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Abstract: Asymptotically correct simultaneous confidence bands (SCBs) are pro-

posed for the mean and variance functions of a nonparametric regression model

based on deterministic designs. The variance estimation is as efficient, up to order

n−1/2, as an infeasible estimator if the mean function were known. Simulation

experiments provide strong evidence that corroborates the asymptotic theory. The

proposed SCBs are used to analyze two sets of strata pressure data from the Bul-

lianta Coal Mine in Erdos City, Inner Mongolia, China.
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1. Introduction

Simultaneous confidence intervals (SCIs) have long been recognized as vi-

tal tools for inference on the global shape of curves; see, for instance, Stapleton

(2009) Section 5.2 for the Scheffé SCIs of a simple linear regression function, and

Section 5.3 for Tukey SCIs of a surface of contrasts. In the more complicated

context of nonparametric function estimation, SCIs are generally known as si-

multaneous confidence bands (SCBs), and were first constructed in Bickel and

Rosenblatt (1973) for a probability density function, and extended by Johnston

(1982) and Härdle (1989) to univariate kernel regression. Xia (1998) proposed

bias-corrected SCBs based on local polynomial fitting under the assumption of

homoscedasticity, while Härdle and Marron (1991) and Keilegom and Claeskens

(2003) studied bootstrap kernel SCBs.

More recently, nonparametric SCB methodology has diversified in both tech-

niques and scope. For instance, Wang and Yang (2009) proposed SCBs for non-

parametric regression function based on polynomial splines, which was extended

in Song and Yang (2009) to oracally efficient spline SCBs for the conditional
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variance function. Cai and Yang (2015) improved Song and Yang (2009) by a

spline-kernel oracally efficient two-step estimator for the variance function with

SCBs. Wang, Cheng and Yang (2013) and Wang et al. (2014) proposed smooth

SCBs for cumulative distribution functions. Degras (2011), Cao, Yang and To-

dem (2012), Ma, Yang and Carroll (2012) and Cao et al. (2016) constructed

various SCBs for functional data, while Gu and Yang (2015) established oracle

efficiency of an SCB for the single-index link function.

Existing literature on SCBs for nonparametric regression is mostly concerned

with the random design model Yi = m(Xi) + σ(Xi)εi with independent and

identically distributed (i.i.d.) points {(Xi, Yi)}ni=1 and errors {εi}ni=1. Often

encountered in applications (e.g., the strata pressure data discussed in Subsection

5.2) is the deterministic design nonparametric regression model

Yi = m

(
i

n

)
+ σ

(
i

n

)
εi (1.1)

in which the Yi’s are responses at equally spaced design points i/n, 1 ≤ i ≤ n,

and {εi}ni=1 are unobserved i.i.d. random errors with E (ε1) = 0, var (ε1) =

1. Assume that there are smooth but unknown mean and variance functions

m(x) and σ2(x) that satisfy model (1.1) for all n. In this paper, we aim to

construct asymptotically correct SCBs for both the mean function m(x) and

variance function σ2(x) in model (1.1) without restrictive assumptions. As an

illustration, the SCBs for the mean and variance functions are applied to two

strata pressure data sets collected from the Bulianta Coal Mine located in Ordos

City, Inner Mongolia, China. Figures 4 and 5 depict the SCBs for one set of the

data, and the SCBs for the second data set are given in Figures S.5 and S.6 in the

online supplement. For both data sets, the null hypothesis of the mean function

being m(x) = a0 +
∑5

k=1{ak sin (kωx) + bk cos (kωx)} for some constants a0, ak
and bk (k = 1, . . . , 5) cannot be rejected with the p-values as high as 0.847 and

0.545 respectively. Meanwhile, the SCB for the variance function is used to test

the homoscedastic null hypothesis for the two data sets. The conclusions are (i)

strong rejection for one with the p-value = 0.0024 and (ii) no rejection for the

other with the p-value = 0.545; see Subsection 5.2 for details.

Based on design model (1.1), Donoho and Johnstone (1996) and Angelini, De

Canditiis and Frédérique (2003) studied nonparametric estimation for the mean

function. SCBs for the mean function in model (1.1) were studied in Hall and

Titterington (1988) and Cai, Low and Ma (2014). These SCBs are adaptive for

m (x) belonging to some function class but, as a result, asymptotically conserva-

tive instead of asymptotically correct. A more serious limitation of these adaptive



CONFIDENCE BANDS FOR MEAN AND VARIANCE FUNCTIONS 507

SCBs is their reliance on assumptions that the {εi}ni=1 are i.i.d. N (0, 1) and the

variance function σ2(x) is constant. Alternatively, Eubank and Speckman (1993)

obtained SCBs for the mean function m(x) based on kernel smoothing, but under

the restrictive assumption of homoscedasticity (σ2(x) ≡ σ2) and the mean func-

tion m(x) being periodic. None of these works can handle clearly heteroscedastic

data, such as the strata pressure data. Wang (2012) constructed a spline SCB

for the mean function m(x) based on deterministic designs and {εi}ni=1 being

α-mixing, but its asymptotically conservative coverage limits its usefulness for

testing hypotheses. For variance function estimation, Brown and Levine (2007)

and Levine (2006) proposed difference-based kernel estimators and an approach

of bandwidth selection, respectively, and Cai, Levine and Wang (2009) extended

them to the multivariate situation, establishing the minimax convergence rate in

the i.i.d. Gaussian case. Meanwhile, Wang et al. (2008) studied the effect of the

unknown mean on the variance function estimation function in nonparametric

regression. However, there are no SCBs for the variance function in these works.

The rest of the paper is organized as follows. Section 2 establishes the main

asymptotic theoretical results. Section 3 provides insights of proofs and Section

4 gives concrete steps to implement the SCBs. Section 5 reports some simulation

results and data analyses. The proofs are given in the online supplement.

2. Main Results

2.1. SCB for the mean function

We first formulate an SCB for the mean function m(x) in model (1.1) by

smoothing the data set {(i/n, Yi)}ni=1 to approximate m(x). The basic idea is to

find a locally weighted least squares estimate m̂(x) which solves the minimization

problem

min
θ
n−1

n∑
i=1

(Yi − θ)2Kh

(
i

n
− x
)

= n−1
n∑
i=1

{Yi − m̂(x)}2Kh

(
i

n
− x
)
,

in which K (u) is a kernel function, h = hn > 0 is a sequence of smoothing

parameters called bandwidth, and Kh (u) = h−1K (u/h) is the kernel function

rescaled by h. Clearly,

m̂(x) =
n−1

∑n
i=1Kh (i/n− x)Yi

f̂(x)
, (2.1)

where f̂(x) = n−1
∑n

i=1Kh (i/n− x).

We denote by ψ(s)(x) the s-th order derivative of a function ψ(x). For
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θ ∈ (0, 1] and integer p ≥ 0, let Cp,θ [0, 1] be the space of functions with θ−Hölder

continuous p-th-order derivatives on [0, 1],

Cp,θ [0, 1] =

φ(x) : ‖φ‖p,θ = sup
x6=x′,x,x′∈[0,1]

∣∣∣φ(p)(x)− φ(p) (x′)
∣∣∣

|x− x′|θ
< +∞

 ,

and denote by C(p) [0, 1] the space of p-times continuously differentiable functions.

For sequences of positive real numbers cn and dn, cn � dn means cn/dn → 0 as

n→∞.
We need the following assumptions to construct SCBs for m(x).

(M1) The function m (·) ∈ Cp−1,θ [0, 1] for integer p > 1 and θ ∈ (0, 1].

(M2) The error ε satisfies E(ε) = 0, E(ε2) = 1 and σ2(x) ∈ C(1) [0, 1] with

0 < cσ ≤ σ2(x) ≤ Cσ < +∞ for any x ∈ [0, 1].

(M3) There exist β ∈ (0, 1/2− 1/ (4θ + 4p− 2)) , C0 ∈ (0,+∞) , γ ∈ (1,+∞) ,

and i.i.d. N (0, 1) variables {Zin}ni=1 such that

P

{
max
1≤l≤n

∣∣∣∣∑l

i=1
εi −

∑l

i=1
Zin

∣∣∣∣ > nβ
}
< C0n

−γ .

(M4) The kernel function K ∈ C(1) (R), is of order p, and is supported on [−1, 1].

(M5) The bandwidth h = hn satisfies log hn/ (− log n)→ t > 0 as n→∞ and

max
(
n−1/2 log1/2 n, n2β−1 log n

)
� hn � (n log n)−1/(2θ+2p−1) .

Hence 1/ (2θ + 2p− 1) ≤ t ≤ min (1/2, 1− 2β) .

Assumptions (M1), (M2) and (M4) are typical for kernel smoothing, adapted

from Härdle (1989) and Eubank and Speckman (1993), while (M5) is the general

condition on the choice of bandwidth h. It is more convenient to make the

inequalities on t strict in (M5). The same holds true for t̃ and τ in Assumptions

(E5) and (E7) below. Assumption (M3) provides the Gaussian approximation of

the error process. According to Lemma S.2 in the supplement, Assumption (M3)

is ensured by an elementary Assumption (M3’):

(M3’) There exists η > 2/β−2, β ∈ (0, 1/2− 1/ (4θ + 4p− 2)) such that E |ε1|2+η

< +∞.

Let In = [hn, 1− hn]. Our SCB for m(x) is a direct corollary of Propositions

1–4 in Section 3.
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Theorem 1. If (M1)–(M5) hold, as n→∞,

P

(
ah

[
sup
x∈In

∣∣∣∣{m (x)− m̂(x)}
v(x)

∣∣∣∣− bh] ≤ z)→ exp (−2 exp (−z)) , z ∈ R,

where ah =
(
2 log h−1

)1/2
, bh = ah + a−1h

{
2−1 log

(
CK/

(
4π2
))}

,

CK =

∫ 1
−1K

(1) (v)2 dv∫ 1
−1K (v)2 dv, v(x)

= (nh)−1/2σ(x)

{∫ 1

−1
K2 (u) du

}1/2

.

Then, for any α ∈ (0, 1) ,

P

(
m(x) ∈ m̂(x)± v(x)

[
ah + a−1h

{
qα +

1

2
log

(
CK

(4π2)

)}]
,∀x ∈ In

)
→ 1− α,

where qα = − log {−1/2 log (1− α)} .
Theorem 1 implies that the SCB contracts to zero at the rate n−1/2h−1/2

log1/2 n. In the special case p = 2, θ = 1, as in Subsection 4.1, the implemented

order of h satisfying (M5) is n−1/5 log−1/5−δ1 n for any δ1 > 0. Thus, the optimal

bandwidth order of n−1/5 is under-smoothed by log−1/5−δ1 n, and the contraction

rate of SCB is n−2/5 log3/5+δ1/2 n.

2.2. SCBs for the variance function

The variance function σ2(x) measures the heteroscedastic variation of the

errors ei = Yi − m (i/n) , 1 ≤ i ≤ n in model (1.1). Following Cai and Yang

(2015), if m(x) were known by ‘oracle’, one could compute the squared errors{
e2i
}n
i=1

, and then by smoothing the data
{(
i/n, e2i

)}n
i=1

obtain a would-be kernel

estimator of σ2(x):

σ̃2K(x) =
n−1

∑n
i=1 K̃h̃ (i/n− x) e2i

n−1
∑n

i=1 K̃h̃ (i/n− x)
,

where K̃ (u) is a kernel function and h̃ = h̃n > 0 a bandwidth. However, σ̃2K (x) is

infeasible as the errors
{
e2i
}n
i=1

are unobservable. To mimic σ̃2K(x), a spline-kernel

estimator σ̂2SK(x) is proposed

σ̂2SK(x) =
n−1

∑n
i=1 K̃h̃ (i/n− x) ê2i

n−1
∑n

i=1 K̃h̃ (i/n− x)
, (2.2)

where êi = Yi − m̂p (i/n) and m̂p(x) is the p-th order spline estimator for m (x)

with integer p > 0,

m̂p(x) = arg min
g∈H(p−2)

N

∑n

i=1

{
Yi − g

(
i

n

)}2

, (2.3)

in which H(p−2)
N = H(p−2)

N [0, 1] is the space of spline functions on interval [0, 1]
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defined below.

Divide the interval [0, 1] into (N + 1) subintervals Jj =
[
χj , χj+1

)
, j =

0, 1, 2, . . . , N by equally spaced points
{
χj
}N
j=1

called interior knots,

0 = χ0 < χ1 < · · · < χN+1 = 1, χj =
j

(N + 1)
, j = 0, 1, . . . , N + 1.

H(p−2)
N is the space of functions that are polynomials of degree (p− 1) on each

Jj with continuous (p− 2)-th derivative on [0, 1]. For instance, H(−1)
N consists of

functions that are constant on each Jj , and H(0)
N the space of functions that are

linear on each Jj and continuous on [0, 1] .

Let E
(
ε4i
)

= µ4 and ηi =
(
ε2i − 1

)
(µ4 − 1)−1/2. We need the following

assumptions to construct SCBs for σ2(x).

(E1) The function m (·) ∈ Cp [0, 1] for integer p > 1.

(E2) The error ε satisfies E(ε) = 0, E(ε2) = 1 and σ2(x) ∈ Cp0−1,θ0 [0, 1] for

integer p0 > 1, θ0 ∈ (0, 1] with 0 < cσ ≤ σ2(x) ≤ Cσ < +∞ for any

x ∈ [0, 1].

(E3) There exist β′ ∈ (0, 1/2− 1/ (4θ0 + 4p0 − 2)) , C ′0 ∈ (0,+∞) , γ′ ∈ (1,+∞) ,

and i.i.d. N (0, 1) variables {Z ′in}
n
i=1 such that

P

(
max
1≤l≤n

∣∣∣∣∑l

i=1
ηi −

∑l

i=1
Z ′in

∣∣∣∣ > nβ
′
)
< C ′0n

−γ′ .

(E4) The kernel function K̃ ∈ C(1) (R), is of order p0, and is supported on

[−1, 1].

(E5) The bandwidth h̃ = h̃n satisfies log h̃n/ (− log n)→ t̃ > 0 as n→∞ and

max(n−1/2 log1/2 n,n2β
′−1 log n,n−2(p−1)/(2p+1))� h̃�(nlog n)−1/(2θ0+2p0−1) .

Consequently, 1/(2θ0+2p0−1) ≤ t̃ ≤ min
(
1/2, 1− 2β′, 2(p− 1)/(2p+ 1)

)
.

(E6) There exist C0 ∈ (0,+∞) , γ ∈ (1,+∞) , β ∈ (0, b ] and i.i.d. N (0, 1) vari-

ables {Zin}ni=1 such that

P

(
max
1≤l≤n

∣∣∣∣∑l

i=1
εi −

∑l

i=1
Zin

∣∣∣∣ > nβ
)
< C0n

−γ ,

where b = min
(
1− 3/2 (2p+ 1)− t̃, 1− 5/2 (2p+ 1)− 5t̃/2 (2p+ 3) , 1/2−

1/ (4θ0 + 4p0 − 2)).

(E7) The number of interior knots N satisfies logN/ log n → τ for some τ > 0

and
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max
(
n1/4p, h̃−1/(p−1)n(β−1/2)/(p−1), h̃−1/2(p−1) log1/2(p−1) n

)
� N

� min
(
h̃2/3n2(1−β)/3, n2(1−β)/5, n1/3h̃1/3 log−1/3 n

)
.

Consequently, max(1/4p,
(
2t̃+ 2β − 1

)
/2 (p− 1) , t̃/2 (p− 1)) ≤ τ ≤

min(2 (1− β) /3− 2t̃/3, 2 (1− β) /5, 1/3− t̃/3).

Assumptions (E2)–(E5) are adapted from Assumptions (M1)–(M5) of Sub-

section 2.1. Here (E1) is a general condition for spline regression of the mean

function in model (1.1), while (E7), on the choice of knots number N , ensures

the oracle efficiency in Theorem 2 and the extreme distribution result in (2.4)

below. Lemma S.2 in the supplement implies that (E3) and (E6) are ensured by

Assumption (E3’).

(E3’) There exists η′ > 2/β−2, β ∈ (0, b ] as in (E6) such that E |ε1|4+2η′ < +∞.

Under (E2)–(E5), applying Theorem 1 to unobservable sample
{

(i/n, e2i )
}n
i=1

and letting Ĩn =
[
h̃n, 1− h̃n

]
, for each z ∈ R one has

P

(
ah̃

(
sup
x∈Ĩn

∣∣∣∣∣
{
σ2(x)− σ̃2K (x)

}
v0(x)

∣∣∣∣∣− bh̃
)
≤ z

)
→ exp (−2 exp (−z)) , (2.4)

where

ah̃ =
(

2 log h̃−1
)1/2

, bh̃ = ah̃ + a−1
h̃

{
2−1 log

(
CK̃

(4π2)

)}
, (2.5)

CK̃ =

∫ 1
−1 K̃

(1) (v)2 dv∫ 1
−1 K̃ (v)2 dv

, (2.6)

v0(x) =

{
n−1h̃−1σ20(x)

∫ 1

−1
K̃2 (u) du

}1/2

. (2.7)

Here σ20(x) = σ4(x) (µ4 − 1) so that var(e2i ) = E
(
e4i
)
−
{

E
(
e2i
)}2

= σ20 (i/n), as

the second and fourth moments of ei are E
(
e2i
)

= σ2 (i/n) ,E
(
e4i
)

= σ4 (i/n)µ4.

According to (2.4), it is obvious that an asymptotic 100(1−α)% ‘infeasible’

SCB for σ2(x) over Ĩn =
[
h̃n, 1− h̃n

]
is

σ̃2K(x)± v0(x)

[
ah̃ + a−1

h̃

{
qα +

1

2
log

(
CK̃

(4π2)

)}]
. (2.8)

Theorem 2. If (E1)–(E7) hold, as n → ∞ the spline-kernel estimator σ̂2SK(x)

is asymptotically as efficient as the ‘infeasible’ estimator σ̃2K (x) with

sup
x∈[0,1]

∣∣σ̂2SK (x)− σ̃2K(x)
∣∣ = op

(
n−1/2

)
.
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The proof of Theorem 2 depends on Propositions 5–7 given in Subsection

3.2. Theorem 1, Theorem 2 and Slutsky’s Theorem together imply the following.

Theorem 3. If (E1)–(E7) hold, as n→∞ an asymptotic 100 (1−α)% SCB for

σ2(x) over Ĩn =
[
h̃n, 1− h̃n

]
is

σ̂2SK(x)± v0(x)

[
ah̃ + a−1

h̃

{
qα +

1

2
log

(
CK̃

(4π2)

)}]
,

with ah̃, CK̃ , v0(x) and qα given in (2.5), (2.6), (2.7) and Theorem 1, respectively.

Theorem 3 implies that the SCB contracts to zero at the rate n−1/2h̃−1/2

log1/2 n. In the special case p = 4, p0 = 2, θ0 = 1 as in Subsection 4.2, the

implemented order of h̃ satisfying (E5) is n−1/5 log−1/5−δ2 for any δ2 > 0. Thus

the optimal bandwidth order of n−1/5 is under-smoothed by log−1/5−δ2 n, and

the contraction rate of the SCB is n−2/5 log3/5+δ2/2 n.

3. Error Decomposition

3.1. Case of the mean function

An asymptotic SCB for m(x) is constructed by examining supx∈In |m̂(x)−
m(x)|. We find that

m̂(x)−m(x) = n−1f̂(x)−1
n∑
i=1

Kh

(
i

n
− x
)
Yi −m(x)

= n−1f̂(x)−1
n∑
i=1

Kh

(
i

n
− x
){

m

(
i

n

)
−m(x) + σ

(
i

n

)
εi

}
= f̂(x)−1 {An(x) +Bn (x)} ,

in which

An(x) = n−1
n∑
i=1

Kh

(
i

n
− x
){

m

(
i

n

)
−m(x)

}
, (3.1)

Bn(x) = n−1
n∑
i=1

Kh

(
i

n
− x
)
σ

(
i

n

)
εi. (3.2)

The following stochastic processes approximate Bn(x):

Bn1(x) = n−1
n∑
i=1

Kh

(
i

n
− x
)
σ

(
i

n

)
Zin, (3.3)

Bn2(x) = n−1
n∑
i=1

Kh

(
i

n
− x
)
σ(x)Zin, (3.4)
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Bn3(x) = n−1/2
∫
Kh (u− x)σ (x) dWn(u), (3.5)

where {Zin}ni=1 are i.i.d. N(0, 1) variables satisfying (M3) and Wn(u) is a two-

sided Brownian motion on (−∞,+∞) satisfying Zin =
√
n{Wn(i/n) −Wn((i −

1)/n)}.

Proposition 1. Under Assumption (M4), as n→∞,

sup
x∈In

∣∣∣f̂(x)− 1
∣∣∣ = O

(
n−1h−2

)
.

Proposition 2. Under Assumptions (M1), (M4) and (M5), as n→∞,

sup
x∈In
|An(x)| = O

(
hθ+p−1 + n−1h−1

)
.

Proposition 3. Under Assumptions (M2)–(M4), as n→∞,

(a) sup
x∈[0,1]

|Bn(x)−Bn1(x)| = Op
(
nβ−1h−1

)
,

(b) sup
x∈[0,1]

|Bn1(x)−Bn2(x)| = Op
(
n−1/2h1/2 log1/2 n

)
,

(c) sup
x∈In
|Bn2(x)−Bn3(x)| = Op

(
n−3/2h−2 log1/2 n

)
,

(d) sup
x∈[0,1]

|Bn3(x)| = Op
(
n−1/2h−1/2 log1/2 n

)
.

The proofs of these propositions are given in the online supplement.

As E{B2
n3(x)} = n−1h−1σ2 (x)

∫ 1
−1K

2 (u) du, standardizing the processBn3(x)

for x ∈ [0, 1] , one obtains the standard Gaussian process∫
Kh (x− u) dWn (u){

h−1
∫ 1
−1K

2 (u) du
}1/2

, x ∈ [0, 1] ,

whose absolute maximum follows the same probability law as

L

h−1 ∫ K (s− u/h) dWn (u){
h−1

∫ 1
−1K

2 (u) du
}1/2

, s ∈
[
0, h−1

]
= L

∫ K (s− r) dWn (r){∫ 1
−1K

2 (t) dt
}1/2

, s ∈
[
0, h−1

] .

Let

ζ (s) =

∫
K (s− r) dWn (r){∫ 1
−1K

2 (t) dt
}1/2

, s ∈
[
0, h−1

]
.
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By Equation (2.5) in Bickel and Rosenblatt (1973), we have the following.

Proposition 4. Under Assumptions (M2) and (M4), as n→∞,

P

(
ah

{
sup

s∈[0,h−1]
|ζ (s)| − bh

}
< z

)
→ exp (−2 exp (−z)) , z ∈ R,

in which ah and bh are given in Theorem 1.

3.2. Case of the variance function

To prove Theorem 2, the estimation error σ̂2SK(x)−σ̃2K (x) is broken into three

parts. We begin by describing the spline space H(p−2)
N and the representation of

the spline estimators m̂p(x) in Equation (2.1).

The space H(p−2)
N is spanned linearly by B-spline basis {bj,p}Nj=1−p intro-

duced in de Boor (2001). Denote by ‖φ‖2 the theoretical L2 norm of a func-

tion φ on [0, 1], ‖φ‖22 =
∫ 1
0 φ

2(x)dx, and the empirical L2 norm as ‖φ‖22,n =

n−1
∑n

i=1 φ
2 (i/n). The rescaled B-spline basis for H(p−2)

N is {Bj,p}Nj=1−p, where

Bj,p(x) = bj,p(x) ‖bj,p‖−12 with theoretical norm equal to 1, 1− p ≤ j ≤ N.
The estimator m̂p(x) in (2.3) can then be expressed as

m̂p(x) =
∑N

j=1−p
λ̂j,pBj,p(x),

where the vector
(
λ̂1−p,p, . . . , λ̂N,p

)T
is the solution of the least-squares problem(

λ̂1−p,p, . . . , λ̂N,p

)T
= argmin

RN+p

n∑
i=1

{
Yi −

∑N

j=1−p
λj,pBj,p

(
i

n

)}2

. (3.6)

Write Y as the sum of signal vector m and error term E,Y = m + E, where Y =

{Y1, . . . , Yn}T , m ={m(1/n), . . . ,m(n/n)}T and E = {σ(1/n)ε1, . . . , σ(n/n)εn}T .

Projecting this relationship into the space H(p−2)
N , one obtains that

m̂p(x) = m̃p(x) + ε̃p(x),

where

m̃p(x) =
∑N

j=1−p
λ̃j,pBj,p(x), ε̃p(x) =

∑N

j=1−p
ãj,pBj,p(x), (3.7)

and the vectors {λ̃1−p,p, . . . , λ̃N,p}
T

and {ã1−p,p, . . . , ãN,p}
T

in (3.7) are solutions

of (3.6) with Yi replaced by m (i/n) and σ (i/n) εi, respectively. One then obtains

that

m̃p(x) = {B1−p,p(x), . . . , BN,p(x)}
(
B
T
B
)−1

BTm, (3.8)

ε̃p(x) = {B1−p,p(x), . . . , BN,p(x)}
(
B
T
B
)−1

BTE, (3.9)
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where the design matrix B is

B =


B1−p,p

(
1

n

)
· · · BN,p

(
1

n

)
...

. . .
...

B1−p,p (1) · · · BN,p (1)


n×(N+p)

.

It is obvious that σ̂2SK(x)− σ̃2K(x) can be decomposed as

σ̂2SK(x)− σ̃2K(x) =

∑n
i=1 K̃h̃ (i/n− x) (Ii,p + IIi,p + IIIi,p)∑n

i=1 K̃h̃ (i/n− x)

=
I1 + I2 + I3

n−1
∑n

i=1 K̃h̃ (i/n− x)

in which

I1 = I1(x) = n−1
∑n

i=1
K̃h̃

(
i

n
− x
)
Ii,p, (3.10)

I2 = I2(x) = n−1
∑n

i=1
K̃h̃

(
i

n
− x
)
IIi,p, (3.11)

I3 = I3(x) = n−1
∑n

i=1
K̃h̃

(
i

n
− x
)
IIIi,p, (3.12)

Ii,p =

{
m

(
i

n

)
− m̃p

(
i

n

)}2

+ ε̃2p

(
i

n

)
+ 2

{
m̃p

(
i

n

)
−m

(
i

n

)}
ε̃p

(
i

n

)
,

IIi,p = −2σ

(
i

n

)
εiε̃p

(
i

n

)
, IIIi,p =

{
m

(
i

n

)
− m̃p

(
i

n

)}
σ

(
i

n

)
εi.

Theorem 2 follows from the next three propositions whose proofs are in the

supplement.

Proposition 5. Under Assumptions (E1)–(E7), as n→∞,

sup
x∈[0,1]

|I1(x)| = Op
(
N−2p + n−1N

)
.

Proposition 6. Under Assumptions (E2)–(E7), as n→∞,

sup
x∈[0,1]

|I2(x)| = Op
(
n−1h̃−1/2N3/2 log1/2 n+ h̃−1nβ−3/2N3/2 + nβ−3/2N5/2

)
.

Proposition 7. Under Assumptions (E1)–(E7), as n→∞,

sup
x∈[0,1]

|I3(x)| = Op
(
n−1/2h̃−1/2N1−p log1/2 n+ h̃−1nβ−1N1−p + nβ−1N2−p

)
.
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4. Implementation

In this section we describe detailed procedures for implementing the SCBs in

Theorems 1 and 3 based on a data set {(i/n, Yi)}ni=1 that follows model (1.1). This

is used throughout Section 5 for simulations and data examples. The implementa-

tion codes are written in R 3.03 and posted on the website: https://github.com.

4.1. Implementing mean function SCB

As the default, we set p = 2, θ = 1 in (M1). When constructing the SCB

for the mean function m(x) in model (1.1) according to Theorem 1, one chooses

a kernel function K and bandwidth h for computing m̂(x) and estimating the

variance function σ2(x), and then plugs in these estimates, as in Eubank and

Speckman (1993), Hall and Titterington (1988), Härdle (1989) and Xia (1998).

We choose the quartic kernel K (u) = 15
(
1− u2

)2
I {|u| ≤ 1} /16 to satisfy

(M4), and the bandwidths h = hrot × log−1/5−δ1 n (δ1 > 0) to satisfy (M5),

where the rule-of-thumb bandwidth hrot is from Equation (4.3) of Fan and Gijbels

(1996):

hrot =

 35
∑n

i=1

{
Yi −

∑4
k=0 âk (i/n)k

}2

n
∑n

i=1

{
2â2 + 6â3 (i/n) + 12â4 (i/n)2

}2


1/5

, (4.1)

in which (âk)
4
k=0 = argmin(ak)

4
k=0
∈R5

∑n
i=1

{
Yi −

∑4
k=0 ak (i/n)k

}2
. Here hrot has

order n−1/5 and h order n−1/5 log−1/5−δ1 n, satisfying (M5). We have found in

extensive simulations that h = hrot log−1/2 n works quite well and is what we

recommend.

The two step spline-kernel estimator σ̂2SK (x) in (2.2) is used for the variance

function σ2(x), with detailed procedures introduced in Section 4.2.

The asymptotic 100(1− α)% SCB for the mean function is

m̂(x)± v̂(x)

[
ah + a−1h

{
qα +

1

2
log

(
CK
4π2

)}]
, x ∈ In, (4.2)

with v̂(x) =
{
n−1h−1σ̂2SK (x)

∫ 1
−1K

2 (v) dv
}1/2

.

4.2. Implementing variance function SCB

To construct the SCB for σ2(x), we set the default values p = 4, p0 = 2, θ0 =

1 in (E1) and (E2) and take the kernel K̃ (u) = 15
(
1− u2

)2
I {|u| ≤ 1} /16, sat-

isfying (E4), with bandwidth h̃ = hrot,σ log−1/5−δ2 n satisfying (E5), in which

δ2 > 0, hrot,σ is as in (4.1) but with Yi replaced by ê2i = {Yi − m̂p (i/n)}2. Exten-

https://github.com
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sive simulation experiments show that h̃ = hrot,σ log−1/2 n works quite well and

is what we recommend.

According to Theorem 1 of Xue and Yang (2006), for any m (x) ∈ Cp [0, 1],

p ≥ 2, the optimal order of knots number N for m(x) is n1/(2p+1), n1/9 with

p = 4. Denote the ‘optimal’ N by N̂opt, the minimizer of the AIC defined below

over integers in [0.5Nr,min {5Nr, T b}] , where Nr = n1/9 and Tb = n/4 − 1 to

ensure that N̂opt is of order n1/9 and the total parameters in the least square

estimation is less than n/4. This particular N̂opt satisfies (E7), but is of course

not the only one. Let Ŷi = m̂p (i/n) be the predictor of the i-th response Yi
and qn = (4 +N) represent the number of parameters in (3.6). The AIC value

corresponding to N is

AIC (N) = log MSE +
2qn
n
, MSE = n−1

n∑
i=1

(Yi − Ŷi)2. (4.3)

To estimate the variance function σ20(x) of
{

(i/n, e2i )
}n
i=1

, one uses the spline-

kernel method as described. Specifically, let σ̂2S(x) be the spline estimator based

on data set
{

(i/n, ê2i )
}n
i=1

:

σ̂2S(x) = {B1−p,p(x), . . . , BN,p(x)}
(
B
T
B
)−1

BT
{
ê21, . . . , ê

2
n

}T
.

Let ∇i =
{
ê2i − σ̂

2
S (i/n)

}2
. Then we find

σ̂20(x) =
n−1

∑n
i=1Khσ0 (i/n− x)∇i

n−1
∑n

i=1Khσ0 (i/n− x)
,

where hσ0
is an under smoothing bandwidth, hσ0

= hrot,σ0
log−1/2 n, in which

hrot,σ0
is the rule-of-thumb bandwidth as in Subsection 4.1 with Yi replaced by

∇i. According to Fan and Gijbels (1996), one has sup
x∈[0,1]

∣∣σ̂20 (x)− σ20(x)
∣∣ = op (1).

The asymptotic 100(1− α)% SCB for variance function is:

σ̂2SK(x)± v̂0(x)

[
ah̃ + a−1

h̃

{
qα +

1

2
log

(
CK̃

(4π2)

)}]
, x ∈ Ĩn, (4.4)

with v̂0(x) =
{
n−1h−1σ̂20(x)

∫ 1
−1 K̃

2(v)dv
}1/2

.

5. Empirical Studies

5.1. Monte Carlo examples

To investigate the finite-sample behavior of the proposed SCBs in Section 2,

the four cases in Table 1 were examined, where
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Table 1. Four cases of study.

Case 1 Case 2 Case 3 Case 4
m1(x), σ1(x) m1(x), σ2(x) m2(x), σ1(x) m2(x), σ2(x)

m1(x) = cos (3πx) ,m2(x) = exp
(
−32x2

)
,

σ1(x) = 0.1 sin (2πx) + 0.2, σ2(x) =
exp(x)− 0.9

exp(x) + 0.9
,

and ε was either N (0, 1) or the standardized t-distribution with freedom 10,

ε ∼ 0.81/2 ∗ t10. The mean functions m1(x),m2(x) resemble those in Eubank

and Speckman (1993), but without periodicity. The sample sizes were n =

300, 600, 900, while for the SCBs the confidence level was 1− α = 0.95, 0.99.

The coverage frequencies by SCBs defined in (4.2) for m(x) are reported in

Table 2; these are relative frequencies in 2,000 replications of coverage of the true

curve at equally spaced points {xj , j = 1, 2, . . . , 400} on In. For comparison, the

coverage frequencies from Eubank and Speckman (1993) are also listed in Table

2 and denoted as SCB-ES. In all cases with ε ∼ N(0, 1) (the left side of the

parentheses) and ε ∼ 0.81/2∗t10 (inside the parentheses) the coverage frequencies

improve and approach the nominal level as the sample size n increases, which

supports Theorem 1. It is also evident that the SCBs in (4.2) perform far better

than those in Eubank and Speckman (1993).

The coverage frequencies at equally spaced points {xj , j = 1, 2, . . . , 400} on

Ĩn by the SCB in (4.4) and the ‘infeasible’ SCB in (2.8) for σ2(x) with ε ∼ N(0, 1)

(the left side of the parentheses) and ε ∼ 0.81/2 ∗ t10 (inside the parentheses)

are also shown in Table 2. The coverage frequencies improve and approach the

nominal levels as the sample size n increases for all cases, which supports Theorem

3. Meanwhile, the coverage frequencies by the SCB and the ‘infeasible’ SCB are

very close, as anticipated in Theorem 2.

Figures 1 depicts the boxplots of 4n =
√
nmaxj

∣∣σ̃2K (xj)− σ̂2SK (xj)
∣∣ based

on ε ∼ N(0, 1) over 2,000 replications, where {xj , j = 1, 2, . . . , 400} are equally-

spaced points on Ĩn. The boxplot of 4n becomes narrower as the sample size

n increases, so the difference between σ̂2SK(x) and σ̃2K(x) is asymptotically of an

order smaller than n−1/2, which aggrees with Theorem 2. The scenario with

ε ∼ 0.81/2 ∗ t10 is shown in Figure S.1 in the supplement.

To visualize the SCBs for the mean and variance functions, Figures 2 and 3

were created based on two samples of size 300 and 600 in Case 1 with ε ∼ N(0, 1)

and confidence level 95%. The scenario with confidence level 99% was shown in



CONFIDENCE BANDS FOR MEAN AND VARIANCE FUNCTIONS 519

Table 2. Empirical coverage frequencies of the SCB in (4.2) and in Eubank and Speckman
(1993) for m(x), and of oracle SCB in (4.4) and ‘infeasible’ SCB in (2.4) for σ2(x) using
2,000 replications with ε ∼ N(0, 1) (the left side of the parentheses) and ε ∼ 0.81/2 ∗ t10
(inside the parentheses) respectively.

ε ∼ N(0, 1) (ε ∼ 0.81/2 ∗ t10)
Case n 1− α SCB SCB-ES oracle infeasible

1

300
0.95 0.940(0.945) 0.832(0.828) 0.889(0.846) 0.907(0.862)
0.99 0.995(0.995) 0.950(0.953) 0.959(0.939) 0.969(0.953)

600
0.95 0.962(0.947) 0.810(0.828) 0.929(0.906) 0.942(0.904)
0.99 0.995(0.993) 0.941(0.955) 0.982(0.973) 0.986(0.972)

900
0.95 0.952(0.959) 0.818(0.815) 0.939(0.928) 0.945(0.931)
0.99 0.996(0.996) 0.952(0.953) 0.990(0.983) 0.990(0.985)

2

300
0.95 0.951(0.959) 0.863(0.852) 0.889(0.852) 0.905(0.864)
0.99 0.995(0.997) 0.961(0.954) 0.952(0.945) 0.964(0.947)

600
0.95 0.961(0.960) 0.840(0.836) 0.943(0.907) 0.955(0.906)
0.99 0.997(0.995) 0.953(0.951) 0.984(0.970) 0.988(0.966)

900
0.95 0.962(0.959) 0.817(0.828) 0.958(0.925) 0.955(0.933)
0.99 0.998(0.997) 0.949(0.952) 0.991(0.981) 0.992(0.983)

3

300
0.95 0.964(0.966) 0.858(0.866) 0.893(0.855) 0.907(0.862)
0.99 0.996(0.998) 0.963(0.968) 0.960(0.945) 0.969(0.953)

600
0.95 0.966(0.968) 0.846(0.861) 0.928(0.906) 0.942(0.904)
0.99 0.997(0.997) 0.962(0.965) 0.983(0.975) 0.986(0.972)

900
0.95 0.970(0.966) 0.850(0.851) 0.941(0.926) 0.945(0.931)
0.99 0.997(0.999) 0.963(0.963) 0.989(0.981) 0.990(0.985)

4

300
0.95 0.960(0.960) 0.916(0.914) 0.895(0.869) 0.905(0.864)
0.99 0.995(0.996) 0.983(0.983) 0.958(0.953) 0.964(0.947)

600
0.95 0.956(0.950) 0.905(0.903) 0.943(0.914) 0.955(0.906)
0.99 0.995(0.997) 0.981(0.979) 0.986(0.973) 0.988(0.966)

900
0.95 0.957(0.956) 0.891(0.900) 0.933(0.917) 0.955(0.933)
0.99 0.995(0.995) 0.970(0.981) 0.989(0.983) 0.992(0.983)

Figure S.2 and S.3 in the supplement. Each has the center solid line as the true

curve, center dashed line the estimated curve and the upper and lower thick solid

lines the SCB. As expected, the SCBs for n = 600 are thinner and fit better than

those for n = 300. Figures S.4 and S.5 in the supplement show the SCBs for the

mean and variance functions with ε ∼ 0.81/2 ∗ t10.

5.2. Data examples

Using our SCBs, we have analyzed two data sets provided by Professor Jiang

Yaodong’s research group at China University of Mining and Technology, which

are available from us upon request. The data are strata pressure records in

May 2013, from the Bulianta Coal Mine located in Ordos City, Inner Mongolia,
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Figure 1. Boxplots of4n =
√
nmaxj |σ̃2

K(xj)−σ̂2
SK(xj)| in which {xj , j = 1, 2, . . . , ngrid}

are the points on Ĩn with ngrid = 400 over 2,000 replications with ε ∼ N(0, 1): (a) Case
1; (b) Case 2; (c) Case 3; (d) Case 4.

China. Information on strata pressure behavior, range and pressure periodicity

in front of a working face is important for the coal mine industry to improve

underground mining safety and precision, by preparing the roof support design

to prevent accidents caused by sudden increase of strata pressure, see Ju and Xu

(2013) and Qian, Shi and Xu (2010).

Strata pressure is the vertical stress on the coal seam roof in front of the

working face with unit KN/m2 (working face is the underground location where

miners peel coal from the coal wall mechanically). The pressure sensors are placed

at the top of hydraulic supports in front of the working face, and collect data
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Figure 2. Plots of 95% SCB (thick solid) for m(x) (solid) and the estimator m̂(x)
(dashed) in Case 1 with ε ∼ N(0, 1) and n = 300, 600 respectively.

Figure 3. Plots of 95% SCB (thick solid) for σ2(x) (solid) and the estimator σ̂2
SK(x)

(dashed) in Case 1 with ε ∼ N(0, 1) and n = 300, 600 respectively.

with a record interval of 0.80m: during the mining process, once the hydraulic

support has moved forward 0.80m, a pressure sensor records a mine pressure.

The propulsion range of the hydraulic support is from 295.5m to 705.1m, so the

sample size n is 513. We have chosen from more than 20 pressure records two

representative sets for analysis, referred to as records 1 and 2.

A potential concern is whether the independence assumption on errors εi, 1 ≤
i ≤ n, is satisfied in applications. Although it is impossible to “prove” such inde-

pendence for any data, coal mine experts generally believe that measurement er-

rors in strata pressure are caused by random geological conditions and systematic
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Figure 4. For record 1, plots of the null hypothesis curve of m(x) = a0 +
∑5

k=1

{ak sin(kωx) + bk cos(kωx)} (solid), kernel estimator m̂(x) (dashed), SCB (thick solid)
for m(x) with (a) α = 0.05 and (b) α = 0.847.

Figure 5. For record 1, plots of the null hypothesis curve of σ̂2 = n−1
∑n

i=1 ê
2
i (solid),

SCB (thick solid) for σ2(x) and the spline-kernel estimator σ̂2
SK(x) (dashed) with (a)

α = 0.05 and (b) α = 0.545.

errors of the sensors and therefore independent. We plotted for record 1 the auto-

correlation function (acf) of the residuals ε̂i = {yi−m̂ (Xi)}/σ̂SK (Xi) , 1 ≤ i ≤ n,

and of {|ε̂i|}ni=1, {ε̂
2
i }ni=1, {ε̂

4
i }ni=1 in Figure S.6 in the supplement. These plots

show that the percentage of acfs exceeding the 95% confidence limits was either

1/40 = 0.025 or 2/40 = 0.05, hence the null hypothesis of zero autocorrelation

was not rejected, for ε̂i, {|ε̂i|}ni=1, {ε̂
2
i }ni=1, {ε̂

4
i }ni=1. For the other records, the

same acf pattern was observed.

Figure 4 shows the plots of the SCB (thick solid) for record 1 computed

according to (4.2) for the mean function m (x), kernel estimate m̂ (x) (dashed)
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with confidence level 95% and 15.3%, respectively. According to the theory of

strata pressure, the pressure behavior is periodic; see Qian, Shi and Xu (2010).

We therefore proposed the null hypothesis m (x) = a0 +
∑5

k=1{ak sin(kωx) +

bk cos(kωx)} to be tested by the SCB for the mean function m (x). Since the

lowest confidence level of SCB containing the null curve was 15.3%, one re-

tained the null hypothesis with the p-value = 0.847. Likewise, Figure S.7 in

the supplement shows the plots of the SCB (thick solid) for record 2 computed

according to (4.2) for the mean function, the null hypothesis curve m (x) =

a0 +
∑5

k=1{ak sin(kωx)+bk cos(kωx)} (solid) and kernel estimate m̂ (x) (dashed)

with confidence level 95% and 50.8%, respectively. As for record 1, one re-

tained the null hypothesis with the p-value = 0.492. The estimated periodicity

for records 1 and 2 were ω = 0.0144 and ω = 0.01566, respectively. Further

investigation may lead to conclusive evidence for a general periodicity model

for the mean function m(x) with a common ω. Lastly, one observes with 95%

confidence that the strata pressure range is [233.5KN/m2, 320.3KN/m2] (the

lowest and highest values of the 95% SCB curves) for record 1 and [230.8KN/m2,

370.1KN/m2] for record 2, also quite close.

In Figure 5 the center dashed line is the spline kernel estimator σ̂2SK (x) for

σ2 (x) and the upper/lower thick solid lines represent the SCB for σ2 (x). The

SCB was used to detect heteroscedasticity in the data with the null hypothesis

H0: σ
2 (x) ≡ σ2. Since the lowest confidence level of SCB containing the hori-

zontal line σ̂2 = 1/n
∑n

i=1 ê
2
i was 45.5%, where σ̂2 is a consistent estimate of σ2

under H0, one retained the null hypothesis of homoscedasticity with the p-value

= 0.545. In contrast, Figure S.8 in the supplement shows that for record 2 the

null hypothesis of homoscedasticity is rejected with the p-value = 0.0024.

Supplementary Materials

The online supplement contains the proofs for the main results and some

figures for the simulation and data examples.
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