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This supplementary material contains additional proofs, details and technical lemmas.

S1 Additional proofs and details

S1.1 Proof of Lemma A.1

Lemma A.1. Let (U1, Z1, W1) and (U2, Z2, W2) be two independent draws

of (U, Z, W ). Let K(·) be a bounded, even, integrable function with positive,

integrable Fourier transform. Assume E(∥Uw(Z)∥2H) < ∞, Then for any

h > 0,

E [U | Z,W ] = 0 a.s.⇔ I(h) = 0.



SAMUEL MAISTRE AND VALENTIN PATILEA

Moreover, if P (E [U | Z,W ] = 0) < 1, then

inf
h∈(0,1]

I(h) > 0.

Proof of Lemma A.1. Using the Inverse Fourier Transform and the inde-

pendence of (U1, Z1, W1) and (U2, Z2, W2),

I(h) = E
[
⟨U1, U2⟩H w(Z1)w(Z2)h

−qK((Z1 − Z2)/h)ϕ(W1 −W2)
]

= E
[
⟨U1, U2⟩H w(Z1)w(Z2)

∫
Rq

e2πiv
′(Z1−Z2)F [K](vh)dv

∫
Rr

e2πis
′(W1−W2)F [ϕ](s)ds

]
=

∫
Rq

∫
Rr

∥∥∥E [E[U | Z,W ]w(Z)e−2πi{v′Z+s′W}
]∥∥∥2

H
F [K](vh)F [ϕ](s)dvds.

Clearly, for any h > 0, I(h) = 0 whenever E[U | Z,W ] = 0 a.s. For the

reverse implication, since F [ϕ],F [K] > 0, and w(·) > 0, for any h > 0, one

can deduce

E
[
E[U | Z,W ]w(Z)e−2πi{v′Z+s′W}

]
= 0, ∀v ∈ Rq, ∀s ∈ Rr.

Then necessarily E[U | Z,W ]w(Z) = 0 a.s., and thus E[U | Z,W ] = 0 a.s.

In the case P (E [U | W,X] = 0) < 1, by the Lebesgue Dominated Con-
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vergence Theorem, the map h 7→ I(h) is continuous on (0, 1] and

lim
h→0

I(h) = F [K](0)

∫
Rq

∫
Rr

∥∥∥E [E[U | Z,W ]w(Z)e−2πi{v′Z+s′W}
]∥∥∥2

H
F [ϕ] (s) dvds.

Since the nonnegative valued map

(v, s) 7→
∥∥∥E [E[U | Z,W ]w(Z)e−2πi{v′Z+s′W}

]∥∥∥2
H

is continuous, and non identically equal to 0 whenever E [U | Z,W ] ̸= 0,

and F [K] (0),F [ψ] (·) > 0, limh→0 I(h) is necessarily positive and I(h) is

bounded away from zero on the interval (0, 1].

S1.2 Some details on equation (4.4)

Consider a sequence of alternatives

Y = m(Z(β0)) + rnδ(Z(β0),W (β0)) + ε, n ≥ 1,

with E(ε | X) = 0 a.s., and δ(·) satisfying the conditions (4.3). In the

following, we show that for each n, β0 is solution of the equation

∂

∂β
E
[
{Y − rβ(Z(β))}2

]
= 0.
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Under suitable conditions on the second order derivative with respect to β,

this justifies the equation (4.4). For this purpose, we want to differentiate

rβ(Z(β)). Let

Y 0 = m(Z(β0))+ε and define r0β(Z(β)) = E
[
Y 0 | Z(β)

]
= E [m(Z(β0)) | Z(β)] .

Moreover, let

δβ(Z(β)) = E [δ(Z(β0),W (β0)) | Z(β)] ,

and notice

rβ(Z(β)) = r0β(Z(β)) + rnδβ(Z(β)),

and that, by the first condition in equation (4.3), δβ0(Z(β0)) = 0. Next, by

standard results from single-index regression models applied to the response

Y 0 (see, for instance, Horowitz (2009) chapter 2), one has

∂

∂β
r0β(Z(β))

∣∣∣∣
β=β0

= m′(Z(β0)){X − E[X | Z(β0)]}.

On the other hand, by the standard variance decomposition formula,

E
[
{δ(Z(β0),W (β0))− δβ(Z(β))}2

]
≤ E[δ2(Z(β0),W (β0))]

= E
[
{δ(Z(β0),W (β0))− δβ0(Z(β0))}2

]
,



S1. ADDITIONAL PROOFS AND DETAILS

and thus one can deduce that

E

[
δ(Z(β0),W (β0))

∂

∂β
δβ(Z(β))

∣∣∣∣
β=β0

]
= 0. (S1.1)

Using this identity and the second condition in equation (4.3), under suit-

able technical conditions, for any n, one can deduce

∂

∂β
E
[
{Y − rβ(Z(β))}2

]∣∣∣∣
β=β0

= −2E

[
{Y − rβ0(Z(β0))}

∂

∂β
rβ(Z(β))

∣∣∣∣
β=β0

]

= −2E

[
{rnδ(Z(β0),W (β0)) + ε}

{
∂

∂β
r0β(Z(β))

∣∣∣∣
β=β0

+
∂

∂β
rnδβ(Z(β))

∣∣∣∣
β=β0

}]

= −2rnE [δ(Z(β0),W (β0))m
′(Z(β0)){X − E[X | Z(β0)}]

− 2r2nE

[
δ(Z(β0),W (β0))

∂

∂β
δβ(Z(β))

∣∣∣∣
β=β0

]

= 0.

Let us end this part with a comment on the condition (4.3). In general, in

the case of sequence of alternatives, by standard tools for deriving asymp-

totic results, one can prove β̂ − β∗ = OP(n
−1/2) for some β∗ ∈ B that could

depend on n. The value β∗ tends to β0 at a rate depending on the rate the

alternative hypotheses approaches the null hypothesis. Following a common

choice in the literature, herein we want to simplify the presentation and fo-

cus on the case where β∗ does not depend on n. For this purpose, we impose
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some orthogonality conditions on the function δ(·) such that β∗ = β0 when

the index is estimated by semiparametric least-squares. See, for instance,

the second condition of equation (3.11) in Guerre and Lavergne (2005) for

a similar condition.

S1.3 Some details on the proof of Proposition 1

Herein, we provide detailed justifications of the claim that the norm of any

column of A (β)−A
(
β̄
)
is bounded by c∥β − β̄∥.

Firstly, recall that

B ⊂ {1} × Rp−1 or B ⊂ {∥γ∥−1γ : γ = (γ1, . . . , γp)
⊤ ∈ Rp, γ1 > 0}.

Then the norm of every β from the parameter space B is larger or equal to

1. Moreover, if β ∈ B and B(β, r) ⊂ Rd is the ball centered at β of radius

0 < r < 1/2, then

inf
β∈B(β,r)∩B

⟨β, β⟩
∥β∥∥β∥

≥ 1

∥β∥
> 0. (S1.2)

Indeed, for any β ∈ B(β, r),

∣∣∥β∥ − ∥β∥
∣∣ ≤ r and thus ∥β∥ ≥ ∥β∥ − r ≥ 1− r.
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Then, since for any β ∈ B(β, r), ∥β − β∥2 ≤ r2, we have

⟨β, β⟩ = 1

2

{
∥β∥2 + ∥β∥2 − ∥β − β∥2

}
≥ ∥β∥2

2
.

Finally, divide by ∥β∥∥β∥ to derive the inequality (S1.2).

Now, consider {v1, . . . , vp−1}, a basis in the orthogonal subspace {β}⊥.

Then for any β ∈ B(β, r), the set of vectors {v1, . . . , vp−1} ∪ {β} is a basis

in Rp. Indeed, equation (S1.2) implies that none of β ∈ B(β, r) could be

spanned by {v1, . . . , vp−1}.

Finally, ifA (β) is built by the Gram-Schmidt process applied to {v1, . . . , vp−1}∪

{β}, as described at the beginning of the proof of Proposition 1, and

the vectors {v1, . . . , vp−1} are orthogonal, then the norm of any column

of A (β)−A
(
β̄
)
is bounded by c∥β− β̄∥ for some c depending only on the

initial p− 1 independent vectors.

The fact that {v1, . . . , vp−1} are orthogonal it is not a real constraint

since, starting from an arbitrary basis in {β}⊥, one could first apply an

orthogonalization process with that basis.

We consider the case p = 3, the case of larger p could be derived

similarly. Let β ∈ B(β, 1/2) and consider v, w two linearly independent

vectors from the space {β}⊥. The Gram-Schmidt process transforms the
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basis {β, v, w} as follows:

u1 = β, e1 = e1(β) =
u1

∥u1∥
,

u2 = v − ⟨v, e1⟩e1, e2 = e2(β) =
u2

∥u2∥
,

u3 = w − ⟨w, e1⟩e1 − ⟨w, e2⟩e2, e3 = e3(β) =
u3

∥u3∥
.

Since the matrix A(β) is build with the columns e2(β) and e3(β), it remains

to check that Lipschitz condition for e2(β) and e3(β) as functions of β. First,

note that

∥e1(β)−e1(β)∥ =

∥∥∥∥∥β∥β − ∥β∥β
∥β∥∥β∥

∥∥∥∥ ≤ 1

∥β∥
|∥β∥−∥β∥|+ 1

∥β∥
∥β−β∥ ≤ c1∥β−β∥,

with c1 = 2/∥β∥. In particular,

∣∣∥e1(β)∥ − ∥e1(β)∥
∣∣ ≤ c1∥β − β∥.

Next, since v ∈ {β}⊥ = {e1(β)}⊥,

⟨v, e1(β)⟩ = ⟨v, e1(β)⟩+ ⟨v, e1(β)− e1(β)⟩ = ⟨v, e1(β)− e1(β)⟩,
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and thus

|⟨v, e1(β)⟩| ≤ ∥v∥∥e1(β)− e1(β)∥ ≤ c1∥v∥∥β − β∥ ≤ c1r∥v∥.

Moreover, ∀β ∈ B(β, r)

∥u2(β)∥2 = ∥v∥2 − ⟨v, e1(β)⟩2 ≥ (1− c21r
2)∥v∥2

and

∣∣∥u2(β)∥ − ∥u2(β)∥
∣∣ = ∣∣∥u2(β)∥2 − ∥u2(β)∥2

∣∣
∥u2(β)∥+ ∥u2(β)∥

≤
∣∣⟨v, e1(β)⟩ − ⟨v, e1(β)⟩

∣∣ ∣∣⟨v, e1(β)⟩+ ⟨v, e1(β)⟩
∣∣

2(1− c21r
2)1/2∥v∥

≤ ∥v∥∥e1(β)− e1(β)∥ × 2∥v∥
2(1− c21r

2)1/2∥v∥

≤ c1∥v∥
(1− c21r

2)1/2
∥β − β∥.
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Then

∥e2(β)−e2(β)∥ =

∥∥∥∥∥u2(β)∥{v − ⟨v, e1(β)⟩e1(β)} − ∥u2(β)∥{v − ⟨v, e1(β)⟩e1(β)}
∥u2(β)∥∥u2(β)∥

∥∥∥∥
≤ ∥v∥

∣∣∥u2(β)∥ − ∥u2(β)∥
∣∣

∥u2(β)∥∥u2(β)∥

+
1

∥u2(β)∥
∥∥⟨v, e1(β)⟩e1(β)− ⟨v, e1(β)⟩e1(β)

∥∥
+

∥∥⟨v, e1(β)⟩e1(β)∥∥
∥u2(β)∥

∣∣∥u2(β)∥ − ∥u2(β)∥
∣∣

≤ c2∥β − β∥,

where c2 is a positive constant that depends only on r, ∥β∥ and ∥v∥. Smaller

r is fixed, larger the constant c2 could be taken. Finally, to get the Lips-

chitz condition for the map β 7→ e3(β), we first need to bound from below

∥u3(β)∥. Using the orthogonality between e1(β) and e2(β), we get

∥u3(β)∥2 = ∥w∥2 − ⟨w, e1(β)⟩2 − ⟨w, e2(β)⟩2.

Since w ∈ {β}⊥ = {e1(β)}⊥ and v and w are orthogonal,

|⟨w, e1(β)⟩| ≤ ∥w∥∥e1(β)− e1(β)∥ ≤ c1∥w∥∥β − β∥
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and

|⟨w, e2(β)⟩| ≤ ∥w∥∥⟨v, e1(β)⟩e1(β)− ⟨v, e1(β)⟩e1(β)∥ ≤ c2∥w∥∥β − β∥.

Deduce that ∀β ∈ B(β, r),

∥u3(β)∥2 ≥ (1− c21r
2 − c22r

2)∥w∥2.

The Lipschitz condition for the map β 7→ e3(β) follows after repeatedly

applying the triangle inequality.

S1.4 Proof of Proposition 2

Proposition 2. Suppose the conditions in Assumption 1 in the Appendix

are met and the null hypothesis (2.2) holds true. Consider βn such that

βn−β0 = OP(n
−1/2). Then nh1/2I

{l}
n (βn) /ω̂

{l}
n (βn) → N (0, 1) in law under

H0, and

[
ω̂{l}
n (β0)

]2 → [
ω{l} (β0)

]2
= 2

∫
K2 (u) du×

∫ ∫
Γ2 (s, t) ds dt

×E
[∫

f 4
β0
(z)ϕ2 (W1 (β0)−W2 (β0)) πβ0 (z | W1 (β0)) πβ0 (z | W2 (β0)) dz

]
,
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in probability, where πβ0(· | w) is the conditional density of Z(β0) knowing

that W (β0) = w, and for t, s ∈ [0, 1],

Γ (s, t) = E [ϵ (s) ϵ (t)] , ϵ (t) = 1{Φ(Y ) ≤ t} − P[Φ(Y ) ≤ t | X ′β0].

Proof of Proposition 2. Let us consider the simplified notation from equa-

tion (7.3) and further simplify in the case β = β0 and write

Lij = Lij(β0, g), Kij = Kij(β0, h), and ϕij = ϕ(Wi(β0)−Wj(β0)).

(S1.3)

Notice that

I{l}n (β0) =
1

n (n− 1)h

∑
1≤i ̸=j≤n

{
⟨(ri − r̃i) (·; β0) , (rj − r̃j) (·; β0)⟩L2

+ ⟨ϵi (·) , ϵj (·)⟩L2

+ ⟨ϵ̃i (·) , ϵ̃j (·)⟩L2

+ 2 ⟨ϵi (·) , (rj − r̃j) (·; β0)⟩L2

− 2 ⟨ϵ̃i (·) , (rj − r̃j) (·; β0)⟩L2

− 2 ⟨ϵi (·) , ϵ̃j (·)⟩L2

}
f̂β0,if̂β0,jKijϕij

= I1 (β0) + I2 (β0) + I3 (β0) + 2I4 (β0)− 2I5 (β0)− 2I6 (β0)
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with

f̂β,i =
1

(n− 1) g

∑
k ̸=i

Lik (β) , ri (t; β) = P
[
Yi ≤ Φ−1 (t) | X ′

iβ
]
,

r̃i (t; β) =
1

(n− 1) gf̂β,i

∑
k ̸=i

rk (t; β)Lik (β)

and ϵ̃i (·) is defined as r̃i (t; β) by replacing ri (t; β) by ϵi (·). This decom-

position of I
{l}
n (β0) is given by the identity

̂Uiω (Zi) (·; β0) = [ri (·; β0)− r̃i (·; β0) + ϵi (·)− ϵ̃i (·)] f̂β0,i.

The terms I1 (β0) and I3 (β0) are treated in Lemmas 6 and 7 in Section S2.

For I2 (β0), let us introduce

ω2
n (β) =

2

n (n− 1)h

n∑
i=1

∑
j ̸=i

∫ ∫
Γ2 (s, t) ds dt f̂ 2

β,if̂
2
β,jK

2
ij (β)ϕ

2
ij (β) .

Proposition 3 below ensures that nh1/2ω−1
n (β0) I2 (β0) → N (0, 1) in law.

The terms I4 (β0), I5 (β0) and I6 (β0) can be shown to be negligible in a sim-

ilar way as I1 (β0) and I3 (β0). Lemma 9 shows that ω2
n (β0) →

[
ω{l} (β0)

]2
,

in probability, with ω{l} (β0) > 0 and thus Ij (β0) /ωn (β0) is of the same

order as Ij (β0) for j ∈ {1, 3, 4, 5, 6}. Finally, it is easy to check that

ωn (β0) − ω̂
{l}
n (β0) = oP(1). By Proposition 1, one can replace β0 by βn,
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an estimator of β0 that converges in probability with the rate OP(n
−1/2),

and have

nh1/2I{l}n (βn) /ω̂
{l}
n (βn)− nh1/2I{l}n (β0) /ω̂

{l}
n (β0) = oP(1).

Then the result of the Proposition 2 follows.

Proposition 3. Under the conditions of Proposition 2,

nh1/2ω−1
n (β0) I2 (β0) → N (0, 1) in law.

Proof. {Sn,m, Fn,m, 1 ≤ m ≤ n, n ≥ 1} is a martingale array with Sn,1 = 0

and

Sn,m (β0) =
m∑
i=1

Gn,i (β0)

with

Gn,i (β0) =
2hp/2

ωn (n− 1)h

⟨
ϵi (·) f̂β0,i,

i−1∑
j=1

ϵj (·) f̂β0,jKijϕij

⟩
L2

and Fn,m is the σ-field generated by {X1, . . . , Xn, Y1, . . . , Ym}. Thus

nh1/2ω−1
n (β0) I2 (β0) = Sn,n (β0) .
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From Lemma 8 and the nesting of the σ-fields Fn,i ⊆ Fn+1,i for 1 ≤ i ≤ n,

n ≥ 1, we have that the martingale array satisfies Corollary 3.1 of Hall and

Heyde (1980) and the result follows.

S2 Technical lemmas

In the following results the kernels L and K are supposed to satisfy the

conditions of Assumption 1-(f).

Lemma 1. Assume that E[exp(a∥X∥)] < ∞ for some a > 0. Consider

that g → 0 and ng4/3/ log n → ∞. For any t ∈ [0, 1] let Yk(t), 1 ≤ k ≤ n,

be an i.i.d. random variables like in the proof of Proposition 1 such that

E[supt |Yk(t)|a] < ∞ for some a > 8. Moreover, assume that the maps

v 7→ E[|Yk(t)| | X ′β̄ = v]fβ̄(v), v ∈ R, t ∈ [0, 1], are uniformly Lipschitz

(the Lipschitz constant does not depend on t). Then

max
1≤i≤n

sup
t∈[0,1]

sup
β∈Bn

∣∣∣∣∣ 1

n− 1

∑
k ̸=i

Yk(t)
1

g

[
Lik(β)− Lik(β̄)

]∣∣∣∣∣ = OP(n
−1/2g−1/2 log1/2 n+bn).

Moreover,

max
1≤i≤n

sup
t∈[0,1]

sup
β∈Bn

∣∣∣∣∣ 1

n− 1

∑
k ̸=i

{Yk(t)− E[Yk(t) | X ′
kβ̄]}

1

g
Lik(β̄)

∣∣∣∣∣ = OP(n
−1/2g−1/2 log1/2 n).

Proof of Lemma 1. Recall that Yi(t) ≡ Yi (in the case of SIM for mean re-
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gression) or Yi(t) = 1{Yi ≤ Φ−1(t)} (for the case of single-index assumption

on the conditional law), and ri(t; β̄) = E[Yi(t) | Z(β̄)], t ∈ [0, 1]. For any

t ∈ [0, 1] we decompose

1

ng

∑
k ̸=i

Yk(t)Lik(β) =
1

ng

n∑
k=1

{Yk(t)L ((Xi −Xk)
′β/g)− E [Y (t)L ((Xi −X)′β/g) | Xi]}

+E
[
Y (t)g−1L ((Xi −X)′β/g) | Xi

]
− n−1g−1L(0)Yi(t)

= Σ1ni(β, t) + Σ2ni(β, t)− n−1g−1L(0)Yi(t).

The moment condition on Y guarantees that max1≤i≤n supt |Yi(t)| = oP(n
b)

for some 0 < b < 1/8. This and the fact that ng4/3/ log n → ∞ make that

max1≤i≤n supt n
−1g−1|Yi(t)| = oP(n

−1/2g−1/2 log1/2 n). On the other hand,

by Lemma 5,

max
1≤i≤n

sup
t∈[0,1]

sup
β∈Bn

∣∣Σ2ni(β, t)− Σ2ni(β̄, t)
∣∣ = OP(bn).

It remains to uniformly bound Σ1ni(β, t) and for this purpose we use em-

pirical process tools. Let us introduce some notation. Let G be a class of

functions of the observations with envelope function G and let

J(δ,G, L2) = sup
Q

∫ δ

0

√
1 + logN(ε∥G∥2,G, L2(Q))dε, 0 < δ ≤ 1,

denote the uniform entropy integral, where the supremum is taken over all
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finitely discrete probability distributions Q on the space of the observations,

and ∥G∥2 denotes the norm of G in L2(Q). Let Z1, · · · , Zn be a sample of

independent observations and let

Gng =
1√
n

n∑
i=1

γ(Zi), γ ∈ G,

be the empirical process indexed by G. If the covering numberN(ε,G, L2(Q))

is of polynomial order in 1/ε, there exists a constant c > 0 such that

J(δ,G, L2) ≤ cδ
√
log(1/δ) for 0 < δ < 1/2. Now if Eγ2 < δ2EG2 for every

γ and some 0 < δ < 1, and EG(4υ−2)/(υ−1) < ∞ for some υ > 1, under

mild additional measurability conditions that are satisfied in our context,

Theorem 3.1 of van der Vaart and Wellner (2011) implies

sup
G

|Gnγ| = J(δ,G, L2)

(
1 +

J(δ1/υ,G, L2)

δ2
√
n

∥G∥2−1/υ
(4υ−2)/(υ−1)

∥G∥2−1/υ
2

)υ/(2υ−1)

∥G∥2OP(1),

(S2.4)

where ∥G∥22 = EG2 and the OP(1) term is independent of n. Note that

the family G could change with n, as soon as the envelope is the same for

all n. We apply this result to the family of functions G = {γ(·; β, w, t) −

γ(·; β̄, w, t) : t ∈ [0, 1], β ∈ B, w ∈ R} where

γ(Y,X; β, w, t) = Y (t)L((X ′β − w)g−1))
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for a sequence g that converges to zero and the envelope

G(Y,X) = sup
t∈[0,1]

|Y (t)| sup
w∈R

L(w).

Its entropy number is of polynomial order in 1/ε, independently of n, as

L(·) is of bounded variation and the families of indicator functions have

polynomial complexity, see for instance van der Vaart (1998). Now for

any γ ∈ G, Eγ2 ≤ CgEG2, for some constant C. Let δ = g1/2, so that

Eγ2 ≤ C ′δ2EG2, for some constant C ′ and υ = 3/2, which corresponds to

EG8 <∞ that is guaranteed by our assumptions. Thus the bound in (S2.4)

yields

sup
G

∣∣∣∣ 1

g
√
n
Gnγ

∣∣∣∣ = log1/2(n)
√
ng

[
1 + n−1/2g−2/3 log1/2(n)

]3/4
OP(1),

where the OP(1) term is independent of n. Since ng4/3/ log n→ ∞,

max
1≤i≤n

sup
t∈[0,1]

sup
β∈Bn

|Σ1ni(β, t)− Σ1ni(β̄, t)| = OP(n
−1/2g−1/2 log1/2 n).

The second part of the statement is now obvious.
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Lemma 2. Assume that the density fβ̄(·) is Lipschitz. Then

max
1≤i≤n

∣∣∣∣∣ 1

n− 1

∑
k ̸=i

1

g
Lik(β̄)− fβ̄(X

′
iβ̄)

∣∣∣∣∣ = OP(n
−1/2g−1/2 log1/2 n+ g).

Proof of Lemma 2. We can write

1

n− 1

∑
k ̸=i

1

g
Lik(β̄)− fβ̄(X

′
iβ̄) =

1

n

n∑
k=1

{
g−1Lik(β̄)− E[g−1Lik(β̄) | Xi]

}
+E[g−1Lik(β̄) | Xi]− fβ̄(X

′
iβ̄) +O(n−1g−1).

By the empirical process arguments used in Lemma 1, the sum on the right-

hand side of the display is of rate OP(n
−1/2g−1/2 log1/2 n) uniformly with

respect to i. The Lipschitz property of fβ̄ and the fact that
∫
|vL(v)|dv <∞

guarantee that

max
1≤i≤n

|E[g−1Lik(β̄) | Xi]− fβ̄(X
′
iβ̄)| ≤ Cg

for some constant C.

Lemma 3. For any t ∈ [0, 1] let Yk(t), 1 ≤ k ≤ n, be an independent

sample from a random variable Y (t) defined like in the proof of Proposition

1. Let r(v; t, β̄) = E[Y (t) | X ′β̄ = v], v ∈ R, and assume that r(·; t, β̄)
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is twice differentiable and the second derivative is bounded by a constant

independent of t. If r′(v; t, β̄) is the first derivative of r(·; t, β̄), then, for

any t ∈ [0, 1],

1

n− 1

∑
k ̸=i

{r(X ′
iβ̄; t, β̄)−r(X ′

kβ̄; t, β̄)}
1

g
Lik(β̄) = r′(X ′

iβ̄; t, β̄)gD1,ni+g
2D1,ni(t),

where max1≤i≤n |D1,ni| = n−1/2g−1/2 log1/2 n and max1≤i≤n supt∈[0,1] |D1,ni(t)| =

OP (1) .

Proof of Lemma 3. By Taylor expansion

1

n− 1

∑
k ̸=i

{r(X ′
iβ̄; t, β̄)−r(X ′

kβ̄; t, β̄)}
1

g
Lik(β̄) = r′(X ′

iβ̄; t, β̄)
1

n

n∑
k=1

(Xi−Xk)
′β̄
1

g
Lik(β̄)

+
1

n

n∑
k=1

r′′(xik(t); t, β̄)[(Xi −Xk)
′β̄]2

1

g
Lik(β̄),

where r′′ stands for the second derivative with respect to v and xik(t) is

a point between X ′
iβ̄ and X ′

kβ̄. Since L(·) is symmetric, by the empirical

process arguments as in Lemma 1

max
1≤i≤n

∣∣∣∣∣ 1n
n∑

k=1

(Xi −Xk)
′β̄

g

1

g
Lik(β̄)

∣∣∣∣∣ = OP(n
−1/2g−1/2 log1/2 n).

The result follows taking absolute values in the last sum in the last display,
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using the boudedness of r′′ and the fact that

max
1≤i≤n

∣∣∣∣∣ 1n
n∑

k=1

[(Xi −Xk)
′β̄]2

g2
1

g
Lik(β̄)− fβ̄(X

′
iβ̄)

∫
R
v2|L(v)|dv

∣∣∣∣∣ = oP(1).

Lemma 4. Assume that E[exp(a∥X∥)] < ∞ for some a > 0. Moreover

the kernels K and L are of bounded variation, differentiable except at most

a finite set of points, and
∫
R |uK(u)|du < ∞. Let Bn be a subset in the

parameter space such that the event defined in equation (7.2) with bn → 0

and bnn
1/2/ log n→ ∞ has probability tending to 1. Let

K12(β) = K((X1 −X2)
′β/h), L12(β) = L((X1 −X2)

′β/g)

and ϕ(β) = ϕ((X1 −X2)
′A(β)). If the density fβ̄ is Lipschitz with constant

C1,β̄, then there exists a constant C depending only on K, L, ∥fβ̄∥∞ and

C1,β̄ such that

P
{
E
[
sup
b∈Bn

∣∣K12(β)ϕ12(β)−K12(β̄)ϕ12(β̄)
∣∣ | X1

]
≤ Cbnh

1/2

}
→ 1, (S2.5)
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E
[
sup
b∈Bn

∣∣K12(β)ϕ12(β)−K12(β̄)ϕ12(β̄)
∣∣] ≤ Cbnh

1/2, (S2.6)

P
{
E
[
sup
b∈Bn

∣∣L12(β)− L12(β̄)
∣∣2 | X1

]
≤ Cbng

−1

}
→ 1 (S2.7)

P
{
E
[
sup
b∈Bn

∣∣L13(β)− L13(β̄)
∣∣2 |K12(β̄)|2 | X2, X3

]
≤ Chbng

−1

}
→ 1,

(S2.8)

and

E
[
sup
b∈Bn

∣∣L13(β)− L13(β̄)
∣∣2 |K12(β̄)|2ϕ2

12(β̄)

]
≤ Chbng

−1, (S2.9)

In Lemma 4 we provide different bounds for L(·) and K(·) because the

bandwidths g and h have to satisfy the condition h/g2 → 0. Hence we need

less restrictive conditions on the range of h if we want to allow for a larger

domain for the pair (g, h).

Proof of Lemma 4. Since the univariate kernel K is of bounded kernels, let

K1 and K2 non decreasing bounded functions such that K = K1 − K2

and denote K1h = K1(·/h). Clearly, it is sufficient to prove the result
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with K1. Similar arguments apply for K2 and hence we get the results

for K. For simpler writings we assume that K is differentiable and let

K1(x) =
∫ x

−∞[K ′(t)]+dt and K2(x) =
∫ x

−∞[K ′(t)]−dt, x ∈ R. Here [K ′]+

(resp. [K ′]−) denotes the positive (resp. negative) part of K ′. The general

case where a finite set of nondifferentiability is allowed can be handled with

obvious modifications. Let K1h(t) = K1(t/h) and recall that Zi(β) = X ′
iβ.

Note that | exp(−t2) − exp(−s2)| ≤
√
2|t − s|. For any β ∈ Bn and an

elementary event in the set Cn = {max1≤i≤n ∥Xi∥ ≤ c log n} ⊂ En for some

large constant c,

∣∣K1h (Z1(β)− Z2(β))ϕ12(β)−K1h

(
Z1(β̄)− Z2(β̄)

)
ϕ12(β̄)

∣∣
≤

√
2 bnK1h(Z1(β̄)− Z2(β̄) + 2bn)

+ [K1h(Z1(β̄)− Z2(β̄) + 2bn)−K1h

(
Z1(β̄)− Z2(β̄)− 2bn

)
]ϕ12(β̄).

The upper bound on the left-hand side is uniform with respect to β. By a

suitable change of variable and since the density fβ is bounded, it is easy

to check that

E
[
K1h

(
Z1(β̄)− Z2(β̄) + 2bn

)
| Z1(β̄)

]
is bounded by a constant times h. Next, note that since nh → ∞, there

exists a constant C ′ independent of n such that on the set Cn we have
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|Z1(β̄)− Z2(β̄)± 2bn|/h ≤ C ′h−1/2. Then, applying twice a change of vari-

ables and using the Lipschitz property of fβ̄, on the set Cn,

E
[∣∣K1h

(
Z1(β̄)− Z2(β̄) + 2bn

)
−K1h

(
Z1(β̄)− Z2(β̄)− 2bn

)∣∣1{Cn} | Z1(β̄)
]

≤ h

∫
[−C ′/h1/2, C ′/h1/2]

K1(u)
∣∣fβ̄(2bn + Z1(β̄)− uh)− fβ̄(−2bn + Z1(β̄)− uh)

∣∣ du
≤ h× sup

t∈R

∣∣fβ̄(2bn + t)− fβ̄(−2bn + t)
∣∣ ∫

[−C ′/h1/2, C ′/h1/2]

K1(u)du

≤ Ch1/2bn,

for some constant C > 0. Since by a suitable choice of c the probability of

1{Cn} given Z1(β̄) could be made smaller than any fixed negative power of

n, and the probability of the event {|Z1(β̄)| ≤ c log n} could be also made

very small, the bound in the last display implies the statement (S2.5). For

the statement (S2.6) it suffices to take expectation.

For the bound in equation (S2.7), recall that L(t) = L(|t|) for any

t ∈ R so that we can consider only nonnegative t. Moreover, without

loss of generality we can consider L nonnegative and decreasing on [0,∞),

otherwise, since L is of bounded variation, it could be written an the dif-

ference of two nonnegative decreasing functions on [0,∞). Moreover, let

Z13(β) = |Z1(β) − Z3(β)| and Lg,13(β) = L(Z13(β)/g). We split the prob-

lem in two cases: Z13(β) ≤ Z13(β̄) and Z13(β) > Z13(β̄). Then, for β ∈ Bn
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and on the set Cn we have

∣∣Lg,13(β)− Lg,13(β̄)
∣∣1{Z13(β) ≤ Z13(β̄)}

≤ [L(0)− Lg,13(β̄)]1{Z13(β) ≤ Z13(β̄), Z13(β̄) ≤ 2bn}

+ [Lg,13(β)− Lg,13(β̄)]1{Z13(β) ≤ Z13(β̄), Z13(β̄) ≥ 2bn}

≤ Cb2ng
−21{Z13(β̄) ≤ 2bn}

+
[
L((Z13(β̄)− 2bn)/g)− L(Z13(β̄)/g)

]
1{Z13(β) ≤ Z13(β̄), Z13(β̄) ≥ 2bn}

= Cb2ng
−21{Z13(β̄) ≤ 2bn}+ An

and

∣∣Lg,13(β)− Lg,13(β̄)
∣∣1{Z13(β) > Z13(β̄)}

≤
[
L(Z13(β̄)/g)− L((Z13(β̄) + 2bn)/g)

]
1{Z13(β) > Z13(β̄)} = Bn,
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for some constant C. Let us notice that

An +Bn ≤ [L([Z13(β̄)− 2bn]/g)− L([Z13(β̄) + 2bn]/g)]1{Z13(β̄) ≥ 2bn}

+ [L([Z13(β̄)]/g)− L([Z13(β̄) + 2bn]/g)]1{0 ≤ Z13(β̄) ≤ 2bn}

≤ [L([Z13(β̄)− 2bn]/g)− L([Z13(β̄) + 2bn]/g)]1{Z13(β̄) ≥ 2bn}

+ Cb2ng
−21{Z13(β̄) ≤ 2bn}

≤ [L([Z13(β̄)− 2bn]/g)− L([Z13(β̄) + 2bn]/g)]

+ 2Cb2ng
−21{Z13(β̄) ≤ 2bn}

= Dn + 2Cb2ng
−21{Z13(β̄) ≤ 2bn}.

On the other hand, 0 ≤ Dn ≤ 4bng
−1|L′(Z̃)| where Z̃ is some value such

that |Z̃ − Z13(β̄)| ≤ 2bng
−1. Since, for some constant c, |L′(v)| ≤ c|v| in a

neighborhood of the origin,

Dn ≤ 4bng
−1|L′(Z13(β̄)|+ C ′b2ng

−2,

for some constant C ′. Since L′ is bounded, deduce that |Lg,13(β)−Lg,13(β̄)|2

is bounded by Cb2ng
−1|g−1L′(Z13(β̄)|+ o(b2ng

−1) for some constant C. Take

conditional expectation given X1, that is the same with the conditional

expectation given Z1(β), and deduce the bound in equation (S2.7).
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On the set of events Cn,

sup
β∈Bn

∣∣L13(β)− L13(β̄)
∣∣ |K12(β̄)| ≤ {Dn+3Cb2ng

−21{Z13(β̄) ≤ 2bn}}|K12(β̄)|.

Take conditional expectation and use standard change of variables to derive

the bound in equation (S2.8). Take expectation and remember that ϕ12(β̄)

is bounded to derive the moment bound in equation (S2.9).

Lemma 5. Under the conditions of Lemma 1

sup
t∈[0,1]

sup
β∈Bn

max
1≤i≤n

∣∣Σ2ni(β, t)− Σ2ni(β̄, t)
∣∣ = OP(bn).

Proof of Lemma 5. We can write

∣∣Σ2ni(β, t)− Σ2ni(β̄, t)
∣∣ ≤ E

[
|Y (t)|

∣∣g−1L ((Xi −X)′β/g)− g−1L
(
(Xi −X)′β̄/g

)∣∣ | Xi

]
= E

[
E {|Y (t)|X} g−1

∣∣L ((Xi −X)′β/g)− L
(
(Xi −X)′β̄/g

)∣∣ | Xi

]
.

Now, we can apply the monotonicity argument we used in Lemma 4 and

deduce the bound.

Lemma 6. Under the conditions of Proposition 2, I1(β0) = oP
(
n−1h−1/2

)
.
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Proof of Lemma 6. With the notation defined in equation (S1.3) we have

I1 (β0) =
1

n (n− 1)3 g2h

n∑
i=1

∑
j ̸=i

∑
k ̸=i

∑
l ̸=j

⟨(ri − rk) (·; β0) , (rj − rl) (·; β0)⟩L2 LikLjlKijϕij

and if we denote by I1,1 (β0) the term where i, j, k and l are all different,

then

E [I1,1 (β0)] =
(n− 2) (n− 3)

(n− 1)2 g2h
E [⟨E [(ri − rk) (·; β0)Lik | Zi (β0)] ,

E [(rj − rl) (·; β0)Ljl | Zj (β0)]⟩L2 Kijϕij

]
= O

(
g4
)

as soon as g−1E [(ri − rk) (t; β0)Lik (β0) |Zi (β0)] = O(g2)D (t;Zi (β0)) with

D(·) bounded, which is guaranteed by Assumption 1-(c). When i, j, k and

l take no more than 3 different values, the number of terms is reduced by a

factor n, and thus we have that E [I1,2 (β0)] = O (n−1g−1) = o
(
n−1h−1/2

)
.

Similar reasoning can be applied to prove that E [I21 (β0)] = o (n−2h−1). See

also Proposition A.1. in Fan and Li (1996).

Lemma 7. Under the conditions of Proposition 2, I3(β0) = oP
(
n−1h−1/2

)
.
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Proof of Lemma 7. Write

I3 (β0) =
1

n (n− 1)3 g2h

n∑
i=1

∑
j ̸=i

∑
k ̸=i

∑
l ̸=j

⟨ϵk (·) , ϵl (·)⟩L2 LikLjlKijϕij

=
1

n (n− 1)3 g2h

n∑
i=1

∑
j ̸=i

∑
k ̸=i

∑
l ̸=j,k

⟨ϵk (·) , ϵl (·)⟩L2 LikLjlKijϕij

+
1

n (n− 1)3 g2h

n∑
i=1

∑
j ̸=i

∑
k ̸=i,j

∥ϵk (·)∥2L2 LikLjiKijϕij

+
1

n (n− 1)3 g2h

n∑
i=1

∑
j ̸=i

∥ϵj (·)∥2L2 LijLjiKijϕij

= I3,1 (β0) + I3,2 (β0) + I3,3 (β0) .

Then

E [I3,1 (β0)] =
1

(n− 1)2 g2h
E
[
⟨ϵ1 (·) , ϵ2 (·)⟩L2 L

2
12K12ϕ12

]
= O

(
n−2g−2

)
E
[∣∣⟨ϵ1 (·) , ϵ2 (·)⟩L2 h

−1K12

∣∣]
= O

(
n−2g−2

)
,

E [I3,2 (β0)] = O (n−1g−1) and E [I3,3 (β0)] = O (n−2g−2), thus E [I3 (β0)] =

o
(
n−1h−1/2

)
. By quite straightforward but tedious calculations, it can be

proved that E [I23 (β0)] = o (n−2h−1) and the rate of I3(β0) follows.
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Lemma 8. Under the conditions of Proposition 2,

V 2
n (β0) =

n∑
i=2

E
[
G2

n,i (β0) | Fn,i−1

]
→ 1, in probability,

and the martingale difference array {Gn,i, Fn,i, 1 ≤ i ≤ n} satisfies the con-

ditional Lindeberg condition

∀ε > 0,
n∑

i=2

E
[
G2

n,iI (|Gn,i| > ε) | Fn,i−1

]
→ 0, in probability.

Proof of Lemma 8. First, decompose

V 2
n (β0) =

4

ω2
n (n− 1)2 h

n∑
i=2

∫ ∫
Γ (s, t) f̂ 2

β0,i

(
i−1∑
j=1

ϵj (s) f̂β0,jKijϕij

)

=
4

ω2
n (n− 1)2 h

n∑
i=2

i−1∑
j=1

∫ ∫
Γ (s, t) f̂ 2

β0,i
ϵj (s) ϵj (t) f̂

2
β0,j

K2
ijϕ

2
ijds dt

+
8

ω2
n (n− 1)2 h

n∑
i=3

i−1∑
j=2

j−1∑
k=1

∫ ∫
Γ (s, t) f̂ 2

β0,i
ϵj (s) ϵk (t) f̂β0,j f̂β0,kK

2
ijϕ

2
ijds dt

= An (β0) +Bn (β0) . (S2.10)
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We have

E [An (β0)] = E [E [An (β0) | X1, . . . , Xn]]

= E
[

2n

ω2
n (β0) (n− 1)h

∫ ∫
Γ (s, t) f̂ 2

β0,i
E [ϵj (s) ϵj (t)] f̂

2
β0,j

K2
ijϕ

2
ijds dt

]
=

n

n− 1

n→∞−−−→ 1.

Moreover,

Var (An (β0)) ≤ 64 ∥ϕ∥4∞
(n− 1)4 h2

n∑
i=3

i−1∑
j=2

j−1∑
j′=1

E
[
ω−2
n (β0) f̂

4
β0,i
f̂ 2
β0,j

f̂ 2
β0,j′K

2
ijK

2
ij′

]
×
∫ ∫ ∫ ∫

Γ2 (s, t) Γ2 (u, v) dsdtdudv

+
32 ∥ϕ∥4∞

(n− 1)4 h2

n∑
i=3

i−1∑
i′=2

i′−1∑
j=1

E
[
ω−2
n (β0) f̂

2
β0,i
f̂ 2
β0,i′ f̂

4
β0,j

K2
ijK

2
i′j

]
×
∫ ∫ ∫ ∫

Γ (s, t) Γ (u, v)G (s, t, u, v) dsdtdudv

+
16 ∥ϕ∥4∞

(n− 1)4 h2

n∑
i=3

i−1∑
i′=2

i′−1∑
j=1

E
[
ω−2
n (β0) f̂

4
β0,i
f̂ 4
β0,j

K4
ij

]
×
∫ ∫ ∫ ∫

Γ (s, t) Γ (u, v)G (s, t, u, v) dsdtdudv

= o
(
n−1h−1/2

)
,

where G (s, t, u, v) = E [ϵ (s) ϵ (t) ϵ (u) ϵ (v)]. The decomposition of E [B2
n]

involves the same type of terms and is therefore also of rate o
(
n−1h−1/2

)
,

so that the convergence of V 2
n (β0) is met.
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For the conditional Lindeberg condition, we have ∀ε > 0, ∀n ≥ 1 and

1 < i ≤ n

E
[
G2

n,iI (|Gn,i| > ε) | Fn,i−1

]
≤

E
[
G4

n,i | Fn,i−1

]
ε2

.

Then

n∑
i=2

E
[
G2

n,iI (|Gn,i| > ε) | Fn,i−1

]
≤ 1

ε2

n∑
i=2

E
[
G4

n,i | Fn,i−1

]
≤ 1

ε2
16

(n− 1)4 h2

n∑
i=2

∫ ∫ ∫ ∫
G (s1, s2, s3, s4) f̂

4
β0,i

×
4∏

k=1

i−1∑
jk=1

ϵjk (sk) f̂β0,jkKijkϕijkdsk.

The expectation of the last majorant is of rate

O
(
n−1
) ∫ ∫ ∫ ∫

G (s1, s2, s3, s4) Γ (s1, s2) Γ (s3, s4) ds1ds2ds3ds4

× E
[
f̂ 4
β0,i
f̂ 2
β0,j

f̂ 2
β0,j′h

−1K2
ijh

−1K2
ij′ϕ

2
ijϕ

2
ij′

]
+O

(
n−2h−1

) n∑
i=2

∫ ∫ ∫ ∫
G2 (s1, s2, s3, s4) ds1ds2ds3ds4

× E
[
f̂ 4
β0,i
f̂ 4
β0,j

h−1K4
ijϕ

4
ij

]
=o
(
n−1h−1/2

)
.
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Lemma 9. Under the conditions of Proposition 2, ω2
n (β0) → ω2 (β0) > 0,

in probability.

Proof of Lemma 9. We have

E
[
ω2
n (β0)

]
= 2E

[
f̂β,if̂β,jh

−1K2
ij (β)ϕ

2
ij (β)

]
×
∫ ∫

Γ2 (s, t) ds dt.

On the other hand,

E
[
f̂β,if̂β,jh

−1K2
ijϕ

2
ij

]
=

1

g2h
E

[∑
k ̸=i

∑
l ̸=j

∑
k′ ̸=i

∑
l′ ̸=j

LikLjlLik′Ljl′h
−1K2

ijϕ
2
ij

]

=
1

g2h (n− 1)2
E

[∑
k ̸=i

∑
l ̸=j

∑
k′ ̸=i

∑
l′ ̸=j

LikLjlLik′Ljl′h
−1K2

ijϕ
2
ij

]

=
1

g2h (n− 1)4
E

[∑
k ̸=i

∑
l ̸=j

∑
k′ ̸=i

∑
l′ ̸=j

LikLjlLik′Ljl′h
−1K2

ijϕ
2
ij

]

+ o
(
n−1h−1/2

)
=

(n− 1)3

(n− 2) (n− 3) (n− 4)
ω̃2
n (β0) + o

(
n−1h−1/2

)
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where

ω̃2
n (β0) = E

[∫ ∫ ∫ ∫
1

g
L

(
zi − zk
g

)
1

g
L

(
zj − zl
g

)
1

g
L

(
zi − zk′

g

)
1

g
L

(
zj − zl′

g

)
× 1

h
K2

(
zi − zj
h

)
ϕij

× fβ0 (zk) fβ0 (zl) fβ0 (zk′) fβ0 (zl′)

×πβ0 (zi | Wi (β0)) πβ0 (zj | Wj (β0)) dzidzjdzkdzldzk′dzl′

]
= E

[∫ ∫ ∫ ∫
fβ0 (zi − gs1) fβ0 (zi − gs2) fβ0 (zj − gt1) fβ0 (zj − gt2)

× πβ0 (zi | Wi (β0))πβ0 (zj | Wj (β0))ϕij

×L (s1)L (t1)L (s2)L (t2)
1

h
K2

(
zi − zj
h

)
dzidzjds1dt1ds2dt2

]
= E

[∫ ∫ ∫ ∫
fβ0 (zi − gs1) fβ0 (zi − gs2) fβ0 (zi − gu− gt1) fβ0 (zi − gu− gt2)

× πβ0 (zi | Wi (β0))πβ0 (zi − gu | Wj (β0))ϕij

×L (s1)L (t1)L (s2)L (t2)K
2 (u) dzids1dt1ds2dt2du

]
→ E

[∫
f 4
β0
(z) πβ0 (z | Wi (β0)) πβ0 (z | Wj (β0))ϕijdz

]
×
∫
K2 (u) du

where the limit is obtained by standard arguments, using uniform continuity

of fβ0 (·) and πβ0 (· | w).
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