ORTHOGONAL SERIES ESTIMATION OF THE PAIR CORRELATION FUNCTION OF A SPATIAL POINT PROCESS

Abdollah Jalilian¹, Yongtao Guan² and Rasmus Waagepetersen³

¹Razi University, ²University of Miami and ³Aalborg University

Supplementary Material

S1 Expanding observation window

This section states a few results on the asymptotic behavior of the edge correction $e_n(h)$ (defined in (4.9) in the main document) and related ratios. For each $n \ge 1$ and $h, h_1, h_2 \in \mathbb{R}^d$,

$$|W_n \cap (W_n)_h| = \begin{cases} \prod_{i=1}^d (2na_i - |h_i|) & |h_i| < 2na_i, i = 1, \dots, d \\ 0 & \text{otherwise} \end{cases}$$

and

$$|W_n \cap (W_n)_{h_1} \cap (W_n)_{h_2}| = \begin{cases} V_n(h_1, h_2) & \max\{|h_{1i}|, |h_{2,i}|, |h_{1i} - h_{2i}|\} < 2na_i, i = 1, \dots, d\\ 0 & \text{otherwise} \end{cases}$$

where $V_n(h_1, h_2) = \prod_{i=1}^d (2na_i - \max\{0, h_{1i}, h_{2i}\} + \min\{0, h_{1i}, h_{2i}\})$. Therefore, for any fixed $h, h_1, h_2 \in \mathbb{R}^d$, as $n \to \infty$,

$$e_n(h) = \frac{|W_n \cap (W_n)_h|}{|W_n|} = \prod_{i=1}^d \left(1 - \frac{|h_i|}{2na_i}\right) \to 1.$$
(S1.1)

If $n \ge R/\min_{1\le i\le d} a_i$ or equivalently $B_{r_{\min}}^R \subset W_n$, then $1/2^d \le e_n(h) \le 1$ for any $h \in B_{r_{\min}}^R$.

Further,

$$\frac{\left|W_n \cap (W_n)_{h_1} \cap (W_n)_{h_2}\right|}{|W_n|} = \prod_{i=1}^d \left(1 - \frac{\max\{0, h_{1i}, h_{2i}\} - \min\{0, h_{1i}, h_{2i}\}}{2na_i}\right) \to 1.$$
(S1.2)

Similarly, it can be shown that for any fixed $h_1, h_2, h_3 \in \mathbb{R}^d$,

$$|W_n \cap (W_n)_{h_1} \cap (W_n)_{h_3} \cap (W_n)_{h_2+h_3}|/|W_n| \to 1.$$

S2 Proofs

S2.1 Proof of Lemma 1

For *n* large enough, $\mathbb{I}(h \in B_{r_{\min}}^R) > 0$ implies $|W_n \cap (W_n)_h| > 0$. Then, by the second order Campbell formula (see Møller and Waagepetersen, 2003, Section C.2.1),

$$\begin{split} \mathbb{E}(\hat{\theta}_{k,n}) &= \frac{1}{\varsigma_d |W_n|} \int_{W_n^2} \frac{\phi_k(||v-u|| - r_{\min})w(||v-u|| - r_{\min})}{||v-u||^{d-1}e_n(v-u)} \\ & \mathbb{I}(v-u \in B_{r_{\min}}^R)g(||v-u||) \mathrm{d}u \mathrm{d}v \\ &= \int_{\mathbb{R}^d} \frac{g(||h|)\phi_k(||h|| - r_{\min})w(||h|| - r_{\min})}{\varsigma_d ||h||^{d-1}} \\ & \mathbb{I}(h \in B_{r_{\min}}^R) \left(\int_{\mathbb{R}^d} \frac{\mathbb{I}\{v \in W_n \cap (W_n)_h\}}{|W_n \cap (W_n)_h|} \mathrm{d}v \right) \mathrm{d}h \\ &= \int_{r_{\min}}^{r_{\min}+R} g(r)\phi_k(r-r_{\min})w(r-r_{\min})\mathrm{d}r = \theta_k. \end{split}$$

Let $f_k(h) = \phi_k(\|h\| - r_{\min})w(\|h\| - r_{\min})/\|h\|^{d-1}$. Then, by the second to fourth order Campbell formulae (omitting the details),

$$\begin{aligned} \mathbb{V}\mathrm{ar}(\hat{\theta}_{k,n}) = & \frac{1}{\varsigma_d{}^2|W_n|} \left[2 \int_{B_{r_{\min}}^R} g(h) f_k^2(\|h\|) G_n^{(2)}(h) \mathrm{d}h \right. \\ & + 4 \int_{B_{r_{\min}}^R} \int_{B_{r_{\min}}^R} g^{(3)}(h_1, h_2) f_k(\|h_1\|) f_k(\|h_2\|) G_n^{(3)}(h_1, h_2) \mathrm{d}h_1 \mathrm{d}h_2 \\ & + \int_{B_{r_{\min}}^R} \int_{B_{r_{\min}}^R} f_k(\|h_1\|) f_k(\|h_2\|) G_n^{(4)}(h_1, h_2) \mathrm{d}h_1 \mathrm{d}h_2 \right], \end{aligned}$$
(S2.3)

where

$$\begin{aligned} G_n^{(2)}(h) &= \frac{1}{e_n^2(h)} \left[\frac{1}{|W_n|} \int_{W_n} \frac{\mathbf{1}[u+h \in W_n]}{\rho(u)\rho(u+h)} \mathrm{d}u \right], \\ G_n^{(3)}(h_1,h_2) &= \frac{1}{e_n(h_1)e_n(h_2)} \left[\frac{1}{|W_n|} \int_{W_n} \frac{\mathbf{1}[u \in (W_n)_{h_1} \cap (W_n)_{h_2}]}{\rho(u)} \mathrm{d}u \right], \\ G_n^{(4)}(h_1,h_2) &= \frac{1}{e_n(h_1)e_n(h_2)} \int_{\mathbb{R}^2} \left[g^{(4)}(h_1,u,h_2+u) - g(h_1)g(h_2) \right] \\ &= \frac{\left| W_n \cap (W_n)_u \cap (W_n)_{h_1} \cap (W_n)_{h_2} \right|}{|W_n|} \mathrm{d}u. \end{aligned}$$

For $n \ge R/\min_{1\le i\le d} a_i$ and any $h, h_1, h_2 \in B^R_{r_{\min}}$, by V1 and Section S1,

$$G_n^{(2)}(h) = \frac{1}{e_n^2(h)} \left[\frac{1}{|W_n|} \int_{W_n} \frac{\mathbf{1}[u+h \in W_n]}{\rho(u)\rho(u+h)} du \right] \le \frac{1}{\rho_{\min}^2 e_n(h)} \le \frac{2^d}{\rho_{\min}^2},$$

$$G_n^{(3)}(h_1, h_2) = \frac{1}{e_n(h_1)e_n(h_2)} \left[\frac{1}{|W_n|} \int_{W_n} \frac{\mathbf{1}[u \in (W_n)_{h_1} \cap (W_n)_{h_2}]}{\rho(u)} du \right]$$

$$\le \frac{1}{\rho_{\min}e_n(h)} \le \frac{2^d}{\rho_{\min}}$$

and by V3,

$$\begin{split} \left| G_n^{(4)}(h_1, h_2) \right| &\leq \frac{1}{e_n(h_1)e_n(h_2)} \int_{\mathbb{R}^2} \left| g^{(4)}(h_1, u, h_2 + u) - g(h_1)g(h_2) \right| \\ &\qquad \frac{\left| W_n \cap (W_n)_u \cap (W_n)_{h_1} \cap (W_n)_{h_2} \right|}{|W_n|} \mathrm{d}u \\ &\leq \frac{1}{e_n(h_1)} \int_{\mathbb{R}^2} \left| g^{(4)}(h_1, u, h_2 + u) - g(h_1)g(h_2) \right| \mathrm{d}u \\ &\leq 2^d \int_{\mathbb{R}^2} \left| g^{(4)}(h_1, u, h_2 + u) - g(h_1)g(h_2) \right| \mathrm{d}u \leq 2^d C_4. \end{split}$$

Thus, using V2, for all $k \ge 1$ and $n \ge R/\min_{1 \le i \le d} a_i$,

$$\begin{aligned} \mathbb{V}\mathrm{ar}(\hat{\theta}_{k,n}) &\leq \frac{1}{\varsigma_d{}^2|W_n|} \left[\frac{2^{d+1}}{\rho_{\min}^2} \int_{B_{r_{\min}}^R} f_k^2(\|h\|) g(\|h\|) \mathrm{d}h \\ &+ \frac{2^{d+2}}{\rho_{\min}} C_3 \left(\int_{B_{r_{\min}}^R} \left| f_k(\|h\|) \right| \mathrm{d}h \right)^2 \\ &+ 2^d C_4 \left(\int_{B_{r_{\min}}^R} \left| f_k(\|h\|) \right| \mathrm{d}h \right)^2 \right]. \end{aligned}$$

But for all $k \ge 1$,

$$\int_{B_{r_{\min}}^{R}} f_{k}^{2}(\|h\|)g(\|h\|)dh = \int_{r_{\min}}^{r_{\min}+R} \phi_{k}^{2}(r-r_{\min})g(r)\frac{w^{2}(r-r_{\min})}{r^{d-1}}dr$$
$$= \int_{0}^{R} \phi_{k}^{2}(r)g(r+r_{\min})\frac{w^{2}(r)}{(r+r_{\min})^{d-1}}dr$$
$$\leq C_{2} \int_{0}^{R} \phi_{k}^{2}(r)w(r)dr = C_{2},$$

and by Hölder's inequality,

$$\begin{split} \int_{B_{r_{\min}}^{R}} \left| f_{k}(\|h\|) \right| \mathrm{d}h &= \int_{B_{r_{\min}}^{R}} \left| \phi_{k}(\|h\| - r_{\min}) \right| \frac{w(\|h\| - r_{\min})}{\|h\|^{d-1}} \mathrm{d}h \\ &= \int_{r_{\min}}^{r_{\min} + R} \left| \phi_{k}(r - r_{\min}) \right| w(r - r_{\min}) \mathrm{d}r \\ &\leq \left(\int_{0}^{R} \phi_{k}^{2}(r) w(r) \mathrm{d}r \right)^{1/2} \left(\int_{0}^{R} w(r) \mathrm{d}r \right)^{1/2} \\ &= \left(\int_{0}^{R} w(r) \mathrm{d}r \right)^{1/2} < \infty. \end{split}$$

Therefore

$$\mathbb{V}\mathrm{ar}(\hat{\theta}_{k,n}) < \frac{1}{\varsigma_d^2 |W_n|} \left[\frac{2^{d+1}}{\rho_{\min}^2} C_2 + \left(\frac{2^{d+2}}{\rho_{\min}} C_3 + 2^d C_4 \right) \left(\int_0^R w(r) \mathrm{d}r \right) \right] = \frac{C_1}{|W_n|},$$

where

$$C_1 = \frac{1}{\varsigma_d^2} \left[\frac{2^{d+1}}{\rho_{\min}^2} C_2 + \left(\frac{2^{d+2}}{\rho_{\min}} C_3 + 2^d C_4 \right) \left(\int_0^R w(r) \mathrm{d}r \right) \right] > 0.$$

S2.2 Proof of Lemma 2

Consider a real function f on $\mathbb{R}^d \times \mathbb{R}^d$ where $f(h_1, h_2) \neq 0$ implies $|W_n \cap (W_n)_{h_1}||W_n \cap (W_n)_{h_2}| > 0$. Then, referring to the set-up in Section 4 in the

main document, by the fourth order Campbell formula,

$$\mathbb{E}\left\{\sum_{u,v,u',v'\in X_{W_n}}^{\neq} \frac{f(v-u,v'-u')}{\rho(u)\rho(v)\rho(u')\rho(v')|W_n\cap(W_n)_{v-u}||W_n\cap(W_n)_{v'-u'}|}\right\}$$

$$=\int_{W_n^4} \frac{f(v-u,v'-u')}{|W_n\cap(W_n)_{v-u}||W_n\cap(W_n)_{v'-u'}|}$$

$$g^{(4)}(v-u,u'-u,v'-u)dudvdu'dv'$$

$$=\int_{(\mathbb{R}^d)^4} f(h_1,h_2)g^{(4)}(h_1,u'-u,h_2+u'-u)$$

$$\frac{\mathbb{I}\left\{u\in W_n\cap(W_n)_{h_1},u'\in W_n\cap(W_n)_{h_2}\right\}}{|W_n\cap(W_n)_{h_1}||W_n\cap(W_n)_{h_2}|}dudh_1du'dh_2$$

$$=\int_{\mathbb{R}^d}\int_{\mathbb{R}^d} f(h_1,h_2)$$

$$\left\{\frac{\int_{W_n\cap(W_n)_{h_1}}\int_{W_n\cap(W_n)_{h_2}}g^{(4)}(h_1,u'-u,h_2+u'-u)dudu'}{|W_n\cap(W_n)_{h_1}||W_n\cap(W_n)_{h_2}|}\right\}dh_1dh_2.$$

This expectation is the sum of

$$A = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(h_1, h_2) \left\{ \frac{\int_{W_n \cap (W_n)_{h_1}} \int_{W_n \cap (W_n)_{h_2}} g(h_1) g(h_2)}{|W_n \cap (W_n)_{h_1}| |W_n \cap (W_n)_{h_2}|} \mathrm{d}u \mathrm{d}u' \right\} \mathrm{d}h_1 \mathrm{d}h_2$$
$$= \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(h_1, h_2) g(h_1) g(h_2) \mathrm{d}h_1 \mathrm{d}h_2$$

and

$$B_{n} = \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} f(h_{1}, h_{2}) \\ \left[\frac{\int_{W_{n} \cap (W_{n})h_{1}} \int_{W_{n} \cap (W_{n})h_{2}} \left\{ g^{(4)}(h_{1}, u' - u, h_{2} + u' - u) - g(h_{1})g(h_{2}) \right\} du du'}{|W_{n} \cap (W_{n})h_{1}||W_{n} \cap (W_{n})h_{2}|} \right] dh_{1} dh_{2} \\ = \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} f(h_{1}, h_{2}) \left[\int_{\mathbb{R}^{d}} \frac{|W_{n} \cap (W_{n})h_{1} \cap (W_{n})h_{3} \cap (W_{n})h_{2} + h_{3}|}{|W_{n} \cap (W_{n})h_{1}||W_{n} \cap (W_{n})h_{2}|} \\ \left\{ g^{(4)}(h_{1}, h_{3}, h_{2} + h_{3}) - g(h_{1})g(h_{2}) \right\} dh_{3} \right] dh_{1} dh_{2}.$$

We now specialize to $f(h_1, h_2) = f_k(h_1)f_k(h_2)$, where

$$f_k(h) = \phi_k(\|h\| - r_{\min})w(\|h\| - r_{\min})\mathbb{I}(h \in B_{r_{\min}}^R)/(\varsigma_d \|h\|^{d-1}).$$

Then, by V3,

Thus B_n tends to zero as $n \to \infty$. Regarding A, we have

$$A = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f_k(h_1) f_k(h_2) g(h_1) g(h_2) dh_1 dh_2$$

= $\left\{ \int_{\mathbb{R}^d} f_k(h) g(h) dh \right\}^2 = \left\{ \int_{r_{\min}}^{r_{\min} + R} g(r) \phi_k(r - r_{\min}) w(r - r_{\min}) dr \right\}^2 = \theta_k^2.$

S2.3 Proof of Theorem 1

We verify that the mean integrated squared error of $\hat{g}_{o,n}$ tends to zero as $n \to \infty$. By (3.7), MISE $(\hat{g}_{o,n}, w)/\varsigma_d = \sum_{k=1}^{\infty} \left[b_k(\psi_n)^2 \operatorname{War}(\hat{\theta}_{k,n}) + \theta_k^2 \{b_k(\psi_n) - 1\}^2\right]$.

By Lemma 1 and condition S1 the right hand side is bounded by

$$BC_1|W_n|^{-1}\sum_{k=1}^{\infty} |b_k(\psi_n)| + \max_{1 \le k \le m} \theta_k^2 \sum_{k=1}^m (b_k(\psi_n) - 1)^2 + (B^2 + 1) \sum_{k=m+1}^{\infty} \theta_k^2.$$

By Parseval's identity, $\sum_{k=1}^{\infty} \theta_k^2 < \infty$. The last term can thus be made arbitrarily small by choosing *m* large enough. It also follows that θ_k^2 tends to zero as $k \to \infty$. Hence, by S2, the middle term can be made arbitrarily small by choosing *n* large enough for any choice of *m*. Finally, the first term can be made arbitrarily small by S3 and by choosing *n* large enough.

S2.4 Proof of Theorem 2

Let for $t = (t_1, \ldots, t_d) \in \mathbb{Z}^d$,

$$\Delta(t) = \times_{i=1}^{d} \left(s(t_i - 1/2), s(t_i + 1/2) \right)$$

be the hyper-square with side length s and centered at st. Then, $\{\Delta(t) : t \in \mathbb{Z}^d\}$ is a partition of \mathbb{R}^d ; i.e., $\Delta(t_1) \cap \Delta(t_2) = \emptyset$ for $t_1 \neq t_2$ and $\bigcup_{t \in \mathbb{Z}^d} \Delta(t) = \mathbb{R}^d$, and $|\Delta_n(t) \oplus R| = (s + 2R)^d$, where

$$\Delta(t) \oplus R = \times_{i=1}^{d} \left(s(t_i - 1/2) - R, s(t_i + 1/2) + R \right].$$

Let $\mathcal{T}_n = \left\{ t \in \mathbb{Z}^d : \Delta(t) \cap W_n \neq \emptyset \right\}$ and define

$$Y_n(t) = \sum_{u \in X \cap \Delta(t)} \sum_{\substack{v \in X \setminus \{u\}\\v-u \in B_{r_{\min}}^R}} \frac{f_n(v-u)\mathbb{I}(u \in W_n, v \in W_n)}{\rho(u)\rho(v)e_n(v-u)}$$

Then, since $X = \bigcup_{t \in \mathbb{Z}^d} (X \cap \Delta(t))$,

$$S_{n} = \frac{1}{\varsigma_{d}|W_{n}|} \sum_{\substack{u,v \in X_{W_{n}} \\ v-u \in B_{r_{\min}}^{R}}} \frac{f_{n}(v-u)}{\rho(u)\rho(v)e_{n}(v-u)}$$
$$= \frac{1}{\varsigma_{d}|W_{n}|} \sum_{t \in \mathbb{Z}^{d}} \sum_{u \in X \cap \Delta(t)} \sum_{\substack{v \in X \setminus \{u\} \\ v-u \in B_{r_{\min}}^{R}}} \frac{f_{n}(v-u)\mathbb{I}(u \in W_{n}, v \in W_{n})}{\rho(u)\rho(v)e_{n}(v-u)}$$
$$= \frac{1}{\varsigma_{d}|W_{n}|} \sum_{\substack{t \in \mathbb{Z}^{d} \\ \Delta(t) \cap W_{n} \neq \emptyset}} Y_{n}(t) = \frac{1}{\varsigma_{d}|W_{n}|} \sum_{\substack{t \in \mathcal{T}_{n}}} Y_{n}(t).$$

Due to V1, N4 and since $e_n(h) > 1/2^d$ for n large enough and $h \in B_{r_{\min}}^R$,

$$\mathbb{E}(|Y_n(t)|^{2+\lceil\eta\rceil}) \leq \mathbb{E}\left(\sum_{\substack{u \in X \cap \Delta(t) \\ v - u \in B_{r_{\min}}^R}} \frac{L_2 2^d}{\rho_{\min}^2}\right)^{2+\lceil\eta\rceil}$$

The moments $\mathbb{E}(|Y_n(t)|^{2+\lceil\eta\rceil})$ are thus bounded by sums of integrals involving $g^{(k)}(u_1,\ldots,u_{k-1})$ times $(L_2 2^d/\rho_{\min}^2)^{2+\lceil\eta\rceil}$ for $k=2,\ldots,2(2+\lceil\eta\rceil)$. These integrals are bounded uniformly in t and n due to assumption N2. Thus,

$$\sup_{n \ge 1} \sup_{t \in \mathcal{T}_n} \mathbb{E}(|Y_n(t)|^{2+\eta}) \le \sup_{n \ge 1} \sup_{t \in \mathcal{T}_n} \mathbb{E}(|Y_n(t)|^{2+\lceil \eta \rceil}) < \infty$$

and hence $\{|Y_n(t)|^{2+\eta} : t \in \mathcal{T}_n, n \ge 1\}$ is a uniformly integrable family (triangular array) of random variables. Invoking finally N1 and N3 and letting $\sigma_n^2 = \mathbb{V}ar\{\sum_{t \in \mathcal{T}_n} Y_n(t)\}\$, it follows directly from Theorem 3.1 in Biscio and Waagepetersen (2016) that

$$\sigma_n^{-1} \sum_{t \in \mathcal{T}_n} \left[Y_n(t) - \mathbb{E} \{ Y_n(t) \} \right] \xrightarrow{D} N(0, 1),$$

which is equivalent to Theorem 2.

S3 Order of sum of products of Bessel basis functions

In this section we consider the Fourier-Bessel basis in the case $r_{\min} = 0$. It is known (see Watson, 1995, p. 199) that as $r \to \infty$,

$$J_{\nu}(r) \sim \left(\frac{2}{\pi r}\right)^{1/2} \cos\left(r - \frac{\nu \pi}{2} - \frac{\pi}{4}\right),$$

which implies that

$$\alpha_{\nu,k} = (k + \frac{\nu}{2} - \frac{1}{4})\pi + O(k^{-1}), \quad \text{as } k \to \infty,$$
 (S3.4)

and $\alpha_{\nu,k} \to \infty$, as $k \to \infty$. We can argue that for large k,

$$J_{\nu+1}(\alpha_{\nu,k}) \approx \left(\frac{2}{\pi\alpha_{\nu,k}}\right)^{1/2} \cos\left(\alpha_{\nu,k} - \frac{\pi}{4} - \frac{(\nu+1)\pi}{2}\right)$$
$$= \left(\frac{2}{\pi\alpha_{\nu,k}}\right)^{1/2} \cos\left((k-1)\pi + O(k^{-1})\right),$$

and consequently

$$\left|J_{\nu+1}(\alpha_{\nu,k})\right| \approx \left(\frac{2}{\pi\alpha_{\nu,k}}\right)^{1/2}.$$
 (S3.5)

On the other hand, for $\nu \ge 0$ and r > 0 (Landau, 2000),

$$\left|J_{\nu}(r)\right| \leq \frac{c}{|r|^{1/3}},$$

where c = 0.7857468704..., and hence

$$\left|\phi_k(r)\right| \le \frac{cr^{-\nu-1/3}\sqrt{2}}{(R^2\alpha_{\nu,k})^{1/3}|J_{\nu+1}(\alpha_{\nu,k})|} \quad r > 0, k \ge 1.$$

Using (S3.4) and (S3.5), for large k,

$$\frac{cr^{-\nu-1/3}\sqrt{2}}{(R^2\alpha_{\nu,k})^{1/3} \left| J_{\nu+1}(\alpha_{\nu,k}) \right|} \approx c\sqrt{\pi} \frac{r^{-\nu-1/3}}{R^{2/3}} \alpha_{\nu,k}^{1/6} \approx c\sqrt{\pi} \frac{r^{-\nu-1/3}}{R^{2/3}} \left\{ (k + \frac{\nu}{2} - \frac{1}{4})\pi \right\}^{1/6}$$

Since $\lim_{r\to 0} J_{\nu}(r)r^{-\nu} = \{\Gamma(\nu+1)2^{\nu}\}^{-1}$, we also obtain for large k and $0 < \|h\| < R$,

$$|\phi(\|h\|)| \le \operatorname{const}\left(\frac{R}{\alpha_{\nu,k}}\right)^{-\nu} \frac{\sqrt{2}}{RJ_{\nu+1}(\alpha_{\nu,k})} \approx \operatorname{const}\sqrt{\pi} \frac{\alpha_{\nu,k}^{\nu+1/2}}{R^{\nu+1}} = O(k^{\nu+1/2}).$$

Thus, for fixed r and 0 < ||h|| < R,

$$|\phi_k(r)\phi_k(||h||)| = O(k^{1/6 + \max(1/6, \nu + 1/2)}) = O(k^{1/6 + \max(1/6, d/2 - 1/2)}).$$

By generalization of Faulhaber's formula (McGown and Parks, 2007),

$$\sum_{k=1}^{K_n} k^p = O(K_n^{p+1}), \quad p > -1.$$

Therefore,

$$\frac{1}{K_n^{\omega}} \sum_{k=1}^{K_n} \left| \phi_k(r) \phi_k(\|h\|) \right| = \begin{cases} O(K_n^{4/3 - \omega}) & d = 1\\\\ O(K_n^{d/2 + 2/3 - \omega}) & d > 1 \end{cases}$$

for $\omega > 0$ and 0 < r, ||h|| < R.

S4 Simulation study

The results in Figure S1 are obtained as for the simulation study in the main document but with $W = [0, 2]^2$. The estimated cut-offs \hat{K} are summarized in Table S1. Simulation mean and 95% envelopes for \hat{g}_k , \hat{g}_c and \hat{g}_o with both Fourier-Bessel and cosine basis and simple smoothing schemes are shown for $W = [0, 2]^2$ in Figure S2. Figure S3 shows histograms of orthogonal series estimates. Comments on these figures and the table are given in the main document.

Figure S1: Plots of log relative efficiencies for small lags $(r_{\min}, 0.025]$ and all lags $(r_{\min}, R]$, R = 0.06, 0.085, 0.125, and $W = [0, 2]^2$. Black: kernel estimators. Blue and red: orthogonal series estimators with Bessel respectively cosine basis. Lines serve to ease visual interpretation.

S5 Data example

Figure S4 shows the data sets and fitted intensity functions considered in Section 7 of the main document. For the *Capparis frondosa* species and the orthogonal series estimator with cosine basis, the function $\hat{I}(K)$ given in (5.14) of the main document is shown in Figure S5. Although $\hat{I}(K)$ is decreasing over $1 \le K \le 49$, the rate of decrease slows down after K = 7.

S6 Behavior of the Fourier-Bessel and cosine basis

Figure S6 shows the Fourier-Bessel and cosine basis functions $\phi_k(r)$ in the planar case (d = 2) for R = 0.125, k = 1, ..., 8 and $r \in [0, 0.125]$. Obviously, the cosine basis functions are uniformly bounded and integrable. However, the Fourier-Bessel basis functions exhibit damped oscillation behavior with $\phi_k(R) = 0$ and

$$\phi_k(0) = \frac{\alpha_{\nu,k}^{\nu}}{R^{\nu+1}2^{\nu-1/2}\Gamma(\nu+1)J_{\nu+1}(\alpha_{\nu,k})},$$

for all $k \ge 1$, because $\lim_{r\to 0} J_{\nu}(r)r^{-\nu} = 1/(\Gamma(\nu+1)2^{\nu})$ for $\nu \ge 0$. Thus, $\phi_k(0) \to \infty$ as $k \to \infty$.

For $0 \leq \nu \leq 1/2$ (or equivalently d = 2, 3), $|J_{\nu}(r)| \leq (2/\pi r)^{1/2}$ and hence

$$\int_0^{\alpha_{\nu,k}} |J_{\nu}(r)| r^{\nu+1} \mathrm{d}r \le \left(\frac{2}{\pi}\right)^{1/2} \int_0^{\alpha_{\nu,k}} r^{\nu+\frac{1}{2}} \mathrm{d}r = \left(\frac{2}{\pi}\right)^{1/2} \frac{(\alpha_{\nu,k})^{\nu+\frac{3}{2}}}{\nu+\frac{3}{2}}.$$

Therefore, as $k \to \infty$,

$$\begin{split} \int_{0}^{R} \left| \phi_{k}(r) \right| w(r) \mathrm{d}r &= \frac{\sqrt{2}}{R \left| J_{\nu+1}(\alpha_{\nu,k}) \right|} \left(\frac{R}{\alpha_{\nu,k}} \right)^{\nu+2} \int_{0}^{\alpha_{\nu,k}} \left| J_{\nu}(r) \right| r^{\nu+1} \mathrm{d}r \\ &\leq \frac{\sqrt{2}}{R \left| J_{\nu+1}(\alpha_{\nu,k}) \right|} \left(\frac{R}{\alpha_{\nu,k}} \right)^{\nu+2} \left(\frac{2}{\pi} \right)^{1/2} \frac{(\alpha_{\nu,k})^{\nu+\frac{3}{2}}}{\nu+\frac{3}{2}} \\ &= \frac{2R^{\nu+1}}{\left| J_{\nu+1}(\alpha_{\nu,k}) \right| (\pi \alpha_{\nu,k})^{1/2} (\nu+\frac{3}{2})} \\ &\approx \frac{2R^{\nu+1}}{(\frac{2}{\pi \alpha_{\nu,k}})^{1/2} (\pi \alpha_{\nu,k})^{1/2} (\nu+\frac{3}{2})} = \frac{\sqrt{2R^{\nu+1}}}{\nu+\frac{3}{2}} < \infty, \end{split}$$

which implies uniform integrability of $\phi_k(r)$.

Bibliography

- Biscio, C. A. N. and Waagepetersen, R. (2016). A central limit theorem for α -mixing spatial point processes. Manuscript.
- Landau, L. (2000). Monotonicity and bounds on Bessel functions. In Proceedings of the Symposium on Mathematical Physics and Quantum Field Theory, volume 4, pages 147–154. Southwest Texas State Univ. San Marcos, TX.
- McGown, K. J. and Parks, H. R. (2007). The generalization of Faulhaber's formula to sums of non-integral powers. *Journal of Mathematical Analysis* and Applications, 330(1):571 – 575.

- Møller, J. and Waagepetersen, R. P. (2003). *Statistical inference and simulation for spatial point processes.* Chapman and Hall/CRC, Boca Raton.
- Watson, G. N. (1995). A treatise on the theory of Bessel functions. Cambridge university press.

Table S1: Monte Carlo mean and quantiles of the estimated cut-off \hat{K} obtained from (5.15) for the orthogonal series estimator with Fourier-Bessel (FB) and cosine (CO) bases and their ratio (CO/FB) in the case of Poisson (P), Thomas (T), Variance Gamma (V) and determinantal (D) point processes on observation windows $W_1 = [0, 1]^2$ and

			R = 0.06			R = 0.085			R = 0.125		
			$\hat{\mathbb{E}}(\hat{K})$	$\hat{q}_{0.05}(\hat{K})$	$\hat{q}_{0.95}(\hat{K})$	$\hat{\mathbb{E}}(\hat{K})$	$\hat{q}_{0.05}(\hat{K})$	$\hat{q}_{0.95}(\hat{K})$	$\hat{\mathbb{E}}(\hat{K})$	$\hat{q}_{0.05}(\hat{K})$	$\hat{q}_{0.95}(\hat{K})$
W1	Р	FB	2.17	2.00	3.00	2.15	2.00	3.00	2.11	2.00	3.00
		СО	2.31	2.00	4.00	2.35	2.00	4.00	2.34	2.00	4.00
		$\rm CO/FB$	1.08	0.67	1.50	1.10	1.00	1.67	1.12	1.00	2.00
	Т	FB	2.24	2.00	3.00	2.24	2.00	3.00	3.23	2.00	4.05
		СО	2.39	2.00	4.00	2.52	2.00	4.00	3.54	3.00	5.00
		$\rm CO/FB$	1.10	0.67	2.00	1.16	0.67	1.50	1.14	0.75	1.76
	V	FB	2.77	2.00	4.00	3.50	2.00	6.00	4.85	3.00	8.00
		СО	3.06	2.00	5.00	4.17	2.00	7.00	5.78	3.00	10.00
		$\rm CO/FB$	1.14	0.67	2.00	1.26	0.75	2.33	1.27	0.75	2.50
	D	FB	2.21	2.00	3.00	2.18	2.00	3.00	2.38	2.00	3.00
		CO	2.23	2.00	3.00	2.46	2.00	4.00	3.30	2.00	5.00
		$\rm CO/FB$	1.04	0.67	1.50	1.15	1.00	1.50	1.45	1.00	2.00
W2	P T	FB	2.17	2.00	3.00	2.12	2.00	3.00	2.09	2.00	3.00
		CO	2.34	2.00	4.00	2.32	2.00	4.00	2.36	2.00	4.00
		$\rm CO/FB$	1.10	0.67	2.00	1.11	0.67	2.00	1.13	1.00	2.00
		FB	2.39	2.00	4.00	2.46	2.00	4.00	3.78	3.00	5.00
		CO	2.43	2.00	5.00	3.17	2.00	5.00	4.19	3.00	6.00
		$\rm CO/FB$	1.08	0.50	2.50	1.35	1.00	2.00	1.13	0.75	1.67
		FB	3.58	3.00	5.00	5.14	3.00	8.00	7.19	5.00	11.00
	V	СО	4.76	3.00	9.00	6.40	4.00	12.00	9.03	5.00	17.00
		$\rm CO/FB$	1.38	0.80	2.67	1.30	0.80	2.56	1.30	0.83	2.43
		FB	2.22	2.00	4.00	2.17	2.00	3.00	2.79	2.00	4.00
	D	СО	2.19	2.00	3.00	2.92	2.00	4.00	3.74	3.00	5.00
		CO/FB	1.02	0.67	1.50	1.38	1.00	2.00	1.40	1.00	2.00

 $W_2 = [0, 2]^2$ with $r_{\min} = 0.001$.

Figure S2: True pair correlation function (solid line), Monte Carlo mean (dashed lines) and 95% pointwise probability interval (grey area) of estimates based on $n_{\rm sim} = 1000$ simulations from the Poisson (first row), Thomas (second row), Variance Gamma (third row) and determinantal (fourth row) point processes on $W = [0, 2]^2$.

Figure S3: Histograms of $\hat{g}_o(r)$ at r = 0.025 and r = 0.1 using the Bessel basis with the simple smoothing scheme in case of the Thomas process on $W = [0, 1]^2$ (upper panels), $W = [0, 2]^2$ (middle panels) and $W = [0, 3]^2$ (lower panels).

Figure S4: Locations of *Acalypha diversifolia*, *Lonchocarpus heptaphyllus* and *Capparis frondosa* trees in the Barro Colorado Island plot (upper panels) and their fitted parametric intensity functions (lower panels).

Figure S5: Estimate $\hat{I}(K)$ of the mean integrated squared error for *Capparis frondosa* in case of the orthogonal series estimator with cosine basis.

Figure S6: Fourier-Bessel and cosine basis functions $\phi_k(r)$ in the planar case (d = 2) for R = 0.125 and $k = 1, \ldots, 8$.