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Supplementary Material

The supplement contains the proofs of the main results and some auxiliary lemmas that

are of interest.

S1 Preliminary Notation and Localization Assump-

tion

In the sequel, K and ε stand for two positive constants that may take

different values at different appearances. In some places we will write

E(Vt|Fs) as EFsVt. To save space, we let tj,i = (2jkn+i)Δn, Fj,i = Ftj,i and

σj = σ2jknΔn, σj,i = σ2jknΔn+iΔn and γ±
j,i = γ±

2jknΔn+iΔn
. By the standard

localization procedure, as in Lemma 4.4.9 of Jacod and Protter (2012), it

suffices to prove the main results under the following strengthened version

of Assumption 3. Pt represents the probability conditional on Ft.
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Assumption S

|δ(t, x)|r ≤ J(x), |δσ(t, x)| ≤ J(x), |δγ±
(t, x)| ≤ J(x);

b, |σ|, |σ|−1, bσ, Hσ, H ′σ, bγ
±
, Hγ±

, H ′γ±
and sup

0≤s≤T
|ΔsX| are bounded;

For V = σ,X, b, δσ, Hσ, H ′σ, δγ
±
, Hγ±

, H ′γ±
,

we have |E(Vt+s − Vt|Ft)|+ E(|Vt+s − Vt|2|Ft) ≤ Ks.

If β = 1, we further assume E[(δ(t+ s, x)− δ(t, x))2|Ft] ≤ Ks1+ε uniformly

for x ∈ R and any ε > 0.

S2 Decomposition on Increments of X

The key to the proof of all main results is the following decomposition.

Δn
2jkn+iX√

Δnσ̂2
j−1(un)

=
σtj,i−1

Δn
2jkn+iW

|σ̂j−1(un)|
√
Δn

+
γ+
tj,i−1

Δn
2jkn+iY

+ + γ−
tj,i−1

Δn
2jkn+iY

−

|σ̂j−1(un)|
√
Δn

I(β > 1)

+

∫ tj,i
tj,i−1

∫
R
δ(tj,i−1, x)p(ds, dx)

|σ̂j−1(un)|
√
Δn

+
ηj,i(1) + ηj,i(2)

|σ̂j−1(un)|
√
Δn

, (S2.1)

and

σtj,i−1
Δn

2jkn+iW

|σ̂j−1(un)|
√
Δn

=
σj−1Δ

n
2jkn+iW

|σj−1|
√
Δn

+
σj−1Δ

n
2jkn+iW

|σj−1|
√
Δn

(√
σ2
j−1

σ̂2
j−1(un)

− 1

)

+

√
σ2
j−1

σ̂2
j−1(un)

σtj,i−1
− σj−1

|σj−1|
Δn

2jkn+iW√
Δn

, (S2.2)
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where

ηj,i(1) = btj,i−1
Δn + η̃

(1)
j,i +

(
η̃
(3)
j,i (+) + η̃

(3)
j,i (−)

)
I(β > 1),

and

ηj,i(2) =

∫ tj,i

tj,i−1

(bs − btj,i−1
)ds+

∫ tj,i

tj,i−1

∫
R

(δ(s, x)− δ(tj,i−1, x))p(ds, dx)

+η̃
(2)
j,i +

(
η̃
(4)
j,i (+) + η̃

(4)
j,i (−)

)
I(β > 1),

with

η̃
(1)
j,i =

1

2
Hσ

tj,i−1

(
(Wtj,i −Wtj,i−1

)2 −Δn

)
+H ′σ

tj,i−1

∫ tj,i

tj,i−1

(W ′
s −W ′

tj,i−1
)dWs,

η̃
(2)
j,i =

∫ tj,i

tj,i−1

∫ t

tj,i−1

bσs dsdWt +

∫ tj,i

tj,i−1

∫ t

tj,i−1

∫
R

δσ(tj,i−1, x)p̃(ds, dx)dWt

+

∫ tj,i

tj,i−1

∫ t

tj,i−1

(H ′σ
s −H ′σ

tj,i−1
)dW ′

sdWt

+

∫ tj,i

tj,i−1

∫ t

tj,i−1

(Hσ
s −Hσ

tj,i−1
)dWsdWt

+

∫ tj,i

tj,i−1

∫ t

tj,i−1

∫
R

(δσ(s, x)− δσ(tj,i−1, x))p̃(ds, dx)dWt,

η̃
(3)
j,i (±) =

∫ tj,i

tj,i−1

Hγ±
tj,i−1

(Wt −Wtj,i−1
)dY ±

t +

∫ tj,i

tj,i−1

H ′γ±
tj,i−1

(W ′
t −W ′

tj,i−1
)dY ±

t

+

∫ tj,i

tj,i−1

∫ t

tj,i−1

∫
R

δγ
±
(tj,i−1, x)p̄(ds, dx)dY

±
t ,

η̃
(4)
j,i (±) =

∫ tj,i

tj,i−1

∫ t

tj,i−1

b′γ
±

s dsdY ±
t +

∫ tj,i

tj,i−1

∫ t

tj,i−1

(Hγ±
s −Hγ±

tj,i−1
)dWsdY

±
t

+

∫ tj,i

tj,i−1

∫ t

tj,i−1

(H ′γ±
s −H ′γ±

tj,i−1
)dW ′

sdY
±
t

+

∫ tj,i

tj,i−1

∫ t

tj,i−1

∫
R

(δγ
±
(s, x)− δγ

±
(tj,i−1, x))p̄(ds, dx)dY

±
t .
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In the definition of η̃
(3)
j,i (±) and η̃

(4)
j,i (±), the terms containing Y ±

t vanish if

β ≤ 1.

Seen from (S2.1) and (S2.2), the sketch of our proof is as follows.

First, we present some preliminary estimates related to ηj,i(1), ηj,i(2) and√
σ2
j−1

σ̂2
j−1(un)

− 1 which are prepared to prove the fact that the last term in

(S2.1) can be got rid of under H0. The latter fact is shown in the second

step. Third, we prove the tightness of Ŷn(τ). Finally, we prove the finite

dimensional convergence in distribution.

S3 Preliminary Estimates

S3.1 Preliminary Estimates Related to ηj,i(1) and ηj,i(2)

Lemma 1. Under Assumptions 1-3 and Assumption S, we have

P

(
| η̃

(1)
j,i

Δn

| > dn

)
≤ Ke−εdn ,

for any sequence of real numbers dn satisfying dn → ∞ and some ε > 0,

EFj,i−1
|η̃(2)j,i | ≤ KΔ3/2

n , EFj,i−1
|η̃(3)j,i (±)| ≤ KΔn, EFj,i−1

|η̃(4)j,i (±)| ≤ KΔ3/2
n ,

and

EFj,i−1
|
∫ tj,i

tj,i−1

∫
R

δ(tj,i−1, x)p(ds, dx)| ≤ KΔn.

Proof. By the boundedness of Hσ and H ′σ, and the normality of W ′ and
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W , we have

Eeε|η̃
(1)
j,i |/Δn = EEFj,i−1

eε|η̃
(1)
j,i |/Δn ≤ K.

Then the first inequality is a direct consequence of the Markov inequality.

By Itô’s product formula,

EFj,i−1
|
∫ tj,i

tj,i−1

∫ t

tj,i−1

∫
R

δσ(tj,i−1, x)p̃(ds, dx)dWt|

≤ EFj,i−1
|
∫ tj,i

tj,i−1

∫
R

δσ(tj,i−1, x)p̃(ds, dx)||Δn
2jkn+iW |

+EFj,i−1

∫ tj,i

tj,i−1

∫
R

|δσ(tj,i−1, x)(Ws −Wtj,i−1
)|p̃(ds, dx). (S3.1)

By independence of W and p̃, Assumption S, Hölder’s inequality, we have

EFj,i−1
|
∫ tj,i

tj,i−1

∫
R

δσ(tj,i−1, x)p̃(ds, dx)||Δn
2jkn+iW |

≤ KΔ1/2
n EFj,i−1

∑
0≤s≤T

|Δsσ| ≤ KΔ3/2
n . (S3.2)

By Hölder’s inequality, Assumption S, we have

EFj,i−1

∫ tj,i

tj,i−1

∫
R

|δσ(tj,i−1, x)(Ws −Wtj,i−1
)|p̃(ds, dx)

≤ KΔ1/2
n

∫ tj,i

tj,i−1

∫
R

J(x)dxdt ≤ KΔ3/2
n . (S3.3)

(S3.2) and (S3.3) prove that

EFj,i−1
|
∫ tj,i

tj,i−1

∫ t

tj,i−1

∫
R

δσ(tj,i−1, x)p̃(ds, dx)dWt| ≤ KΔ3/2
n . (S3.4)

By Itô’s isometry and Assumption S,

EFj,i−1
|
∫ tj,i

tj ,i−1

∫ t

tj,i−1

bσsdsdWt| ≤ KΔ3/2
n , (S3.5)
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and

EFj,i−1
|
∫ tj,i

tj,i−1

∫ t

tj,i−1

(Hσ
s −Hσ

tj,i−1
)dWsdWt

+

∫ tj,i

tj,i−1

∫ t

tj,i−1

(H ′σ
s −H ′σ

tj,i−1
)dW ′

sdWt|

+EFj,i−1
|
∫ tj,i

tj,i−1

∫ t

tj,i−1

∫
R

(δσ(s, x)− δσ(tj,i−1, x))p̃(ds, dx)dWt|

≤ KΔ3/2
n . (S3.6)

Combination of (S3.4)-(S3.6) proves the second inequality.

By the Burkhölder-Davis-Gundy inequality and Assumptions 1-2 and

Assumption S, we have

EFj,i−1
|
∫ tj,i

tj,i−1

Hγ±
tj,i−1

(Wt −Wtj,i−1
)dY ±

t |β+ε

≤ EFj,i−1

∫ tj,i

tj,i−1

∫
R+

|Hγ±
tj,i−1

(Wt −Wtj,i−1
)|β+εxβ+εF±(dx, dt) +KΔ1+β/2

n

≤ KΔ1+β/2
n . (S3.7)

(Notice that if β ≤ 1 this term does not exist) Then a further use of the

Hölder inequality yields

EFj,i−1
|
∫ tj,i

tj,i−1

Hγ±
tj,i−1

(Wt −Wtj,i−1
)dY ±

t | ≤ KΔ
2+β

2(β+ε)
n . (S3.8)

Similar to the proof of (S3.8), we have

EFj,i−1
|
∫ tj,i

tj,i−1

∫ t

tj,i−1

(H ′γ±
tj,i−1

dWs+

∫
R

δγ
±
(tj,i−1, x)p̄(ds, dx))dY

±
t | ≤ KΔ

1
2
+ 1

β
−ε

n .

(S3.9)



S3. PRELIMINARY ESTIMATES7

(S3.8) and (S3.9) together finishes the proof of the third inequality.

Next we prove the fourth inequality. By using the Burkhölder-Davis-

Gundy inequality twice and Assumptions 1-2, and Assumption S, we have,

EFj,i−1
|
∫ tj,i

tj,i−1

∫ t

tj,i−1

∫
R

(δγ
±
(s, x)− δγ

±
(tj,i−1, x))p̄(ds, dx)dY

±
t |β+ε

≤ EFj,i−1

∫ tj,i

tj,i−1

∫
R+

|
∫ t

tj,i−1

∫
R

(δγ
±
(s, x)− δγ

±
(tj,i−1, x))p̄(ds, dx)|β+ε

×xβ+εF (dx, dt)

≤ EFj,i−1

∫ tj,i

tj,i−1

∫
R+

∫ t

tj,i−1

∫
R

|δγ±
(s, x)− δγ

±
(tj,i−1, x)|β+εq̄(ds, dx)

×xβ+εF (dx, dt) ≤ KΔ
β+ε
2

+2
n . (S3.10)

A further use of the Hölder inequality, we have

EFj,i−1
|
∫ tj,i

tj,i−1

∫ t

tj,i−1

∫
R

(δγ
±
(s, x)− δγ

±
(tj,i−1, x))p̄(ds, dx)dY

±
t | ≤ KΔ

1
2
+ 2

β+ε
n .

(S3.11)

Similar to the proof of (S3.11), we have

EFj,i−1
|
∫ tj,i

tj,i−1

∫ t

tj,i−1

b′γ
±

s dsdY ±
t | ≤ KΔ

1+ 1
β
−ε

n , (S3.12)

EFj,i−1
|
∫ tj,i

tj,i−1

∫ t

tj,i−1

(Hγ
s −Hγ

tj,i−1
)dWsdY

±
t | ≤ KΔ

1+ 1
β
−ε

n , (S3.13)

and

EFj,i−1
|
∫ tj,i

tj,i−1

∫ t

tj,i−1

(H ′γ
s −H ′γ

tj,i−1
)dW ′

sdY
±
t | ≤ KΔ

1+ 1
β
−ε

n . (S3.14)

Now combining (S3.11)-(S3.14), we proved the fourth inequality.
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The last inequality is due to the fact that
∫ t

0

∫
R
δ(s, x)p(ds, dx) is a pure

jump process of finite variation and Assumption S.

Lemma 2. Under Assumptions 1-3 and S, we have

EFj,i−1
|ηj,i(1)| ≤ KΔn, EFj,i−1

|ηj,i(2)| ≤ KΔ3/2
n .

If further H0 is true, we have

P

( |ηj,i(1)|
Δn

> dn

)
≤ Ke−εdn .

Proof. Similar to the proof of (S3.2), we have

EFj,i−1
|btj,i−1

Δn +

∫ tj,i

tj,i−1

∫
R

δ(tj,i−1, x)p(ds, dx)| ≤ KΔn. (S3.15)

Therefore, combining Lemma 1 and (S3.15), we have

EFj,i−1
|ηj,i(1)| ≤ KΔn. (S3.16)

By Lemma 1, to prove the second inequality, it suffices to prove that

EFj,i−1
|ηj,i(2)− η̃

(2)
j,i − η̃

(4)
j,i (+)− η̃

(4)
j,i (−)| ≤ KΔ3/2

n . (S3.17)

By Assumption S and Hölder’s inequality and a similar proof to (S3.2), we

have

EFj,i−1
|
∫ tj,i

tj,i−1

(bs−btj,i−1
)ds+

∫ tj,i

tj,i−1

∫
R

(δ(s, x)−δ(tj,i−1, x))p(ds, dx)| ≤ KΔ3/2
n .

(S3.18)
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The last inequality is the result of the boundedness of b and the first

inequality of Lemma 1.

S3.2 Preliminary Estimates Related to σtj,i−1
− σj−1

In this section, we give a basic estimate on the increments of σt.

Lemma 3. Suppose that Assumptions 2-3 and S are satisfied. Let βσ be

the JAI of σ. Then we have

P

(
|σt+Δn − σt√

Δn

| > d∗n

)
≤ K

(
e−xd∗n

√
Δn− 1

2
x2KΔn +ΔnC

−βσ

n

)
, (S3.19)

and

P

(
|σ

2
t+Δn

− σ2
t√

Δn

| > d∗n

)
≤ K

(
e−xd∗n

√
Δn− 1

2
x2KΔn +ΔnC

−βσ

n

)
, (S3.20)

for any x > 0 and d∗n > CnΔ
−1/2
n for some Cn > 0.

Proof. We only prove the first inequality, since the second one is a direct

result of the first inequality and Assumption S. It suffices to show that the

increment for each component term satisfies the inequality in the lemma.

By boundedness of bσ as assumed in Assumption S, we have for large enough

n,

P

(
|
∫ t+Δn

t

bσudu| > d∗n
√

Δn

)
= 0. (S3.21)
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Let Cs =
∫ t+s

t
(Hσ

u )
2du ≤ Ks and τ(u) = inf{s;Cs = u} for u ≥ 0. Then by

change of time,
∫ t+τ(u)

t
Hσ

v dWv = Bu for some standard Brownian motion

B given Ft. Obviously, τ(u) is a stopping time w.r.t. Fτ(u). Now by the

optional stopping theorem and the fact that e|Bu| is a submartingale, we

have

P

(
|
∫ t+Δn

t
Hσ

s dWs√
Δn

| > d∗n

)
≤ E

(
e−xd∗n

√
ΔnEFte

x| ∫ t+Δn
t Hσ

s dWs|
)

≤ e−xd∗n
√
ΔnEex|BKΔn |

≤ e−xd∗n
√
Δn− 1

2
x2KΔn. (S3.22)

Similarly, we have

P

(
|
∫ t+Δn

t
H ′σ

s dW ′
s√

Δn

| > d∗n

)
≤ e−xd∗n

√
Δn− 1

2
x2KΔn. (S3.23)

By Assumption S and the Burkhölder-Davis-Gundy inequality, we have

P

(∫ t+Δn

t

∫
R

|δσ(s, x)|p̃(ds, dx) >
√

Δnd
∗
n

)
≤ KΔnC

−βσ

n . (S3.24)

Combining (S3.21)-(S3.24) proves the lemma.

An implication of Lemma 3 and (S3.24), and the Bonferroni inequality

is that

P
(
Ωc

n,t(σ)
)
= O((

mn

kn
)1−(1−ε)βσ

), Ωn,t(σ) = {max
j,l

|σ2
j−σ2

j,l−1| ≤ K(
mn

kn
)1−ε},

(S3.25)
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for some ε > 0 small enough. This can be verified by taking x = 1√
Δn

and

d∗n = Km1−ε
n√

mnΔnk
1−ε
n

in Lemma 3 and noticing

|
∫ tj,l

tj,0

∫
R

δσ(s, x)p̃(ds, dx)| ≤
∫ tj,mn

tj,0

∫
R

|δσ(s, x)|p̃(ds, dx),

and the Bonferroni inequality.

S3.3 Preliminary Estimates Related to

√
σ2
j−1

σ̂2
j−1

− 1

We start with some new notations and a decomposition of σ̂2
j−1. Recall

that

Ut(u) = exp(−u2σ2
t − 2Δ1−β/2

n uβat) with at = χ(β)(|γ+
t |β + |γ−

t |β)

where χ(β) =
∫∞
0

y−βsin(y)dy. For ease of notation, let Uj(u) = U2jvn(u),

σ2
j = σ2

2jvn and aj = a2jvn . Let ξj(u) = Lj(u)/Uj(u) − 1 and Ωn,t(ε) =

{ω,maxj |ξj(u, ω)| ≤ ε}. Lemma 7 of Jacod and Todorov (2014) shows that

P
(
Ωc

n,t(ε)
)→ 0. (S3.26)

Now, by Taylor expansion of log (1 + x), we have,

cj(u) = σ2
j + 2uβ−2Δ1−β/2

n ajI(β > 1)− ξj(u)

u2
+

ξ2j (u)

2u2
+ rj(u),

σ̂2
j (u) = σ2

j + 2uβ−2Δ1−β/2
n ajI(β > 1)

−ξj(u)

u2
+

ξ2j (u)

2u2
− (sinh(u2

ncj(u)))
2

knu2
+ rj(u). (S3.27)

where rj(u) represents the remaining term satisfying |rj(u)| ≤ K
|ξj(u)|3

u2 on

Ωn,t(ε). Therefore, by the strengthened conditions in Assumption S, we
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have, on Ωn,t(ε),

|cj(un)− σ2
j

σ2
j

| ≤ K

u2
n

, | σ̂
2
j (un)− σ2

j

σ2
j

| ≤ K

u2
n

. (S3.28)

To obtain more precise estimate of σ̂2
j (un)−σ2

j , we start with that of ξj(un),

which can be decomposed as

ξj(un) =
1

Uj(un)

(
1

kn

kn∑
l=1

[
cos(un

Δn
2jkn+2lX −Δn

2jkn+2l−1X√
Δn

)

−EFj,l−1
cos(un

Δn
2jkn+2lX −Δn

2jkn+2l−1X√
Δn

)

]

+

[
1

kn

kn∑
l=1

EFj,l−1
cos(un

Δn
2jkn+2lX −Δn

2jkn+2l−1X√
Δn

)− Uj(un)

])

≡ ξj,1(un) + ξj,2(un). (S3.29)

For ξj,1(un), rewrite it as ξj,1(un) =
∑kn

l=1
1

knUj(un)
ξlj,1(un), we soon have

√
kn
u2
n
ξj,1(un) is a martingale. By the martingale central limit theorem,

√
knξj,1(un)

u2
n

√∑kn
l=1

EFj,l−1
(ξlj,1(un))2

u4
nknU

2
j (un)

→Ls N (0, 1), (S3.30)

where the limit of
∑kn

l=1

EFj,l−1
(ξlj,1(un))2

u4
nknU

2
j (un)

is to be investigated below. By

the triangular formula cos2(x) = 1+cos(2x)
2

, and taking (an,0, an,1, an,2) =

(−un, un, 0) or (−2un, 2un, 0) in Lemma A.4 of Kong et al. (2015), we have

1

u4
n

EFj,l−1
(ξlj,1(un))

2 =
1

u4
n

EFj,l−1
cos2(un

Δn
2jkn+2lX −Δn

2jkn+2l−1X√
Δn

)

− 1

u4
n

(EFj,l−1
cos(un

Δn
2jkn+2lX −Δn

2jkn+2l−1X√
Δn

))2

= 2σ4
j + o(u4

n). (S3.31)
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Then the limiting variance, or the limit of
∑kn

l=1

EFj,i−1
(ξlj,1(un))2

u4
nknU

2
j (un)

is
2σ4

j

U2
j (un)

. A

result of (S3.30) and the existence of the moment generating function of

ξj,1(un) is that when x ≤ ε for some ε > 0,

EFj
ex

√
knξj,1(un)/u2

n → e−x2σ4
j /U

2
j (un) < 1. (S3.32)

From this, we have by the Markov inequality, for large enough n,

PFj

(
|
√
kn
u2
n

ξj,1(un)| > d′n

)
≤ e−xd′n , (S3.33)

for some sequence of d′n ↑ ∞. By the definition of ξj,1(un), the orthogonality

of martingale differences and Hölder’s inequality, we have

EFj,i−1
|ξj,1(un)|r ≤ K

u2r
n

k
r/2
n

, r = 1, 2, ... (S3.34)

By Assumption S and Lemma A.4 in Kong et al. (2015) again, we have

EFj,i−1
|ξj,2(un)|r ≤ Ku2r

n (knΔn)
r/2, r = 1, 2, ... (S3.35)

(S3.34) and (S3.35) together proves that

EFj,i−1
|ξj(un)|r ≤ K

u2r
n

k
r/2
n

, r = 1, 2, ... (S3.36)

Hence we have EFj,i−1
|cj(un) − σ2

j |rI(Ωn,t(ε)) ≤ K((uβ−2
n Δ

1−β/2
n )r + u2r

n

k
r/2
n

),

which together with (S3.36) and the expansion of the sinh function yields

EFj,0
|ξ

2
j (un)

2u2
n

− (sinh(u2
ncj(un)))

2

knu2
n

|rI(Ωn,t(ε)) ≤ Ku2r
n

kr
n

, (S3.37)

EFj,0
|rj(un)|rI(Ωn,t(ε)) ≤ Ku4r

n /k3r/2
n . (S3.38)
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By (S3.36)-(S3.38), we have under Assumption S,

EFj
| σ̂

2
j (un)

σ2
j

− 1|rI(Ωn,t(ε)) ≤ (K/
√

kn +Kuβ−2
n Δ1−β/2

n )r. (S3.39)

Simple calculus yields

∣∣∣∣√x− 1− x− 1

2
+

(x− 1)2

8

∣∣∣∣ ≤ K(x− 1)2, (S3.40)

for all 0 ≤ x ≤ ε. This implies that

EFj,0
|
√

σ̂2
j (un)

σ2
j

− 1|rI(Ωn,t(ε)) ≤ K(
1√
kn

+ uβ−2
n Δ1−β/2

n )r,(S3.41)

EFj,0
|

√√√√ σ̂2
j (un)− 2uβ−2

n Δ
1−β/2
n aj

σ2
j

− 1|rI(Ωn,t(ε)) ≤ (
K√
kn

)r.(S3.42)

Define Ωn,t(ξ1) = {maxj |ξj,1(un)| ≤ d′nu2
n√

kn
}. By taking d′n = (K log n)d

and the Bonferroni inequality, we have

P
(
Ωc

n,t(ξ1)
)
= o(1). (S3.43)

By Lemma A.4 in kong et al. (2015) again, we have, by Taylor expan-

sion of ex around x = 0,

ξj,2(un) =
1

knUj(un)

kn∑
l=1

(
(σ2

j − σ2
j,l−1)u

2
n + r′′j,l

+O(Δ1−β/2
n )I(β > 1) + o(u4

nΔ
1/2
n )
)
, (S3.44)

where r′′j,l is a remaining term satisfying |r′′j,l| ≤ K(σ2
j − σ2

j,l−1)
2. Now we
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have on Ωn,t(ξ1) ∩ Ωn,t(σ),

P
(
Ωc

n,t(ξ2)
)
= o(1), (S3.45)

where

Ωn,t(ξ2) = {max
j

|ξj,2(un)| ≤ K(u2
nmn/kn +Δ1−β/2

n I(β > 1))}.

As a summary of this section, by (S3.27), we have on Ωn,t(ξ1)∩Ωn,t(ξ2)∩

Ωn,t(σ),

max
j

|σ̂2
j (un)− σ2

j | ≤ K(mn/kn + u−2
n Δ1−β/2

n I(β > 1)). (S3.46)

A further use of the boundedness of σ2 results in

max
j

| σ̂
2
j (un)

σ2
j

− 1| ≤ K(mn/kn + u−2
n Δ1−β/2

n I(β > 1)), (S3.47)

on Ωn,t(ξ1) ∩ Ωn,t(ξ2) ∩ Ωn,t(σ), and

P
(
Ωc

n,t(ξ1) ∪ Ωc
n,t(ξ2) ∪ Ωc

n,t(σ)
)
= o(1). (S3.48)

S3.4 Negligibility of (ηj,i(1) + ηj,i(2))/(
√
Δn|σj−1|) under H0

Define wn(τ) as

1

[n/(2kn)]mn

[n/(2kn)]∑
j=1

mn∑
i=1

I (ωn,j,i ≤ τ) ,

and w′
n(τ) as

1√
[n/(2kn)]mn

[n/(2kn)]∑
j=1

mn∑
i=1

(
I (ωn,j,i ≤ τ)− Ptj,i−1

(ωn,j,i ≤ τ)
)
,
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where

ωn,j,i =
σtj,i−1

Δn
2jkn+iW +

∫ tj,i
tj,i−1

∫
R
δ(tj,i−1, x)p(ds, dx)

|σ̂j−1|
√
Δn

+
γ+
tj,i−1

Δn
2jkn+iY

+ + γ−
tj,i−1

Δn
2jkn+iY

−

|σ̂j−1|
√
Δn

I(β > 1).

In this section, we restrict ourselves on H0 and thus the jumps of infinite

variation does not exist. The following Lemma reveals that F̂n(un, τ) and

wn(τ) are close enough uniformly in τ .

Lemma 4. Under Assumptions 1-S, we have, under H0 and on Ωn,t(ξ1) ∩

Ωn,t(ξ2) ∩ Ωn,t(σ),

sup
τ∈Ac

|F̂n(un, τ)− wn(τ)| = op(
√

[n/(2kn)]mn),

where Ac is any compact subset of R.

Proof. By considering two cases,
ηj,i(1)+ηj,i(2)√

Δn|σ̂j−1| ≤ εn where εn = K
√
Δn(logn)

ε

and its complement, we have

|F̂n(un, τ)− wn(τ)| ≤ 1

[n/(2kn)]mn

∑
j

∑
i

I(τ − εn ≤ ωn,j,i ≤ τ + εn)

+
K

[n/(2kn)]mn

∑
j

∑
i

I(|ηj,i(1) + ηj,i(2)√
Δn|σ̂j−1|

| > εn).

(S3.1)

By Lemma 2 with dn = K logn for K large enough, and (S3.47), we have

the second term in last equation is Op(
Δn+n−Kε

εn
) = op(1). For the first
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term, we prove it by the ε-net method. Let wn,1(τ) be the first term

in the right hand side of the above equation, and N = |Ac|
εn

where |Ac|

is the length of Ac. Then, we have supτ wn,1(τ) ≤ maxl≤N wn,1(τl−1) +

maxl≤N supτ∈(τl−1,τl)
|wn,1(τ) − wn,1(τl−1)| where τl’s are grid points in Ac

with equal step length εn. For the first summand, by the Bonferroni in-

equality, we have

P (
√
[n/(2kn)]mn max

l≤N
wn,1(τl−1) > ε)

≤ N max
1≤l≤N

P (
√
[n/(2kn)]mnwn,1(τl−1) > ε), (S3.2)

hence it is enough to prove P (
√
[n/(2kn)]mnwn,1(τl−1) > ε) = o(1/N). By

the Markov inequality, we have, for any x > 0,

P (
√
[n/(2kn)]mnwn,1(τl−1) > ε)

≤ e−xε/
√

[n/(2kn)]mnE

(∏
j

∏
i

EFtj,i−1
e

xI(τl−1−εn≤ωn,j,i≤τl−1+εn)

[n/(2kn)]mn

)
.(S3.3)

By boundedness of σ and (S3.47), we have

EFtj,i−1
e

xI(τl−1−εn≤ωn,j,i≤τl−1+εn)

[n/(2kn)]mn

= 1 + (ex/([n/(2kn)]mn) − 1)Ptj,i−1
(τl−1 − εn ≤ ωn,j,i ≤ τl−1 + εn)

≤ 1 + (ex/([n/(2kn)]mn) − 1)Kεn, (S3.4)

which shows that, for n large enough,

E

(∏
j

∏
i

EFtj,i−1
e

xI(τl−1−εn≤ωn,j,i≤τl−1+εn)

[n/(2kn)]mn

)
≤ ε+ exKεn. (S3.5)
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By taking x = K/εn for large K, (3.3) and (S3.3), we have

P (
√
[n/(2kn)]mnwn,1(τl−1) > ε) ≤ Ke

− Kε

εn
√

[n/(2kn)]mn = o(1/N). (S3.6)

For the second summand,

sup
τ∈(τl−1,τl)

|wn,1(τ)−wn,1(τl−1)| ≤
∑

j

∑
i I (τl−1 − 2εn ≤ wn,j,i ≤ τl−1 + 2εn)

[n/(2kn)]mn
.

Repeat the steps from (S3.3) to (S3.6), we have

max
l

sup
τ∈(τl−1,τl)

|wn,1(τ)− wn,1(τl−1)| = op(1),

which finishes the proof of the lemma.

S3.5 Tightness of w′
n(τ)

Though the summands of w′
n(τ) are only martingale differences which may

not be i.i.d., we still have the following tightness result.

Lemma 5. Under Assumptions 1-S, we have, under H0, w
′
n(τ) is tight in

space D(Ac) in Skorohod topology.

Proof. By Theorem 15.6 of Billingsley (1968), it is enough to show

P (|w′
n(τ)− w′

n(τ1)| > λ, |w′
n(τ2)− w′

n(τ)| > λ) <
(H(τ2)−H(τ1))

2α

λ2γ
,

(S3.7)
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for nondecreasing continuous function H , some γ > 0 and α > 1/2 and all

τ1 < τ < τ2.

By the Markov inequality, the left hand side of (S3.7) is no larger than

E(w′
n(τ)− w′

n(τ1))
2(w′

n(τ2)− w′
n(τ))

2

λ4
.

By the orthogonality of the martingale differences, we have

E(w′
n(τ)−w′

n(τ1))
2(w′

n(τ2)−w′
n(τ))

2 ≤ |E[I]|+ |E[II]|+ |E[III]|, (S3.8)

where

I =
1

([n/(2kn)]mn)2

∑
j

∑
i

(I(τ1 ≤ ωn,j,i ≤ τ)− Ptj,i−1
(τ1 ≤ ωn,j,i ≤ τ))2

×(I(τ ≤ ωn,j,i ≤ τ2)− Ptj,i−1
(τ ≤ ωn,j,i ≤ τ2))

2,

II =

1

([n/(2kn)]mn)2

∑
j1

∑
i1

(I(τ1 ≤ ωn,j1,i1 ≤ τ)− Ptj1,i1−1
(τ1 ≤ ωn,j1,i1 ≤ τ))2

×
∑
j2

∑
i2

(I(τ ≤ ωn,j2,i2 ≤ τ2)− Ptj2,i2−1
(τ ≤ ωn,j2,i2 ≤ τ2))

2,

and

III =

1

([n/(2kn)]mn)2

∑
j1

∑
i1

(I(τ1 ≤ ωn,j1,i1 ≤ τ)− Ptj1,i1−1
(τ1 ≤ ωn,j1,i1 ≤ τ))

×(I(τ ≤ ωn,j1,i1 ≤ τ2)− Ptj1,i1−1
(τ ≤ ωn,j1,i1 ≤ τ2))

×
∑
j2

∑
i2

(I(τ1 ≤ ωn,j2,i2 ≤ τ)− Ptj2,i2−1
(τ1 ≤ ωn,j2,i2 ≤ τ))

×(I(τ ≤ ωn,j2,i2 ≤ τ2)− Ptj2,i2−1
(τ ≤ ωn,j2,i2 ≤ τ2)).
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Simple algebraic manipulation and iterative conditioning yield

E[I] = E
1

([n/(2kn)]mn)2

∑
j

∑
i

(
P 2
tj,i−1

(τ ≤ ωn,j,i ≤ τ2)

×Ptj,i−1
(τ1 ≤ ωn,j,i ≤ τ)(1 − Ptj,i−1

(τ1 ≤ ωn,j,i ≤ τ))

+Ptj,i−1
(τ ≤ ωn,j,i ≤ τ2)P

2
tj,i−1

(τ1 ≤ ωn,j,i ≤ τ)

×(1− Ptj,i−1
(τ ≤ ωn,j,i ≤ τ2))

)
.

By boundedness of σ and δσ, (S3.47) and the independence of W and the

random measure p, on Ωn,t(ξ1) ∩ Ωn,t(ξ2) ∩ Ωn,t(σ) we have

Ptj,i−1
(τ ≤ ωn,j,i ≤ τ ′) ≤ K(τ ′ − τ). (S3.9)

This shows that E[I] ≤ 1
[n/(2kn)]mn

(Kτ2 −Kτ1)
3. By iterative conditioning

and (S3.9), we have E[II] ≤ (Kτ2 −Kτ1)
2. Similarly, we have |E[III]| ≤

(Kτ2 −Kτ1)
2. Combining the above results and notice that Ac containing

τ1, τ, τ2 is a compact set, we have (S3.7) holds with H(x) = Kx and α = 1

and γ = 2.
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S4 Finite Dimensional Convergence in Distribution

of Ŷn(τ)

By Lemmas 4 and 5, to prove the main results, it suffices to prove that the

finite dimensional limiting distribution of the process ω′
n(τ) is equal to that

of (3.4). This is revealed by the following lemmas. The first lemma below

gives some convergence results of the aggregated errors in estimating the

local volatilities.

Lemma 6. Under Assumptions 1-S, we have,

1√
Δn

[n/(2kn)]−1∑
j=0

ξj(un)

u2
nσ

2
j

(2vn) →Ls N (0, 4), (S4.1)

1√
Δn

[n/(2kn)]−1∑
j=0

2vn
σ2
j

(
ξ2j (un)

2u2
n

− (sinh(u2
ncj(un)))

2

unkn

)
→P 0, (S4.2)

2vn√
Δn

[n/(2kn)]−1∑
j=0

rj(un)

σ2
j

→p 0, (S4.3)

2kn

[n/(2kn)]−1∑
j=0

ξ2j (un)

u4
nσ

4
j

(2vn) →P 4 (S4.4)

1√
Δn

[n/(2kn)]−1∑
j=0

(
ξ2j (un)

2u2
n

− (sinh(u2
ncj(un)))

2

unkn

)2

(2vn) →P 0,(S4.5)

1√
Δn

[n/(2kn)]−1∑
j=0

r2j (un)

σ4
j

(2vn) →P 0, (S4.6)

where →Ls stands for stable convergence.

Proof. Replacing ξ0,j(un) in the proof of Theorem 3.1 of Kong et. al (2015)
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by ξj(un)/σ
2
j proves (S4.1). (S4.2) is a straight consequence of (S3.37) and

(S3.26). (S4.3) is directly from (S3.38) and (S3.26). For (S4.4), we rewrite

the left hand side as

[n/(2kn)]−1∑
j=0

ξ2j (un)

u4
nσ

4
j−1

(
2vn√
Δn

)2, (S4.7)

which goes to the limiting variance of the left hand side of (S4.1). Again,

(S4.5) and (S4.6) are from (S3.37) and (S3.38), respectively, plus (S3.26).

The next lemma shows that

∫ tj,i
tj,i−1

∫
R δ(tj,i−1,x)p(ds,dx)√

Δn
is negligible. But

before stating the lemma, we need some more notations. Let

lj,i =
√
σ̂2
j−1(un)τ −

∫ tj,i
tj,i−1

∫
R
δ(tj,i−1, x)p(ds, dx)√

Δn

,

η̄j,i = lj,i/|σj−1| and Jj,i =
γ+
tj,i−1

Δn
2jkn+iY

++γ−
tj,i−1

Δn
2jkn+iY

−
√
Δn

,

Dj,i(1, τ) =

I(
σtj,i−1

Δn
2jkn+iW + Jj,i

|σj−1|
√
Δn

≤ η̄j,i)−EFj,i−1
I(
σtj,i−1

Δn
2jkn+iW + Jj,i

|σj−1|
√
Δn

≤ η̄j,i)(
I(
σtj,i−1

Δn
2jkn+iW + Jj,i

|σj−1|
√
Δn

≤ τ)− EFj,i−1
I(
σtj,i−1

Δn
2jkn+iW + Jj,i

|σj−1|
√
Δn

≤ τ)

)
,

and Dj,i(2, τ) equals

I(
σtj,i−1

Δn
2jkn+iW + Jj,i

|σj−1|
√
Δn

≤ τ)−EFj,i−1
I(
σtj,i−1

Δn
2jkn+iW + Jj,i

|σj−1|
√
Δn

≤ τ).
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Lemma 7. Under Assumptions 1-S, we have,

1

[n/(2kn)mn]

[n/(2kn)]∑
j=1

mn∑
i=1

Dj,i(1, τ) = Op((
k
1/2
n

nmn
+
knu

β−2
n Δ

1−β/2
n

nmn
)1/2). (S4.8)

Proof.

E

⎛
⎝ 1

[n/(2kn)]mn

[n/(2kn)]∑
j=1

mn∑
i=1

Dj,i(1, τ)

⎞
⎠

2

=

(
1

[n/(2kn)mn]

)2∑
j

∑
i

E[D2
j,i(1, τ)]

≤ K
1

[n/(2kn)]mn
max
j,i,l

E|η̄j,i − τ | ≤ K
1/
√
kn + uβ−2

n Δ
1−β/2
n

[n/(2kn)]mn
,(S4.9)

where in the last step, we have used Lemmas 1, 2 and (S3.41). This together

with the Markov inequality completes the proof.

Lemma 8. 1. Under Assumptions 1-S, we have on Ωn,t(ξ1) ∩ Ωn,t(ξ2) ∩

Ωn,t(σ),

EFj,i−1
(I(

σtj,i−1
Δn

2jkn+iW + Jj,i

|σj−1|
√
Δn

≤ η̄j,i)

−I(
σtj,i−1

Δn
2jkn+iW + Jj,i

|σj−1|
√
Δn

≤ τ))

= Φ̃n′
j,i(τ)(η̂j,i − τ) +

1

2
Φ̃n′′

j,i (τ)(η̂j,i − τ)2 + hj,i(un, β) + rΦ(j, i),

(S4.10)

where |rΦ(j, i)| ≤ KΔ
1/2
n , η̂j,i =

√
σ̂2
j−1(un)−2uβ−2

n Δ
1−β/2
n aj−1

σ2
j−1

τ , hj,i(un, β)

is a polynomial function of (uβ−2
n Δ

1−β/2
n aj−1) of degree lower than q
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with (1 − β/2)q > 1/2, and Φ̃n
j,i(τ) is the conditional cumulative dis-

tribution function of
Δn

2jkn+iW√
Δn

+
Jj,i

|σj−1|
√
Δn

given Fj,i−1.

2. ∣∣∣Φ̃n(k)
j,i (τ)− Φ(k)(τ)

∣∣∣ ≤ KΔ
1
β
− 1

2
n , k = 0, 1, 2,

where f (k)(τ) stands for the kth derivative of f(τ) for f = Φ̃n
j,i, Φ.

Proof. Proof of 1. Let η̃
(3)
j,i (±)1 be the first term of η̃

(3)
j,i (±) and Φn(x) be

the conditional cumulative distribution function of

σtj,i−1
Δn

2jkn+iW + Jj,i

|σj−1|
√
Δn

+

∫ tj,i
tj,i−1

∫
R
δ(tj,i−1, x)p(ds, dx) + η̃

(3)
j,i (+)1 + η̃

(3)
j,i (−)1√

Δn|σj−1|
,

given σ(Fj,i−1 ∨W ′ ∨ Y ± ∨ p) with the conditional variance denoted as σ̄2
j,i

which is bounded away from 0 and infinity by Assumption S. Let

τnj,i = τ +

∫ tj,i
tj,i−1

∫
R
δ(tj,i−1, x)p(ds, dx) + η̃

(3)
j,i (+)1 + η̃

(3)
j,i (−)1√

Δn|σj−1|

and

ηnj,i = η̄j,i +

∫ tj,i
tj,i−1

∫
R
δ(tj,i−1, x)p(ds, dx) + η̃

(3)
j,i (+)1 + η̃

(3)
j,i (−)1√

Δn|σj−1|
.

Then we have that the left side of (S4.10) is equal to EFj,i−1
[Φn(η

n
j,i) −

Φn(τ
n
j,i)], which, on Ωn,t(ξ1) ∩ Ωn,t(ξ2) ∩ Ωn,t(σ), can be decomposed as

EFj,i−1
[Φn(η

n
j,i)− Φn(τ

n
j,i)]

= Φ′
n(τ)(η̂j,i − τ) +

Φ′′
n(τ)(η̂j,i − τ)2

2
+ hj,i(un, β) + rΦ(j, i).(S4.11)
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where rΦ(j, i) is the remaining term, hj,i(1) = τΦ′
n(τ)u

β−2
n Δ

1−β/2
n aj−1/σ

2
j−1,

hj,i(un, β)

= hj,i(1) +
1

2

q∑
k=1

Φ
(k)
n (τ)τkck
|σj−1|kk!

∑
k1+k2+k3+k4=k

(2uβ−2
n Δ1−β/2

n aj−1)
k1

×(rj(un))
k2(

ξj−1(un)

−u2
n

)k3(
ξ2j−1(un)

2u2
n

− (sinh(u2
ncj−1(un)))

2

knu2
n

)k4 − hj,i(1),

(S4.12)

with ck being a sequence of numbers, and

|rΦ(j, i)|

≤ KEFj,i−1
(|rj−1(un)|3 + |ξj−1(un)

u2
n

|3 + |ξ
2
j−1(un)

2u2
n

− (sinh(u2
ncj(un)))

2

knu2
n

|3)

+KΔ(1−β/2)q
n .

By (S3.36)-(S3.38), we have

EFj,i−1
|rΦ(j, i)| ≤ KΔ1/2

n . (S4.13)

By independence ofW , W ′, Y ± and p, Assumption 1, Lemma 1 and (S3.42),

and repeated conditioning, we have for k = 1, 2, ..., q,

EFj,i−1

∣∣∣(Φ(k)
n (τ)− Φ̃

n(k)
j,i (τ))(η̂j,i − τ)k

∣∣∣ ≤ K
√
vn/
√

kn. (S4.14)

Combination of (S4.11)-(S4.14) shows that

|EFj,i−1
(Φn(η

n
j,i)− Φn(τ

n
j,i))− Φ̃n′

j,i(τ)(η̂j,i − τ)

−1

2
Φ̃n′′

j,i (τ)(η̂j,i − τ)2 − hj,i(un, β)| ≤ K
√

Δn. (S4.15)



26 Xin-Bing Kong

(S4.15) proves part 1 of the lemma.

Proof of 2. By independence of W and Y ±, Assumption 2 on F (x,∞),

Assumption S, and the boundedness of Φ(k)(x) for any integer k,

|Φ̃n(k)
j,i (τ)− Φ(k)(τ)| = |P (k)

Fj,i−1

(
N (0, 1) +

Jj,i

|σj−1|
√
Δn

≤ τ

)
− Φ(k)(τ)|

= |EFj,i−1
Φ(k)

(
τ − Jj,i
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√
Δn

)
− Φ(k)(τ)|

≤ KEFj,i−1
(| Jj,i

σj−1

√
Δn

| ∧ 1) ≤ KΔ
1
β
− 1

2
n . (S4.16)

By the Burkhölder-Davis-Gundy inequality and (S3.24), one gets that

EFj,i
(|σtj,i−1

σj−1
| − 1)2 ≤ KknΔn. Then similar to the proof of Lemma 7, we

have the following lemma.

Lemma 9. Under Assumptions 1-S, we have

1

[n/(2kn)]mn

[n/(2kn)]∑
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mn∑
i=1

[Dj,i(2, τ)
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√
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and
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1
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2
n

nmn

).
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S5 Proof of the Main Results

Proof of Theorem 1 By Lemmas 4 and 5, the remaining proof of Theorem

1 is the same as that of Theorem 2, except that we remove all the quantities

containing jumps of infinite variation. So we only prove Theorem 2 below.

Proof of Theorem 2 By Lemmas 7-9, we have

F̂n(un, τ) =
1

[n/(2kn)]mn

[n/(2kn)]∑
j=1

mn∑
i=1

I

⎛
⎝Δ

−1/2
n Δn

2jkn+iX√
σ̂2
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≤ τ

⎞
⎠

=
1
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(
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j,i(τ) + hj,i(un, β)
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mn∑
i=1

(
I(
Δn

2jkn+iW

Δ
1/2
n

≤ τ)− Φ(τ)

)
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+
1

2
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)
+Op(

√
Δn). (S5.1)

By Assumption S and (S3.40), we have,

1
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mn∑
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(
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By (S3.37), (S3.38) and 2 of Lemma 8, we have for k, l = 1, 2, ..., q,

1

[n/(2kn)]mn

[n/(2kn)]∑
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mn∑
i=1

(Φ̃
n(k)
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2u2
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− 1
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2
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Δn), (S5.3)

and

1

[n/(2kn)]mn

[n/(2kn)]∑
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mn∑
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(Φ̃
n(k)
j,i (τ)− Φ(k)(τ))(
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(S5.4)

By the proof of the first equation in Lemma 6 and 2 of Lemma 8, we have

1
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(S5.5)

By (S5.1)-(S5.5), we have
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Now, Theorem 2 is a straight consequence of (S5.6) and Lemma 6. The inde-

pendence between Z1(τ) and Z2(τ) is due to the assumption that mn/kn →

0.

Proof of Remark 1 By the definition of Φ̃n
j,i(τ), we have by Taylor ex-

pansion,

Φ̃n
j,i(τ)− Φ(τ) = Φ′(τ)Δ

1
β
− 1

2
n

γ+
j,i−1EY +

1 + γ−
j,i−1EY −

1

|σj−1| + ryj,i, (S5.7)

where

|ryj,i| ≤ KEFj,i−1
(| Jj,i

|σj−1|
√
Δn

| ∧ 1)2 ≤ K(| Jj,i

|σj−1|
√
Δn

| ∧ 1)β−ε ≤ KΔ1−β/2−ε
n ,

for any ε > 0. This together with the fact that

T
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|σs| ds = Op(Δ
1/4+ε
n ), (S5.8)

completes the proof, where in (S5.8), we used Assumption S to deduce that

EFj,i−1
|γ±

s − γ±
j,i−1| ≤ K(s− tj,i−1)

1/2,

EFj,i−1
|σs − σtj,i−1

| ≤ K(s− tj,i−1)
1/2. (S5.9)

Proof of Theorem 3 We prove the theorem in several steps.
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1) By the property of Lévy process, one soon has Δ
−1/β
n Δn

2jkn+iY
± con-

verges in distribution to a random variable with the Lévy-Khinchin spectral

as

exp (

∫ ∞

0

(e
√−1θx − 1−√−1θx)β/x1+βdx), (S5.10)

where
√−1 is the image unit.

2) By the proof of Lemma 2, we have

Ij,i ≡ Δ−1/β
n EFj,i−1
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n . (S5.11)

3) By (A. 31) and (A. 35) in Kong et al. (2015), we have

P (| σ̂2
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2uβ−2
n Δ
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n aj−1
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4

−ε
n u−β/2

n /ε. (S5.12)

4) Let ε′n = Δq′
n for 0 < q′ < 1/2. Define

An
j,i = {|Ij,i| ≤ ε′n} ∩ {| σ̂2
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2uβ−2
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− 1| ≤ ε}.

Then by the results in 2) and 3),

P ((An
j,i)

c) → 0. (S5.13)
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On An
j,i, we have by the result in 1) and the condition that β > 1,
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On the other hand, by evaluating the variance,
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Combining (S5.13) (S5.14) and (S5.15), we have

1
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j=1

mn∑
i=1

I(
Δn

2jkn+iX√
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Proof of Theorem 4 (3.15) is a direct consequence of Theorem 1. To prove

(3.16), without loss of generality, we specify the bandwidth parameters as

follows. Let kn =
√
n

4 log (n)
and mn = n1/2/(log n)2. Under the alternative
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hypothesis, on {∫ T
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→ +∞, a.s., (S5.17)

as Δn → 0.


