_1, A_2)}{\phi(\Sigma_1, \Sigma_2)} \sim o(1) \quad \text{as } p \to \infty$$

This argument applies to the case of  $\mathbf{x} \in C_2$ , except that, in this case, the differences are measured by  $\phi(A_2, A_1)$  and  $\phi(\Sigma_2, \Sigma_1)$  instead of by  $\phi(A_1, A_2)$  and  $\phi(\Sigma_1, \Sigma_2)$ . We define the symmetric difference measure,

$$\varphi(U,V) = \phi(U,V) + \phi(V,U),$$

and conjecture that the relative performance of our ppQDA rule to that of the Bayes rule depends on the quantity

$$\Delta \equiv \frac{\varphi(\Sigma_1, \Sigma_2) - \varphi(A_1, A_2)}{\varphi(\Sigma_1, \Sigma_2)},\tag{5.4}$$

and whether  $\Delta \to 0$  as  $p \to \infty$ . In a supplementary section, we present some

empirical evidence to support this observation.

### 6. Conclusion

Unlike many existing high-dimensional discriminant analysis methods that focus on LDA, our methods aim at performing QDA, which allows us to exploit the difference between covariance matrices from separate classes and use it for classification. The sample covariance matrix is inconsistent when the dimension is high. Whereas most methods address this difficulty by imposing sparsity conditions, we do so by simplifying the structure of covariance matrices while still trying to capture some subtle information from across all dimensions. The special matrix structure that we use can be viewed as a generalization of the trace estimator that has been used in high-dimensional hypothesis-testing as well as classification problems: we pool not only the diagonal elements but also the offdiagonal ones in each covariance matrix, so as to obtain some information about the correlations among different dimensions. As a result, our easy-to-apply discriminant rules enjoy low computational costs. The sparsity approach can be quite unstable for weak signals, while our approach is more attractive for cases with many weak signals.

Because of the complexity of the problem, at this point it is difficult to imagine that there could be a universally optimal discriminant analysis method for high-dimensional data. Due to noise accumulation, the performance of our methods could certainly deteriorate when there are a large number of useless covariates, as would most methods. Due to the special matrix structure that we use, one may also expect that our discriminant rules may not perform well if the marginal variances across different dimensions are vastly different, or if some dimensions are very highly correlated while others have little correlation. These problems can be alleviated by pre-screening and properly preprocessing the data (see the data examples in the Supplement). Our current interest lies in the question of what other special matrix structures we can exploit for high-dimensional QDA. Prominent candidates must allow us to capture more information in each covariance matrix than what can be captured by just two scalars  $a_i, r_i$ , but still have a relatively small number of "easily estimable" parameters.

### Supplementary Materials

Supplementary materials are provided in five separate sections. Section S1 provides more details and results for our numerical studies in Section 4. Section

S2 contains two data examples. Section S3 provides empirical evidence to support observations made in Section 5. Section S4 is a brief outline of the main proofs, while the detailed proofs are given in Section S5.

## Acknowledgment

Qin's research was supported by Natural Sciences and Engineering Research Council of Canada (NSERC) RGPIN-2016-03890 and the University of Waterloo Research Incentive Fund 115953. Zhu's research was supported by NSERC RGPIN-2016-03876. The authors thank the Editor, an associate editor and the referees for their insightful and constructive comments and suggestions.

# References

- Anderson, T. W. (1958). An Introduction to Multivariate Statistical Analysis 2, Wiley New York.
- Aoshima, M. and Yata, K. (2014). A distance-based, misclassification rate adjusted classifier for multiclass, high-dimensional data. Annals of the Institute of Statistical Mathematics 66, 983–1010.
- Bai, Z. D. and Saranadasa, H. (1996). Effect of high dimension: by an example of a two sample problem. *Statistica Sinica* 6, 311–329.
- Bickel, P. J. and Levina, E. (2004). Some theory for fisher's linear discriminant function, 'naive Bayes', and some alternatives when there are many more variables than observations. *Bernoulli* 989–1010.
- Breiman, L. (2001). Random forests. Machine Learning 45, 5–32.
- Cai, T. and Liu, W. (2011). A direct estimation approach to sparse linear discriminant analysis. Journal of the American Statistical Association 106, 1566–1577.
- Cai, T., Liu, W. and Xia, Y. (2013). Two-sample covariance matrix testing and support recovery in high-dimensional and sparse settings. *Journal of the American Statistical Association* 108, 265–277.
- Chen, S. X. and Qin, Y.-L. (2010). A two-sample test for high-dimensional data with applications to gene-set testing. *The Annals of Statistics* **38**, 808–835.
- Dudoit, S., Fridlyand, J. and Speed, T. P. (2002). Comparison of discrimination methods for the classification of tumors using gene expression data. *Journal of the American Statistical* Association 97, 77–87.
- Fan, J. and Fan, Y. (2008). High dimensional classification using features annealed independence rules. The Annals of Statistics 36, 2605–2637.
- Fan, J., Feng, Y. and Tong, X. (2012). A road to classification in high dimensional space. Journal of the Royal Statistical Society. Series B, (Statistical Methodology) 74, 745–771.
- Fan, J., Ke, Z. T., Liu, H. and Xia, L. (2015). Quadro: A supervised dimension reduction method via rayleigh quotient optimization. The Annals of Statistics 43, 1498–1534.
- Fan, Y., Jin, J. and Yao, Z. (2013). Optimal classification in sparse gaussian graphic model. The Annals of Statistics 41, 2537–2571.

- Friedman, J. H. (1989). Regularized discriminant analysis. Journal of the American Statistical Association 84, 165–175.
- Hao, N., Dong, B. and Fan, J. (2015). Sparsifying the fisher linear discriminant by rotation. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 77, 827–851.
- Li, J. and Chen, S. X. (2012). Two sample tests for high-dimensional covariance matrices. The Annals of Statistics 40, 908–940.
- Li, Q. and Shao, J. (2015). Sparse quadratic discriminant analysis for high dimensional data. Statistica Sinica 25, 457–473.
- Lin, Y. and Jeon, Y. (2003). Discriminant analysis through a semiparametric model. *Biometrika* **90**, 379–392.
- Liu, H., Lafferty, J. and Wasserman, L. (2009). The nonparanormal: Semiparametric estimation of high dimensional undirected graphs. *The Journal of Machine Learning Research* 10, 2295–2328.
- Mai, Q. and Zou, H. (2015). Sparse semiparametric discriminant analysis. Journal of Multivariate Analysis 135, 175–188.
- Mai, Q., Zou, H. and Yuan, M. (2012). A direct approach to sparse discriminant analysis in ultra-high dimensions. *Biometrika* 99, 29–42.
- Shao, J., Wang, Y., Deng, X. and Wang, S. (2011). Sparse linear discriminant analysis by thresholding for high dimensional data. *The Annals of Statistics* 39, 1241–1265.
- Tibshirani, R., Hastie, T., Narasimhan, B. and Chu, G. (2002). Diagnosis of multiple cancer types by shrunken centroids of gene expression. *Proceedings of the National Academy of Sciences* 99, 6567–6572.
- Witten, D. M. and Tibshirani, R. (2011). Penalized classification using fisher's linear discriminant. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73, 753– 772.

Department of Statistics and Actuarial Sciences, University of Waterloo, 200 University Avenue W., Waterloo, ON N2L 3G1, Canada.

E-mail: y335wu@uwaterloo.ca

Department of Statistics and Actuarial Sciences, University of Waterloo, 200 University Avenue W., Waterloo, ON N2L 3G1, Canada.

E-mail: yingli.qin@uwaterloo.ca

Department of Statistics and Actuarial Sciences, University of Waterloo, 200 University Avenue W., Waterloo, ON N2L 3G1, Canada.

E-mail: mu.zhu@uwaterloo.ca

(Received January 2016; accepted October 2017)