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Supplementary Material

The supplement contains the proofs of the main results and some auxiliary lemmas that

are of interest.

S1 Preliminary Notation and Localization Assump-
tion

In the sequel, K and e stand for two positive constants that may take
different values at different appearances. In some places we will write
E(V{|F,) as Ex,V;. To save space, we let t;; = (25k,+1i)A,, F;; = Fy,, and
Oj = 02%kpAn> Tji = Ok, AntiA, and ”yﬁ = ”yfjknAnJriAn. By the standard
localization procedure, as in Lemma 4.4.9 of Jacod and Protter (2012), it
suffices to prove the main results under the following strengthened version

of Assumption 3. P, represents the probability conditional on ;.
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Assumption S

56, " < (), 107, )] < J(@), 167 (¢, )| < ()
b, o], |0|_1,bU,HU,H'“,bwi,H”i,H”i and sup |A,X| are bounded,
0<s<T

For V. =0,X,b6 H° H" & H H,

we have |E(Viyy — Vil F)| + E(|Vies — Vi*|F) < Ks.

If B =1, we further assume E[(§(t+s,x) —0(t,x))*|F) < Ks' uniformly

for x € R and any € > 0.

S2 Decomposition on Increments of X

The key to the proof of all main results is the following decomposition.
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S2. DECOMPOSITION ON INCREMENTS OF X3

where
ma1) = by A+ + (10 + 78 ()) 18> 1),
and
tji tji
wi® = [t das e [ ] @) ot aplas,
tji—1 tji—1 v R
i+ (7 () + 7 (=) 1(8 > 1),
with
- 1 tj,i
77](}12 - éHfj,i—l ((Wtj,i _Wtji 1)2 A )+HIU 1/ (W/ W/“ l)dWs,
t]z 1
tj,i t
ﬁﬁi) = / bUdem+/ / / ]’L 1, T dS d‘r)th
tji—1 Jtji-1 tji—1 Y51
+ / (7~ HP )W,
t]z 1 t]z 1 !
b
+/ / )dW dW,
t]z 1 t]z 1
—i—/ / / (07(s,x) — 67 (t;i—1, ))p(ds, dx)dWs,
ﬁj(i)(:t) = / t]z 1 Wt]l 1)in / HW (W/ W/ )dyi
]7, 1 jZ 1
/ / /5 tii1,)p(ds,dz)dY*,

tj,i
i(x) = / / b dsdYiE + / / H) )dW,dY;*
jZ 1 ]7, 1 jZ 1

]7, 1
/ / (H"™ S AWy
t]z 1 t]z 1
ti .
+/ / / (67 (s,2) — 07 (tj:-1,7))p(ds, dx)dY,E.
]z 1 ]z 1 R
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In the definition of ﬁﬁ)(:i:) and ﬁﬁ)(j:), the terms containing Y;* vanish if
B<L
Seen from (52.1) and (52.2), the sketch of our proof is as follows.

First, we present some preliminary estimates related to 7;,(1), n;:(2) and

=L - — 1 which are prepared to prove the fact that the last term in
(S2.1) can be got rid of under Hy. The latter fact is shown in the second
step. Third, we prove the tightness of Yn(T) Finally, we prove the finite

dimensional convergence in distribution.

S3 Preliminary Estimates

S3.1 Preliminary Estimates Related to 7,,(1) and 7;,(2)

Lemma 1. Under Assumptions 1-3 and Assumption S, we have

7L
P <\ﬁ\ > dn> < Ke™“,

for any sequence of real numbers d,, satisfying d, — oo and some € > 0,
(2 (3 (4
E]‘-j,i—l ‘n](,z)‘ S KAfzﬂ? E]:j,i—l ‘n](,z)(j:” S KAW E]'-j,i—l ‘n](,z)(j:” S KAiﬂ?

and
tji
E;j,“]/ /5(tj,i1,x)p(ds,dx)] < KA,.
tji—1 Y R

Proof. By the boundedness of H? and H'”, and the normality of W’ and
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W, we have

(1 ~(1
Eee‘n;,i)‘/An = EEfji_leelnj(',i)‘/An < K.

Then the first inequality is a direct consequence of the Markov inequality.

By Ito’s product formula,

tj,i t
Bl [ Ftenits.anaw

J,i—1 J,i—1

tj,i
< E]'—j,ifl ‘ / 5U(tj,i*17 x)ﬁ(dsa dx) ’ ’Agjkn"er’
tji—1 Y R
tj,i
+E-7'-j,i—1 / / |5U(tj,i—lu x)(WS - V[/tj,i—1)|]5(dsa dZL‘) (831)
t R

-1

By independence of W and p, Assumption S, Holder’s inequality, we have

tj
E]:j,i—1| /
t.

/R 5 (b0, )p(ds, do)| | A, WV

J,i—1

< KAYVEr,, Y |Ao| < KAY? (S3.2)

0<s<T

By Holder’s inequality, Assumption S, we have

2
E]:j,i—l /
t.

I8 i (W= Wl o)
ji-1J R
tji
< KAY? / / J(z)dzdt < KA. (S3.3)
tji—1 J R
(S3.2) and (S3.3) prove that

tji t
Er,, .| / / / 6% (i1, 2)p(ds, dz)dW;| < KA. (S3.4)
tii tii R

j,i—1 j,i—1

By It0’s isometry and Assumption S,

tji t
Ex,, | / / b dsdW,| < KAY?, (S3.5)
tji—1Jtj 1
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and

tji t
Er, || / / (H? — H | )dW,dW,
tji—1 i

tj,i—l

tj,i t

lo lo !/

+ / / (HY — HP)dW!dW,|

tji—1 Jtji-1
tji

t
Bl [ @) = 8 (e a)itds. )i
tii—1 J R

tji—1

< KNA¥2 (S3.6)

Combination of (53.4)-(S3.6) proves the second inequality.
By the Burkholder-Davis-Gundy inequality and Assumptions 1-2 and

Assumption S, we have

tji 4
E}-j,i—1| / Ht’y' (Wt - VV'fj,i—l)dytivprE
t, .

J,i—1
J,i—1
tj,i
< Er,._, / / (H Wy = Wi, )|PHeal T FE (da, db) + K AL
tii—1 Rt
< KAL82, (83.7)

(Notice that if 5 < 1 this term does not exist) Then a further use of the

Holder inequality yields

tji 2+4
E-Fj,i—1| / HW:E (VVt - Wtj,i—l)d}/t:t| < KATQZ(6+6) : (838)
tv .

tji—1
Jyi—1

Similar to the proof of (S3.8), we have

tj,i
E]:j,i—1| /
t. .

j,i—1 j,i—1

t -
/ (HE Wt / 57 (a1, 0)B(ds, de))dYE| < KAL7
tii R

(93.9)
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(S3.8) and (S3.9) together finishes the proof of the third inequality.
Next we prove the fourth inequality. By using the Burkholder-Davis-

Gundy inequality twice and Assumptions 1-2, and Assumption S, we have,

tj,i t
Bral [ ] [0 60 - 0 a opptds, dajayi e
tiio1 Jtjio1 JR

J,i—1 Jyi—1

tji t
< E]:ji—l/ / |/ /(57i(3,l‘) —57i(tj7i_1,I))ﬁ(ds,dl‘)|ﬂ+e
7 tji—1 YRt Jtj; 1 JR
x P F(dx, dt)
L. t + +
< B [ [ [0 - 0 gt o)
7 tji—1 JRt Jt;,1 JR
B+te
X2 R (dr, dt) < KA,? (83.10)

A further use of the Holder inequality, we have

tji t 1, 2
Er,. || / / / (67 (s,2) — 67 (341, 2))P(ds, da)dY2] < KAZT5.

J,i—1 J,i—1

(S3.11)
Similar to the proof of (S3.11), we have
b t + 1+1—¢
Er,, | / / VY dsdYE| < KA, 7 (S3.12)
tji-1 Jtji-1
byi t 141
Er,, | / / (H] — H )dW.dY" | < KA, 7, (S3.13)
tji-1 Jtji-1

and

tj,i t 1_,
Er,. .| / / (HD = HY )dWIdYF < KA, P (S3.14)
to - to -

J,i—1 J,i—1

Now combining (S3.11)-(S3.14), we proved the fourth inequality.
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The last inequality is due to the fact that f(f [ 0(s, z)p(ds, dx) is a pure

jump process of finite variation and Assumption S. 0
Lemma 2. Under Assumptions 1-8 and S, we have
Efj,i_1|77j,i(1)| < KAn, E-Fj,i—l|nj7i(2)| < KA?Z/2'

If further Hy is true, we have

(1
P (7’771(” I dn) < Ke <,

Proof. Similar to the proof of (S3.2), we have

ti
Er , \|be. A +/ / I(tjic1, x)p(ds,dx)| < KA,. (S3.15)
i1 JR

tji—1

Therefore, combining Lemma 1 and (S3.15), we have
By, (D] < KA, (3.16)
By Lemma 1, to prove the second inequality, it suffices to prove that
By n3a(2) = i = i3 (+) = i3 (4)] < KAY. (83.17)

By Assumption S and Hélder’s inequality and a similar proof to (S3.2), we

have

tj,i tj,i
E]'-j,i—1|/ (bS_btj,i—l)dS+/ /((5(8,:[‘)—5(153‘7@'_1,f))p(ds,dx” < KA?}/Q'

ji-1 j,i—1

(S3.18)
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The last inequality is the result of the boundedness of b and the first

inequality of Lemma 1.

S3.2 Preliminary Estimates Related to oy, , — 0,1
In this section, we give a basic estimate on the increments of ;.

Lemma 3. Suppose that Assumptions 2-3 and S are satisfied. Let 7 be

the JAI of o. Then we have

and

2 2 1.2 4

for any x > 0 and d}, > CnAﬁl/Q for some C,, > 0.

Proof. We only prove the first inequality, since the second one is a direct
result of the first inequality and Assumption S. It suffices to show that the
increment for each component term satisfies the inequality in the lemma.
By boundedness of b7 as assumed in Assumption S, we have for large enough

n,

t+An
P (\/ b du| > d;*l\/An) ~0. (83.21)
t
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Let Cy = [/"°(HZ)?du < Ks and 7(u) = inf{s; Cy; = u} for u > 0. Then by
change of time, ftHT(u) H7dW, = B, for some standard Brownian motion

B given F;. Obviously, 7(u) is a stopping time w.r.t. F.. Now by the

|Bu

optional stopping theorem and the fact that e/®«l is a submartingale, we

have

t+An 170
P(!—ft ;desbd;z) < B (e A g et T BN

< e—xd;\/AnEex\BKAM

< e~ A”_%$2KA”. (53.22)
Similarly, we have
t+Ap H
/Ud ! *
PR o ) < msciems (sam

By Assumption S and the Burkholder-Davis-Gundy inequality, we have

t+An
P (/ / |67 (s, 2)|p(ds, dx) > \/And;;) < KAC%P . (S3.24)
t R

Combining (S3.21)-(S3.24) proves the lemma.

O

An implication of Lemma 3 and (S3.24), and the Bonferroni inequality

is that

My

P (2,(0)) = (1) 0797), 0,,(0) = {max[o?~o% 1| < K (1)),

(S3.25)
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for some € > 0 small enough. This can be verified by taking x = \/1A— and

d* = KmbL™ ¢
n VvV Mn Ankrll_e

tj tjmn
[ [t [ [ 00l ),
tjo R tjo R

and the Bonferroni inequality.

in Lemma 3 and noticing

0.2
S3.3  Preliminary Estimates Related to |/ -+ L—1
Jj—1
We start with some new notations and a decomposition of 67 ;. Recall

that

Uy(u) = exp(—u’o} — 2ALPuPa,) with a, = x(8) (| |° + [, )

where x(8) = [;° y Psin(y)dy. For ease of notation, let U;(u) = Usjy, (u),
07 = 035, and a; = agy,. Let §(u) = Lj(u)/Uj(u) — 1 and Q,,(e) =

{w, max; [§;(u,w)| < €}. Lemma 7 of Jacod and Todorov (2014) shows that
P (€ ,(e)) — 0. (S3.26)

Now, by Taylor expansion of log (1 + ), we have,
& (u)

cj(u) = of +2u° AP Pa (B> 1) — qujg)—i_ 2u? Frilu),
67(u) = o] + 2" A Pa (B> 1)
& ) & (u )_ (sinh(uzc;(u)))? + (). (S3.27)

u? 2u? kyu?
where 7;(u) represents the remaining term satisfying |r;(u)| < K ‘5’7(‘—2)‘3 on

,:(€). Therefore, by the strengthened conditions in Assumption S, we
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have, on €, (€),

ci(uy,) — o2 K 6%(u,) —o? K
o) 273 Kol Z oy K ($3.25)

To obtain more precise estimate of 67 (u,) — 07, we start with that of &;(u,),

which can be decomposed as

kn N .
§iun) = ! 1 Z {cos(un Abjkn X A2jkn+2l—lX)
Uj (un) kn =1 A /An

Agjkn-ﬂlX - Agjkn+2l—1X)
VA,

k
1 & Al X — Ay o 1 X
k_z :E]-'j,lilCOS(un ot \/A_] * )_ UJ(”n)

—Er,,_ cos(un

)

(S3.29)

& (un) + &jalun).

For &;1(uy), rewrite it as &;1(u,) = Zl 1 anjl(u" ! (un), we soon have

‘q/j;_”fﬂ(un) is a martingale. By the martingale central limit theorem,

kn j n
VEnGja (un) S A(0,1), (53.30)
\/an E}_.zfl(g;}l(“"))Q

J,
=1 uﬁanJQ(un)

E 2
where the limit of Z % is to be investigated below. By

the triangular formula cos?(x) = HCO;(QI), and taking (@n,0, an 1, n2) =

(—Un, Un, 0) or (—2uy,, 2u,,0) in Lemma A.4 of Kong et al. (2015), we have

1 ! 9 1 o, Ak iuX — Ay o1 X
u_iE]:j,l—l (gj,l(un)) = U_%Efj,l—lcos (un \/A_n )
—i(E; cos(u Ak raX = Ak a1 X
1 n

1 \BF - )?
U VA,
= 20} + o(uy). (S3.31)
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Bry (€, ) L 20t
u‘,ﬁanJZ (un) U; (un) "

Then the limiting variance, or the limit of Zfﬁl
result of (S3.30) and the existence of the moment generating function of

&;1(uy,) is that when = < e for some € > 0,
Ex e®Vi&Gatim)/u _y o=2*0j/Ufun) < 1, (S3.32)
J

From this, we have by the Markov inequality, for large enough n,

o , ed
Pr, (y\i—:@ﬂ(un)\ > dn) < e, (S3.33)

n

for some sequence of d], T co. By the definition of §; 1 (u,), the orthogonality

of martingale differences and Holder’s inequality, we have

2r

Er,  |&a(un) < K2 r=1,2,.. (93.34)

> ]g:/2’

By Assumption S and Lemma A.4 in Kong et al. (2015) again, we have
Er,, [&o(un)|" < KuZ (ko) 7= 1,2, ... (S3.35)

(S3.34) and (S3.35) together proves that

2r

Er, &) < K—2 r =12, . (S3.36)

/2

Hence we have Ex, . |c;(un) — 07" 1(Qe(€)) < K((uQ*QAi_Bﬂ)T + L,

2
Ky

which together with (S3.36) and the expansion of the sinh function yields

E(un)  (sinh(u?c;(un)))? Ku?
, . n r < n )
EJ:],O’ QU% knu% ‘ [(Qnyt(e)) — kz ) (83 37)

Ex,o|rj(wn)| I (Qny(€)) < Kuy' /K372, (S3.38)
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By (S3.36)-(S3.38), we have under Assumption S,

A T(Qul€)) < (K /By + Kuf2AL#2)7(S3.39)

Simple calculus yields

-1 (z—1)?

< —1)? )
st | S K- (S3.40)

‘\/E—l—x

for all 0 < x <e. This implies that

2 ) < K (L
,0 0_]2 nt\€)) = \/E

62(uy,) — 2us 2 AL, K
NEs — 1" I(Qn(e)) < (
: o t VEkn

Er, +ufT2ALA2) (S3.41)

Ey, )7 (53.42)

Define €, ,(&1) = {max; [§;1(u,)| < %} By taking d/, = (K logn)?

and the Bonferroni inequality, we have
P (95,(&)) = o(1). (83.43)

By Lemma A .4 in kong et al. (2015) again, we have, by Taylor expan-

sion of e* around x = 0,

kn
1 "
§j72(un) k U(U ) ((0'32 - a?vlfl)ui + 7“]-71
I =1
+O(ALPI(B > 1) + o(ut A?)) (S3.44)

2

/B i 3 3 " 2 2
where 77, is a remaining term satisfying |r7,| < K(of — 03,_;)*. Now we
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have on Q,+(&) N Qy,4(0),

P (927,,(&)) = o(1), (53.45)

where
Qnt(§2) = {max |£J2(un)| < K(uimn/kn + Arlz_ﬁﬂ](ﬁ >1))}.

As a summary of this section, by (S3.27), we have on €, ;(£)N82, :(&2)N

Qn,t(a)a

max |67 (u,) — 07| < K(my/kn +u, 2AL P21 > 1)), (S3.46)
J

A further use of the boundedness of ¢? results in
6]2' (un)
2
J

on 2, +(&1) N2y 1(&2) N, ¢(0), and

— 1] < K(mp/ky +u;2ALP21(8 > 1)), (S3.47)

max |
j

P (Qfm(&) U 4(&) U QZ,t(U)) =o(1). (53.48)

S3.4 Negligibility of (1,,(1) +1;:(2))/(vV/A,|o;-1|) under H,

Define w, (1) as

(n/(2kn)]

T/ (k)] 21<; Z ZZI Wnji ST

and w/, (1) as

1 [n/(2kn)] mn,

T 2 2 G S0 = P fnga <),
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where

ti
ajZl 2jkn+ZW+j;11fR ]Z ]-7 ds dx)
Wn,ji =
6511V A
+ n + — n _
,ytj,i—lAijnJriY +/ytj,i—1A2j]€n+’iY

651V A,

I(B>1).

In this section, we restrict ourselves on Hy and thus the jumps of infinite
variation does not exist. The following Lemma reveals that Fn(un, 7) and

wy,(7) are close enough uniformly in 7.

Lemma 4. Under Assumptions 1-S, we have, under Hy and on €, (&1) N

Qn,t (£2) N Qn,t(g) ’

SUp | F3 (tn, 7) — wa(7)] = 0,(V/ [/ (2ka) ),

TG-AC

where A, is any compact subset of R.

Proof. By considering two cases, %ﬂ”f) < €, where ¢, = Kv/A,(logn)*
n|6j—

and its complement, we have

~ 1
‘Fn(un,T) - ’U}n(T)’ S m ZZ[(T — €p S Wn,j,i S T+ Gn)
7]” +n]z(2)
I(] > €n)-
T S )
(S3.1)

By Lemma 2 with d,, = K logn for K large enough, and (S3.47), we have

the second term in last equation is O,(£2"—") = 0,(1). For the first

€n
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term, we prove it by the e-net method. Let w,1(7) be the first term
in the right hand side of the above equation, and N = ‘“:;:‘ where | A,
is the length of A.. Then, we have sup, w,1(7) < maxj<yw,1(7-1) +
MAaX;< N SUD,e(r,_, ) | Wn1(T) — Wy (7-1)| where 7’s are grid points in A,
with equal step length €,. For the first summand, by the Bonferroni in-

equality, we have

P(\/[n/(2k,)]m, rlréa]u@(wml(n,l) > €)

< N max P(+\/[n/(2k,)|muwn,1(Ti—1) > €), (S3.2)

1<I<N
hence it is enough to prove P(\/[n/(2ky)|mpwn1(7—1) > €) = o(1/N). By

the Markov inequality, we have, for any > 0,

P(\/[n/(2k,)mywy1(1i—1) > €)

zI(T)_ —en<wp ;i ST +en)
7,
7 7

By boundedness of o and (S3.47), we have

zI(Tj_1—e€n Swn‘j’ig‘l'l_l«l»en)
e [0/ ()i

= 1+ (e/I/Cm) )P (e — e S Wi S Tic1 + 6n)

< 1A (/I @Ra)lmn) ) e (S3.4)

which shows that, for n large enough,

a:I(7'171 76n§“’n,j,i§7l—l+5n)

E <H H Er, . e [ e ) < e+ e"fen, (S3.5)

J
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By taking = = K/¢, for large K, (3.3) and (S3.3), we have
_ Ke
P(\/[n/(2kyn)mpwn1(1i—1) > €) < Ke enV/Celmn = o(1/N).  (S3.6)

For the second summand,

| ( ) ( )‘ < Zj Zz 1 (Tlfl - 2671 S wn,j,i S Ti—1 + 2671)
sup Wn 1\T) — Wn1\Ti-1)| > .
TE(T—1,7) [n/(2kn)]m,

Repeat the steps from (S3.3) to (S3.6), we have

max sup |w,1(7) — wya(7m-1)| = 0,(1),
TE(T—1,71)

which finishes the proof of the lemma.

S3.5 Tightness of w/ (7)

Though the summands of w/,(7) are only martingale differences which may

not be i.i.d., we still have the following tightness result.

/

Lemma 5. Under Assumptions 1-S, we have, under Hy, w;,

(1) is tight in
space D(A.) in Skorohod topology.

Proof. By Theorem 15.6 of Billingsley (1968), it is enough to show

(H(72) — H(m))*™

A2 ’
(93.7)

P (Jwy(r) = wi ()] > A |y, (72) — wi, (7)) > A) <
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for nondecreasing continuous function H, some 7 > 0 and a > 1/2 and all
1<T7T<To.
By the Markov inequality, the left hand side of (S3.7) is no larger than

E(wy, (1) = wj, (11))* (w, (72) — w, (7))
At ‘

By the orthogonality of the martingale differences, we have

E(w, (1) = w,(m1))*(w),(r2) —w,,(7))* < |E[I]| + |E[I1]| + |E[IT1]], (S3.8)

n

where

: 2
LS ey 2210 S S0 P <)

X1 < wnyji <7o) = Py, (T <wnyji < 7))?,

1] =

([n/( 21€ Z Z (71 < Wagrin £7) = Py (1 S Wiy <7))°

X Z Z T < Wn J2,02 < 7-2) pg yig— 1(7- < W, ja ia < 7-2))27

and

11l =

([ 2]€ m Z Z Tl < wy J1s0 < T> a ptjl»ilfl (Tl < Wn,j1 i1 < T>)
n

(51

X(I(1 < wnjy i S 72) = Py o (T S Wiy < 72))

X Z Z(I(Tl < Wnjain < 7-) - Pth,igfl (Tl < Wnjain < T))
j i

X([(T < Wn,ja o < TQ) - Ptjg,i271(7- < Wn,ja o < TQ))'
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Simple algebraic manipulation and iterative conditioning yield

E[I] = E([n/% 22}2( (T < wnji <o)
thj,i—l(Tl S w”y] i S T)( Ptj,i_l(Tl S wn,j,i S T))

+‘Ptj,i—1(7— < Wn,j,i < TQ)Pti,i,l(Tl < Wn,j,i < T)

X(1 — ptj!Fl (7' S wn,jﬂ- S 7'2))) .

By boundedness of o and §7, (S3.47) and the independence of W and the

random measure p, on £, (&) Ny, (&) N Q¢ (o) we have
P (T<wn;; <7) < K(r' —7). (S3.9)

This shows that E[I] <

= m([( T — KT 1)3. By iterative conditioning

and (S3.9), we have E[II] < (K1, — K7)% Similarly, we have |E[IT1]] <
(K7 — K71)?. Combining the above results and notice that A, containing
T1,T, T2 is a compact set, we have (S3.7) holds with H(z) = Kz and o = 1

and v = 2.
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S4 Finite Dimensional Convergence in Distribution

of Y, (1)

By Lemmas 4 and 5, to prove the main results, it suffices to prove that the
finite dimensional limiting distribution of the process w/ (7) is equal to that
of (3.4). This is revealed by the following lemmas. The first lemma below
gives some convergence results of the aggregated errors in estimating the
local volatilities.

Lemma 6. Under Assumptions 1-S, we have,

[n/(2kn)] -1

1 ,
~ > 5;21;’;) (2v) =" N(0,4), (S4.1)
V 8An =0 n-j
[n/(2kn)]—1 ;
1 Z QL; (gf(u;) B (SZnh(UiCj(un>>>2) =P 0, (S4.2)
VA, J=0 95 2uy, tnkn
[n/(2kn)]—1
2u, 75 (Un)
A X a0 o
=
[n/(2kn)]=1 9
2kn Y iizz) (2vn) =" 4 (S4.4)

( ?(Un) B (sinh(U%Cj(Un)))Q) (2?)71) N O,(S4.5)

2u2 Upkn

(2u,) =70, (S4.6)
where —T= stands for stable convergence.

Proof. Replacing & ;j(u,) in the proof of Theorem 3.1 of Kong et. al (2015)
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by &;(un)/0; proves (S4.1). (S4.2) is a straight consequence of (S3.37) and
(S3.26). (S4.3) is directly from (S3.38) and (S3.26). For (S4.4), we rewrite

the left hand side as

[n

/(2 2
T (un) |, 20,
(—/—)27 (847)

jzo U%U;l 1 An
which goes to the limiting variance of the left hand side of (S4.1). Again,
(S4.5) and (S4.6) are from (S3.37) and (S3.38), respectively, plus (S3.26).

O

ft]]; L Jr 0(tji—1,2)p(ds,dx)

The next lemma shows that AT is negligible. But

before stating the lemma, we need some more notations. Let

b S s Jui Jn 8 2)plds )
gi §—1\Un )T — \/A_ )

+ —
= 1;1/]0j 1| and J;; = 2= 1 A8k Y Ve A+
Nji = t5,i/10j-1] and Jj; = T ,

Dj,i(lﬂ_) =

Ot A, W + i < 7s)
loj 1]V A, -

(I(Utj,i—lAgjkn+iW + Jji <7)—FEr. I
71 VA, a "

Otyi1 BV + i _ 7o)
o1 |VAL -

Ot B3k W + Jii ))
o1 VAL B 7

I( - Efj,i—lj(

and D;;(2,7) equals

I(U“ B HWJFJ“ <7) —Ef]-i-lf(a“ AW+ i
‘Uj—l‘\/ n ’ ‘OJ—1|V n
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Lemma 7. Under Assumptions 1-S, we have,

[n/(2kn)] mn Y2 g B2 AR
D1, - nn T \Y2) (84
[n/(2k,)m.) 2k Ymy) Z ZZ; i1 7) ((nmnjL nm, ). (548)
Proof.
(n/(2kn)] 2
o > z
p— E
([n/ 2k, mn) ZZ
1 1/v/Fon + uf~2 AL
< K—r——— E <K n 4.
S T T R Yo7 PR

where in the last step, we have used Lemmas 1, 2 and (S3.41). This together

with the Markov inequality completes the proof. O

Lemma 8. 1. Under Assumptions 1-S, we have on 2, (&) N Q1 (&2) N
Qn,t(a)f

Ex. . (](0“ 1A23k 1WA+ Jj
e o1 VA,

Ay W + Jji

o1V A,

~ . 1-. . .
= V()M —7) + 5@]-,/{(7)(77]‘@ — 1) + hyi(tn, B) + ra(j, 1),

< 7ji)

O¢

—I( J,i—1

<7))

(S4.10)

72uﬂ_2A176/2a~

5'2 Un n n —
where |re(7,1)| < KAY?, Nji = \/ =2 (tn) > =7, hyi(tn, B)

o5 4

is a polynomial function of (u2_2A71fﬁ/2aj,1) of degree lower than q
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with (1 — B/2)q > 1/2, and @:);‘Z(T) is the conditional cumulative dis-

n
2jkn+iW

. . . A
tribution function of TA. T o 1\F given Fj;_q.

~ 1
" (1) — ™ (1) < KA

I

where f*)(1) stands for the kth derivative of f(7) for f = QN,

Proof. Proof of 1. Let ﬁ(-g)(j:)l be the first term of ﬁ](i)(j:) and @, (z) be

5t

the conditional cumulative distribution function of

tji ~(3
Oty A W Tia ) Jr Ot 2)p(ds, dx) + 77J( T+ 773(',1‘)(_)1

loj 1|V A VAo ’

given o(Fj—1 VW' VY*Vp) with the conditional variance denoted as &7,

which is bounded away from 0 and infinity by Assumption S. Let

I

i e 8(tin, @)p(ds, da) + %) (4)1 + 75 (<h
L

7 VA |OJ 1

and

tji ~(3
oo Jo Ja S @)p(ds. do) £ T (H) + 7 ()
pew VAo

Then we have that the left side of (S4.10) is equal to Er,, [, (n};) —

@, (77;)], which, on Q,, +(§1) N Qy¢(€2) N Q2 4(0), can be decomposed as

E]'—j,ifl [(I)n(n;lﬂ - o, (TJT,Lz>]

i)+ SO Z TS 8) i)
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where 7¢(j, %) is the remaining term, h;,;(1) = T<I>’n(T)uﬁ_QAifﬁ/Qaj,l/a]{l,

hj,i(umﬁ)
1 q (I)glk) k
= () +5) 2o (D)7 Y (up A ek

2 |O'j_1|kk’!
k=1 k1+ko+ks+ka=k
ko S () ey &1 (un) — (sinh(ule; 1(un)))® 4,
X(Tj(un)) ( j_u% ) 3( JQU% - k’nfu% ) - hj,i(1>7
(S4.12)
with ¢ being a sequence of numbers, and
|T<I>(j7 Z)|
2 . 2 2
s (Sim1(un) 5 1(un) — (sinh(upci(un)))? 4
< KBp(ryma(u) 4+ |2l 4 g — St
+RAL2,
By (S3.36)-(S3.38), we have
Ex, . Ira(j,9)| < KAY (S4.13)

By independence of W, W', Y+ and p, Assumption 1, Lemma 1 and (S3.42),

and repeated conditioning, we have for k£ = 1,2, ..., q,

B |0 (1) = &P () (0 — )| < Kfon/ ke (S4.14)

Combination of (S4.11)-(S4.14) shows that

B (@u(173) = @u(7])) = BF(7) (7 — 7)

12

_§®7'{( )i — 7—)2 hji(un, B)] < Ky/A (S4.15)



26 Xin-Bing Kong

(S4.15) proves part 1 of the lemma.
Proof of 2. By independence of W and Y+, Assumption 2 on F(z, c0),

Assumption S, and the boundedness of ®*)(z) for any integer k,

. g
"M () —o®(r) = |PY (N 0,1)+ — — ST) —oW(7
85 (7) e O e Wiw )
J. .
— |E-.  ®® <7_¢) —o® (s
‘ ]:],7,71 ’0']71’\/A_n ( )‘
Jji i1
< KEr . ( A1) < KA, 2 S4.16
e - 1\/—! ) (54.16)
O

By the Burkhélder-Davis-Gundy inequality and (S3.24), one gets that
E].-“(\#\ 1) < Kk,A,. Then similar to the proof of Lemma 7, we

0j—1

have the following lemma.

Lemma 9. Under Assumptions 1-S, we have

1 [n/(2kn)] mn
DESTAP PR
AW 5/2
IS e < 8] = 02

and

[n/(an Mn

W T .
2]kn+z 7% < "
n/ 2]€ Z ZZ An ’O'jfly\/An o ) ]Z(T)

AL, W N
—](% < 7) + B(1)] = Op( —
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S5 Proof of the Main Results

Proof of Theorem 1 By Lemmas 4 and 5, the remaining proof of Theorem
1 is the same as that of Theorem 2, except that we remove all the quantities

containing jumps of infinite variation. So we only prove Theorem 2 below.

Proof of Theorem 2 By Lemmas 7-9, we have

[n/(2kn)] mp _1/2An

Eo(up,7) = T k) Qk Z Z[ \/Ui’tﬁrz <7
i= J

- T 2 o (50 +hute)
[n/(2kn)] man
1 AL W
I jkn+1i _@
OIS <( st <) - a0)
. 1 [n/(2kn)] mn (ém( o )
[n/(2ky)] M — Gi\T )\ e — T

+1§>’?"{(T)(ﬁj,z‘ - 7')2) +0,(VA,). (S5.1)

1 o/ @n)] mn .
e 3 3 (B )+ e~ )

[/ (262)] o
- o 3 (o) cov/a)
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By (S3.37), (S3.38) and 2 of Lemma 8, we have for k,l =1,2,...,q,

n/ an Mn
k) (k)
[/ 2kl 2l<; Z Z e
1 (un) .
] 22 nu2 (Sznh(unc'*l(un)))2
X (—2 kn 52 - ) = 0)(VAW),  (85.3)
-1

and

Z Z w0 () @) () (i) o /R,

(S5.4)

[n/(2k,)]m,, 2k

By the proof of the first equation in Lemma 6 and 2 of Lemma 8, we have

1 [n/(2kn)] mp ¢ (u )
T S @) - NI = 0, (V/A,)
(S5.5)
y (S5.1)-(S5.5), we have
R 1 [n/(2kn)] mn
Fn(un,T) = W Z ZZ@
[n/(%n | mn n " +ZW
n/ Qk Z Z( i/— ST)_CD(T))

1 [n/(%n)} 1 / £J 1( )
TR 2 (2“1’(%02 )

3N

1 [n/(2kn)] ( 1

[/ (2k,)] 2

j—].

Z Zhﬂ Un, B) + Op(v/A).  (S5.6)

2( &K 5] 1( )
§T<¢><T>—@<>><u%2 ?)

[n/ 2k
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Now, Theorem 2 is a straight consequence of (S5.6) and Lemma 6. The inde-
pendence between Z;(7) and Zy(7) is due to the assumption that m,, /k, —

0.

Proof of Remark 1 By the definition of é;i(T), we have by Taylor ex-
pansion,

N 11t EYN 44 (EY[
Y (1) — @(1) = P'(1)An 2t B0 T

Ji

(85.7)

|71

where

") < KEg,, e < KALAP

Jji Jji
ﬁl A< K(| ﬁ\ A1

’ Oj— 1‘ ’ Oj— 1’

for any € > 0. This together with the fact that

n 2k‘n Mn — —
k] ’731 1EY++7ji71E§/1

[n/ % Z Z ol

0

"78’

completes the proof, where in (S5.8), we used Assumption S to deduce that

E]'—j,ifl ’ﬁ)/si - ﬁ)/ji,i—l‘ < K(S - tjﬂ'*l)l/Q?

E]'-j,i—l |US - O-tj,i—l‘ < K(S - tjvi—l)lﬂ' (859)

Proof of Theorem 3 We prove the theorem in several steps.
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1) By the property of Lévy process, one soon has A, 1/8 A, +Z-Yi con-
verges in distribution to a random variable with the Lévy-Khinchin spectral

as
exp ( / Oo(eFm — 1 —/—102)8/2' P da), (S5.10)
0

where v/—1 is the image unit.

2) By the proof of Lemma 2, we have

t,i
Li = ANYPER | ( / (v =t ayst

tji—1

tji
+ / (Vo = .Y

i i1

!j»i
+ /
t

J,i—1

tji
bsds+/ /5(8,$)p(d$,d$)) < KAY? (85.11)
tji—1 Y R

3) By (A. 31) and (A. 35) in Kong et al. (2015), we have

5.2

> E_e
1 —1| > ) < KA, w7 /e (S5.12)

2u5_2A71fﬁ/2aj,1

(]

4) Let €, = AY for 0 < ¢’ < 1/2. Define

Afs = .l SGZ}H{IQ i —1f <€)

—2A1-5/2
ug An Bl &3;1

Then by the results in 2) and 3),

P((A7,)) = 0. (S5.13)

Jt
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On A%, we have by the result in 1) and the condition that 3 > 1,

1/p n
P, An O A Y A Y B iY )+ L < rAZTF
]2 1 (un)
> Pfj,z’—l <A;1/ﬁ (Vj;,i,lAgjknJriY—’— + Vg,iflAgjknJriY_)
11
< (uPPALPRa; ) x (1 —eTAr 7 — e;) — 1. (S5.14)
On the other hand, by evaluating the variance,
[n/(2kn)] my,
1 Ag kn—+i 3 k —HX
Z(I( et S7—)_‘P-F]z—1( et —T))
[/ (2 ) j=1 =1 031 031
1
= O,( ) (S5.15)
M\ [0/ (2k,)Im,
Combining (S5.13) (S5.14) and (S5.15), we have
[n/(an Mn A
I( B i X —P 1. 85.16
e D BE Sy 85,10

j—l

Proof of Theorem 4 (3.15) is a direct consequence of Theorem 1. To prove
(3.16), without loss of generality, we specify the bandwidth parameters as

follows. Let k, = W\/ﬁ(n) and m, = n'/?/(logn)?. Under the alternative
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T ~f BY] +vi BY[ ds

hypothesis, on { # 0,infoc <7 02 > 0},

|os]

VI (2k)m] sup |Ey(un, 7) — (7))

TEA:
TA+EY," +~ EY; , 1o
> sup (I)/(T)/ Ve BNy . B ds|n2z /) °
TEA: 0 ‘08‘
m, n/2k,|my
—sup | 24() + [ o () — VALl 2 g
TEA. n n

— +00, a.s.,

as A,, — 0.



