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Abstract: Matrix-variate Gaussian graphical models (GGM) have been widely used

for modeling matrix-variate data. Since the support of sparse precision matrix

represents the conditional independence graph among matrix entries, conducting

support recovery yields valuable information. A commonly used approach is the

penalized log-likelihood method. However, due to the complicated structure of pre-

cision matrices in the form of Kronecker products, the log-likelihood is non-convex,

which presents challenges for both computation and theoretical analysis. In this

paper, we propose an alternative approach by formulating the support recovery

problem as a multiple testing problem. A new test statistic is developed and, based

on that, we use the popular Benjamini and Hochberg’s procedure to control false

discovery rate (FDR) asymptotically. Our method involves only convex optimiza-

tion, making it computationally attractive. Theoretically, our method allows very

weak conditions and, even when the sample size is finite and the dimensions go to

infinity, the asymptotic normality of the test statistics and FDR control can still

be guaranteed. We further provide the power analysis result. The finite sample

performance of the proposed method is illustrated with simulations and real data

analysis.

Key words and phrases: Correlated samples, false discovery rate, matrix-variate

Gaussian graphical models, multiple tests, support recovery.

1. Introduction

In the era of big data, matrix-variate observations are becoming prevalent

in such domains as biomedical imaging, genomics, financial markets, spatio-

temporal environmental data analysis, and more. A typical example is the gene

expression data in genomics, in which each observation contains expression lev-

els of p genes on q microarrays of the same subject (see, e.g., Efron (2009);

Yin and Li (2012)). Another example of such data is the multi-channel elec-

troencephalography (EEG) data for brain imaging studies (see, e.g., Bijma, De

Munck and Heethaar (2005)), in which each measurement can be expressed as

a matrix with rows corresponding to p different channels and columns to q time

https://doi.org/10.5705/ss.202017.0076


480 CHEN AND LIU

points. Leng and Tang (2012) provided more interesting examples of matrix-

variate data. Due to the prevalence of matrix-variate observations (especially

high-dimensional observations), it is important for us to understand the struc-

tural information encoded in these observations.

To study matrix-variate data where each observation X is a p × q matrix,

it is commonly assumed that X follows a matrix-variate Gaussian distribution,

e.g., Efron (2009); Allen and Tibshirani (2010); Leng and Tang (2012); Yin and

Li (2012); Zhou (2014). The matrix-variate Gaussian distribution is a general-

ization of the familiar multivariate normal distribution for vector-variate data.

In particular, let vec(X) ∈ Rpq×1 be the vectorization of matrix X obtained by

stacking the columns of X on top of each other. We say that X follows a matrix-

variate Gaussian distribution X ∼ N(µ,Σ ⊗Ψ) with mean matrix µ ∈ Rp×q,
row covariance matrix Σ ∈ Rp×p and column covariance matrix Ψ ∈ Rq×q if and

only if vec(X′) ∼ N(vec(µ′),Σ ⊗Ψ), where X′ denotes the transpose of X and

⊗ is the Kronecker product.

Readers can refer to Dawid (1981) and Gupta and Nagar (1999) for more

properties of matrix-variate Gaussian distribution. Similar to the vector-variate

Gaussian graphical models (GGMs) in which the conditional independence graph

is encoded in the support of the precision matrix, one can analogously define

matrix-variate Gaussian graphical models (MGGM) (a.k.a. Gaussian bigraphical

models). Let us denote a conditional independence graph by the undirected graph

G = (V,E), where V = {Vij}1≤i≤p,1≤j≤q contains p × q nodes and each node

corresponds to an entry in the random matrix X. We can regard the edge set E

as a pq × pq matrix where there is no edge between Xij and Xkl if and only if

Xij and Xkl are conditionally independent given the rest of the entries. The goal

of the graph estimation is to estimate the edge set E, which unveils important

structural information on the conditional independence relationship.

The estimation of the conditional independence graph is equivalent to the

estimation of the support of the precision matrix. In particular, let Ω = Σ−1 =

(ωik)p×p, Γ = Ψ−1 = (γjl)q×q. The precision matrix of the MGGM is a pq × pq
matrix Ω ⊗ Γ = (Σ ⊗ Ψ)−1, where (Ω ⊗ Γ)q(i−1)+j, q(k−1)+l = ωik · γjl. The

conditional independence among entries of X can be presented by the support

of Ω⊗ Γ (denoted by supp(Ω⊗ Γ)), which is equivalent to supp(Ω)⊗ supp(Γ).

To see this, we recall that Xij and Xkl are conditionally independent given the

rest of the entries, if and only if %ij,kl = 0, where %ij,kl is the partial correlation

between Xij and Xkl,
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%ij,kl = − ωik√
ωiiωkk

·
γjl√
ωjjωll

. (1.1)

Thus, Xij and Xkl are conditionally independent if and only if there is at least one

zero in ωik or γjl. Therefore, to estimate the conditional independence graph,

one only needs to estimate supp(Ω) and supp(Γ). Their Kronecker product

supp(Ω) ⊗ supp(Γ) gives the edge set E. For a given matrix-variate Gaussian

distribution, multiplying a constant to Ω and dividing Γ by the same constant

leads to the same distribution. The existing literature usually assumes that ω11 =

1 to make the model identifiable (see, e.g., Leng and Tang (2012)). However, if

we are interested in support recovery rather than values of ωik or γjl, then there

is no identifiability issue.

Due to the complicated structure in the precision matrices of MGGMs, re-

search on matrix-variate GGMs (MGGMs) is scarce compared to the large body

of literature on vector-variate GGMs. The vector-variate GGM with random

vector observations can be viewed as a special case of MGGM with p = 1 or

q = 1, and readers can refer to Meinshausen and Bühlmann (2006); Yuan and

Lin (2007); Rothman et al. (2008); d’Aspremont, Banerjee and El Ghaoui (2008);

Friedman, Hastie and Tibshirani (2008); Yuan (2010); Ravikumar et al. (2011);

Cai, Liu and Luo (2011); Liu et al. (2012); Xue and Zou (2012); Liu (2013);

Zhu, Shen and Pan (2014); Fan and Lv (2016); Ren et al. (2016) for the recent

development in vector-variate GGMs. Our work is closely related to that of Liu

(2013), which conducts graph estimation via false discovery rate (FDR) control

for vector-variate GGMs. Due to the complicated structure of MGGMs, the pro-

posed test statistics are fundamentally different from the ones in Liu (2013) and

the theoretical analysis is more challenging. The details on the comparisons to

Liu (2013) are deferred to Section 6.

For estimating sparse precision matrices of matrix-variate Gaussian data, one

approach is based on the penalized likelihood method. However, since the preci-

sion matrices are in the form of a Kronecker product, the negative log-likelihood

function is no longer convex, which makes both computation and theoretical

analysis significantly more challenging than in the case of classical vector-variate

GGMs. A few recent works (Allen and Tibshirani (2010); Leng and Tang (2012);

Yin and Li (2012); Kalaitzis et al. (2013); Tsiligkaridis, Hero and Zhou (2013);

Ying and Liu (2013); Huang and Chen (2015)) have focused on developing various

penalized likelihood approaches for estimating MGGMs or extensions of MGGMs

(e.g., multiple MGGMs in Huang and Chen (2015) and semiparametric extension
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in Ying and Liu (2013)). In particular, Leng and Tang (2012) provided theoret-

ical guarantees on the estimated precision matrices, e.g., rates of convergence

under the Frobenius norm and sparsistency. One limitation is that these results

are stated in terms that there exists a local minimizer that enjoys good proper-

ties. In practice, it might be difficult to determine whether the obtained local

minimizer from an optimization solver is a desired local minimizer. In addition,

most convergence results require certain conditions on the sample size n and di-

mensionality p and q, e.g., p and q cannot differ too much from each other and

n should go to infinity at a certain rate. We will show later that n → ∞ is not

necessary for the control of the false discovery rate (FDR) in support recovery for

MGGMs. Zhou (2014) developed new penalized methods for estimating Σ ⊗Ψ

and Ω ⊗ Γ and established the convergence rates under the spectral norm and

the Frobenius norm. Our goal of accurate FDR control cannot be achieved by

the method in Zhou (2014) or other penalized optimization approaches.

The main goal of this work is to infer the support of the precision matrix for

an MGGM in high-dimensional settings, which fully characterizes the conditional

independence relationship. Our method differs from the common approaches that

turn the problem into a joint optimization over Ω and Γ with penalized likelihood

methods. We utilize the large-scale testing framework and formulate the problem

into multiple testing problems for Ω and Γ:

HΩ
0ij : ωij = 0 vs HΩ

0ij : ωij 6= 0, 1 ≤ i < j ≤ p, (1.2)

HΓ
0ij : γij = 0 vs HΓ

0ij : γij 6= 0, 1 ≤ i < j ≤ q. (1.3)

By conducting the multiple testing for (1.2) and (1.3), we obtain the estimates

for the support of Ω and Γ, denoted by ̂supp(Ω) and ̂supp(Γ), respectively.

Then, the support of Ω ⊗ Γ can be naturally estimated by ̂supp(Ω) ⊗ ̂supp(Γ).

Instead of aiming for perfect support recovery, which requires strong conditions,

our goal is to asymptotically control the false discovery rate (FDR). The FDR,

originally introduced for multiple testing (Benjamini and Hochberg (1995)), has

been considered one of the most important criterion for evaluating the quality

of estimated networks (e.g., in the application of genetic data analysis, Schafer

and Strimmer (2005); Ma, Gong and Bohnert (2007)). Refer to (4.2) and (4.5)

in Section 4.2 for the definition of FDR in our graph estimation problems.

Although conducting variable selection via multiple testing is not a new idea,

how to implement such a high-level idea for MGGMs with a complicated covari-

ance structure requires several innovations in the methodology development. In
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particular, to conduct the multiple testing in (1.2) and (1.3), it is critical to

construct a test statistic with the explicit asymptotic null distribution for each

edge. To this end, we propose a new approach that fully utilizes the correlation

structures among rows and columns of X. In particular, suppose that there are

n i.i.d. p × q matrix-variate samples X(1), . . . ,X(n). To conduct the testing in

(1.3) and estimate the support of q× q matrix Γ, we treat each row of X(k) as a

q-dimensional sample. In such a way, we construct n · p correlated vector-variate

samples for the testing problem in (1.3), where the correlation among these “row

samples” is characterized by the covariance matrix Σ. One important advantage

of this approach is that it only requires number of row samples np→∞ to con-

trol FDR asymptotically, and thus allows a finite sample size n even when p and

q go to infinity. On the other hand, the correlation structure among row sam-

ples also presents a significant challenge to the development of the FDR control

approach, and most existing inference techniques for vector-variate GGMs rely

heavily on the independence assumption (see, e.g., Liu (2013); Van de Geer et

al. (2014); Ren et al. (2015)). To address this challenge, we summarize the effect

of correlation among “row samples” in a simple quantity depending on Σ and,

based on that, introduce a variance correction technique into the construction of

the test statistics (see Section 3.1). The testing of the supp(Ω) in (1.2) can be

performed in a completely symmetric way with nq correlated “column samples”

from the data.

More specifically, the high-level description of the proposed large-scale test-

ing approach is as follows. Given the “row samples” from the data, the first

step is to construct an asymptotically normal test statistic for each HΓ
0ij in (1.3).

We utilize a fundamental result from multivariate analysis which relates the par-

tial correlation coefficient to the correlation coefficient of residuals from linear

regression. To compute the sample version of the correlation coefficient of the

residuals, we first construct an initial estimator for the regression coefficients.

With the initial estimator in place, we can directly show that the sample cor-

relation coefficient of the residuals is asymptotically normal under the null. We

further apply the aforementioned variance correction technique and obtain the

final test statistic for each HΓ
0ij . Combining the developed test statistics with the

Benjamini and Hochberg approach (Benjamini and Hochberg (1995)), we show

that the resulting procedure asymptotically controls the FDR for both ̂supp(Γ)

and ̂supp(Ω) (and thus ̂supp(Γ)⊗ ̂supp(Ω)) under some sparsity conditions of Γ

and Ω.

This proposed method is the first to investigate FDR control in MGGMs,
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greatly generalizing the method on FDR control for i.i.d. vector-variate GGMs

in Liu (2013), and it improves on optimization-based approaches. The main

contribution and difference between our results and the existing ones for vector-

variate GGMs (e.g., Liu (2013)) are summarized as follows,

1. We propose a novel test statistic in Section 3.1. By introducing a new

construction of the initial regression coefficients (i.e., setting a particular

element in each initial Lasso estimator to zero), our testing approach no

longer requires a complicated bias-correlation step as in Eq. (6) in Liu

(2013). Furthermore, the limiting null distribution of the sample covariance

coefficient between residuals (see r̂ij in (3.7)) can be easily obtained. In

fact, this idea can be used to provide simpler testing procedure for ordinary

vector-variate high-dimensional graphical models.

2. Instead of relying on the i.i.d. assumption in GGM literature, we propose to

extract np correlated vector-variate “rows samples” (as well nq correlated

“column samples”) from matrix-variate observations. By utilizing corre-

lation structure among rows and columns, our approach allows for finite

sample size, which is a very attractive property from both theoretical and

practical perspectives. More specifically, even in the case that n is a con-

stant and p → ∞ and q → ∞, our method still guarantees the asymptotic

normality of the test statistics and FDR control. This is fundamentally dif-

ferent from the case of vector-variate GGMs, which always requires n→∞
for the support recovery. Therefore, this work greatly generalizes Liu (2013),

which only deals with i.i.d. vector-variate Gaussian samples, to correlated

data.

In this paper, we develop new techniques and theoretical analysis to ad-

dress the challenges arising from correlated samples. For example, the pro-

posed variance correlation technique can be used as a general technique for

high-dimensional inference with correlated samples. Moreover, the initial

estimator is now based on the Lasso with correlated samples. To this end,

we establish the consistency result for the Lasso with correlated samples,

which itself is of independent interest for high-dimensional linear regression.

3. Theoretically, by utilizing the Kronecker product structure of the covari-

ance matrix of X, the proposed method allows the partial correlation be-

tween Xij and Xkl (i.e., %ij,kl in (1.1)) to be of the order of {1/(n −
1)}
√

(log p log q)/(pq) so that the corresponding edge can be detected (please

see the power analysis in Section 4.3 and Theorem 4 for details). This is
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essentially different from any vector-variate GGM estimator (e.g., the one

from Liu (2013)) that requires the partial correlation to be at least C(1/
√
n).

In terms of support recovery and computational cost, our method has several

advantages as compared to popular penalized likelihood approaches: First, it

provides an accurate control of FDR (see Theorem 3). Existing support recovery

results only guarantee that the estimated positions of zeros are supersets of the

positions of true zeros in Ω and Γ with probability tending to one when n, p, q

all go to infinity at certain rates. (see, e.g., Leng and Tang (2012); Yin and Li

(2012)). Second, in terms of computation, as compared to existing penalized

likelihood methods whose objective functions are non-convex, our approach is

based on convex optimization and thus computationally more attractive. The

main computational cost of our approach is the construction of initial estimates

for p + q regression coefficient vectors that directly lead to our test statistics.

The corresponding computational problems are completely independent allowing

an efficient parallel implementation. Theoretically, our approach allows a wider

range of p and q. In particular, our result on FDR control holds for (p, q) such

that qr2 ≤ p ≤ qr1 for some 0 < r2 ≤ r1, while Leng and Tang (2012) require

that p log(p) = o(nq) and q log(q) = o(np).

2. Notations and Organization of the Paper

We introduce some necessary notation. Let X(k) = (X
(k)
ij )p×q for k =

1, . . . , n be the n i.i.d. matrix-variate observations from Np,q(µ,Σ ⊗ Ψ) and

let X̄ = (1/n)
∑n

k=1 X(k). Put Σ = (σij) and Ψ = (ψij). For any vector

x = (x1, . . . , xp)
′, let x−i denote p − 1 dimensional vector by removing xi from

x. Let 〈x,y〉 be the inner product of two vectors x and y. For any p× q matrix

A, let Ai,· denote the i-th row of A (or Ai when it is clear from the context)

and A·,j denote the j-th column of A (or Aj when it is clear from the context).

Further, let Ai,−j denote the i-th row of A with its j-th entry removed and

A−i,j denotes the j-th column of A with its i-th entry removed. A−i,−j denotes

a (p − 1) × (q − 1) matrix by removing the i-th row and j-th column of A.

Take [n] = {1, . . . , n}, [p] = {1, . . . , p} and [q] = {1, . . . , q}. For a p-dimensional

vector x, let |x|0 =
∑p

j=1 I(xj 6= 0), |x|1 =
∑p

j=1 |xj | and |x|2 =
√∑p

j=1 x
2
j .

For a matrix A = (aij) ∈ Rp×q, let ‖A‖F =
√∑

i∈[p],j∈[q] a
2
ij be the Frobenius

norm of A, |A|∞ = maxi∈[p],j∈[q] |aij | be the element-wise `∞-norm of A and

‖A‖2 = sup|x|2≤1 |Ax|2 be the spectral norm of A. For a square matrix A, let

tr(A) denote the trace of A. For a given set H, let Card(H) be the cardinality
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of H. Throughout the paper, we use Ip to denote the p× p identity matrix, and

we use C, c, etc. to denote generic constants whose values might change from

place to place.

The rest of the paper is organized as follows. In Section 3, we introduce

our test statistics and then describe the FDR control procedure for MGGM

estimation. Theoretical results on asymptotic normality of our test statistic and

FDR control are reported in Section 4. Simulations and real data analysis are

given in Section 5. In Section 6, we provide further discussions on the proposed

method and also point out some future work. The proofs and some additional

experimental results are relegated to the supplementary material.

3. Methodology

The false discover proportion (FDP) is the proportion of false discoveries

among total rejections. If ̂supp(Ω) and ̂supp(Γ) are the estimators of supp(Ω)

and supp(Γ), respectively, under the control of FDP at level α ∈ [0, 1], it is

clear that the FDP of ̂supp(Ω) ⊗ ̂supp(Γ) as an estimator of supp(Ω ⊗ Γ) is

controlled at some level α′. Here, the level α′ (explicitly given at (4.9)) is a

monotonically increasing function in α. Therefore, we reduce our task to design

an estimator of supp(Γ) under the FDP level α and the estimator of supp(Ω)

can be constructed similarly. We propose to estimate supp(Γ) by implementing

the large-scale multiple tests:

H0ij : γij = 0 vs. H1ij : γij 6= 0, 1 ≤ i < j ≤ q. (3.1)

3.1. Construction of test statistics

In this section, we propose our test statistic for eachH0ij in (3.1), constructed

from n i.i.d. p × q matrix-variate samples X(1), . . . ,X(n) with the population

distribution X ∼ N(µ,Σ⊗Ψ). Denote the partial correlation matrix associated

with Γ by ρΓ =
(
ρΓ
ij·

)
q×q

, where ρΓ
ij· = −(γij/

√
γiiγjj) is the partial correlation

coefficient between Xli and Xlj for any 1 ≤ l ≤ p. For 1 ≤ i < j ≤ q and any

1 ≤ l ≤ p, consider the population regression coefficients,

(αi,βi) = arg min
a∈R,b∈Rq−1

E(Xli − a−Xl,−ib)2,

(αj ,βj) = arg min
a∈R,b∈Rq−1,

E(Xlj − a−Xl,−jb)2. (3.2)

The standard linear regression result shows that

βi = −γ−1ii Γ−i,i ; βj = −γ−1jj Γ−j,j . (3.3)
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For such βi and βj , the corresponding residuals εli and εlj take the form,

εli = Xli − αi −Xl,−iβi ; εlj = Xlj − αj −Xl,−jβj . (3.4)

It is known that E(εli) = E(εlj) = 0. Moreover, the correlation between εli
and εlj is Corr(εli, εlj) = −ρΓ

ij· = γij/
√
γiiγjj . To see this, let γi be the i-

th column of Γ for 1 ≤ i ≤ q. By (3.3) and (3.4), we can equivalently write

εli = −αi + γ−1ii Xl,·γi and εlj = −αj + γ−1jj Xl,·γj . Since the covariance of Xl,·,

Cov(Xl,·), is σllΨ = σllΓ
−1, we have

Cov(εli, εlj) = γ−1ii γ
−1
jj γ

T
i Cov(Xl,·)γj = σllγ

−1
ii γ

−1
jj

(
γTi Γ−1

)
γj = σllγ

−1
ii γ

−1
jj γij ,

(3.5)

where the last equality holds because γTi Γ−1 = eTi where ei denotes the i-th

canonical vector. Similarly, Var(εli) = σllγ
−1
ii and Var(εlj) = σllγ

−1
jj which, to-

gether with (3.5), imply that Corr(εli, εlj) = γij/
√
γiiγjj . Therefore, testing

whether γij = 0 (or ρΓ
ij· = 0) is equivalent to testing whether Corr(εli, εlj) = 0.

We build our test statistics based on this equivalence relationship.

To implement this, one needs to construct an initial estimator for each βj so

that the distribution of sample correlation coefficient of residuals can be deduced

easily. To do so, we first let β̂j = (β̂1,j , . . . , β̂q−1,j)
′ be any estimator for βj that

satisfies

max
1≤j≤q

|β̂j − βj |1 = OP(an1), and max
1≤j≤q

|β̂j − βj |2 = OP(an2), (3.6)

where an1 → 0 and an2 → 0 at some rate to be specified later. The Lasso (Tibshi-

rani (1996)), Dantzig selector (Candès and Tao (2007)), or other sparse regression

approaches can be adopted provided that (3.6) is satisfied (see Section 3.2 for

details). Under the null H0ij : γij = 0, according to (3.3), the i-th element in βj
that corresponds to the covariate Xli in (3.4), is zero, and the (j−1)-th element in

βi that corresponds to the covariate Xlj in (3.4), is also zero. Hence, for each pair

i < j, we take the initial estimators β̂j,\i = (β̂1,j , . . . , β̂i−1,j , 0, β̂i+1,j , . . . , β̂q−1,j)
′

and β̂i,\j = (β̂1,i, . . . , β̂j−2,i, 0, β̂j,i, . . . , β̂q−1,i)
′ for βj and βi, respectively. For

convenience, we let β̂j,\j = β̂j so that the “sample residual” ε̂
(k)
ljj introduced in

the below is also well-defined (see (3.7)).

Given the initial estimators under the null, we construct the “sample resid-

uals” by treating each row l ∈ [p] of a matrix-variate observation X(k) for k ∈ [n]

as a “row sample”, i.e., X
(k)
l,· = (X

(k)
l1 , . . . X

(k)
lq ). The “sample residuals” corre-

sponding to εli and εlj in (3.4) are:

ε̂
(k)
lij = X

(k)
li − X̄li − (X

(k)
l,−i − X̄l,−i)β̂i,\j ,
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ε̂
(k)
lji = X

(k)
lj − X̄lj − (X

(k)
l,−j − X̄l,−j)β̂j,\i, (3.7)

where X̄li = (1/n)
∑n

k=1X
(k)
li and X̄l,−i = (1/n)

∑n
k=1 X

(k)
l,−i. Let r̂ij be the

sample covariance coefficient between constructed residuals,

r̂ij =
1

(n− 1)p

n∑
k=1

p∑
l=1

ε̂
(k)
lij ε̂

(k)
lji ; (3.8)

and r̂ij/
√
r̂iir̂jj be the corresponding sample correlation coefficient of residuals.

The proposed construction of the sample correlation of residuals has advan-

tages. Under the null H0ij , incorporating the fact that γij = 0 into the regression

coefficients enables us to derive the asymptotic null distribution of the sample

correlation coefficients. In particular, Proposition 1 show that under the null,√
(n− 1)p

Ap

r̂ij√
r̂iir̂jj

⇒ N(0, 1), (3.9)

where

Ap =
p‖Σ‖2F
{tr(Σ)}2

. (3.10)

Here, Ap is the asymptotic variance of
√

(n− 1)p(r̂ij/
√
r̂iir̂jj) under the null.

It is noteworthy that the term Ap is critical since it plays the role of variance

correction when treating rows of matrix-variate data as correlated samples. For

the proposed construction, although the sample correlation coefficients are con-

structed under the null, we can show that r̂ij/
√
r̂iir̂jj converges to (1−γijψij)ρΓ

ij·
in probability as np → ∞ under both the null and alternative (see Proposition

2). This result indicates that the test statistic based on r̂ij/
√
r̂iir̂jj can properly

reject the null when the magnitude of partial correlation coefficient |ρΓ
ij·| is away

from zero. For many widely studied covariance structures of Ψ and Γ = Ψ−1,

ψijγij is often non-positive, which makes the signal strength (1− γijψij)ρΓ
ij· even

larger than the partial correlation coefficient and thus leads to good statistical

power. For example, two variables that are directly positively/negatively corre-

lated, they will often be positively/negatively conditionally correlated.

It is worthwhile to note that the variance correction quantity Ap ∈ R in

(3.9) is unknown as it involves Σ. In the next subsection, we will propose a ratio

consistent estimator Âp such that Âp/Ap → 1 in probability as nq → ∞. Using

Âp, we construct the final test statistic for H0ij :

T̂ij =

√
(n− 1)p

Âp

r̂ij√
r̂iir̂jj

, (3.11)
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which is asymptotically normal given (3.9) and the ratio consistency of Âp.

3.1.1. Estimator for Ap

We propose an estimator Âp of Ap based on a thresholding estimator of

Σ. We first construct an initial estimator of Σ based on nq “column sam-

ples”, where each column of X(k) for k ∈ [n] is treated as a p-dimensional

sample. In particular, let X̄ = (1/n)
∑n

k=1 X(k), each centered column sam-

ple Ykj = X
(k)
·,j − X̄·,j ∈ Rp×1 for k ∈ [n] and j ∈ [q]. Take Σ̂ = (σ̂ij)p×p :=

[1/{(n− 1)q}]
∑n

k=1

∑q
j=1(Ykj)(Ykj)

′. In a more succinct notation, let Y =

{X(1) − X̄, . . . ,X(n) − X̄} ∈ Rp×(nq) and Σ̂ = [1/{(n− 1)q}] YY′. Then, we

threshold the elements of Σ̂ as follows:

σ̂ij,λ = σ̂ijI

{
|σ̂ij | ≥ λ

√
log max(p, nq)

nq

}
for i 6= j; (3.12)

and σ̂ii,λ = σ̂ii for i ∈ [p]. Set Σ̂λ = (σ̂ij,λ)p×p and define the plug-in estimator

of Ap:

Âp =
p‖Σ̂λ‖2F
{tr(Σ̂λ)}2

. (3.13)

In Section 4, we show that Âp/Ap → 1 in probability as nq →∞ for a properly

chosen λ (a data-driven approach for the choice of λ will be discussed later in

Section 3.2). Therefore, by (3.9), we have the desired asymptotic normality of

T̂ij under the null: T̂ij ⇒ N(0, 1) as np→∞.

We further note that when the columns of X are i.i.d. (i.e., Ψ = Iq), con-

sistency under the spectral norm ‖Σ̂λ −Σ‖2 has been established if the sparsity

condition of Σ satisfies the row sparsity level s0(p) = O(
√
nq/ log p) (see, e.g.,

Bickle and Levina (2008); Cai and Liu (2011) and references therein). We do not

need such a strong consistency result for Σ̂λ in the spectral norm to establish the

consistency of Âp. In fact, since Ap only involves ‖Σ‖F rather than Σ itself, the

sparsity condition on s0(p) is no longer necessary; see Proposition 3 and its proof

for more details. Other estimators of ‖Σ‖F have been proposed (e.g,. by Chen

and Qin (2010)). But those approaches rely heavily on the i.i.d. assumption on

the columns of X.

3.2. Initial estimators of regression coefficients

In the construction of the test statistic T̂ij , we need an estimate β̂j that sat-

isfies the condition in (3.6). Here, we choose to construct β̂j using Lasso for sim-

plicity, but other approaches such as the Dantzig selector can also be used. In par-
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ticular, let Z =
{

(X(1))′ − X̄
′
, . . . , (X(n))′ − X̄

′
}
∈ Rq×(np) be np q-dimensional

samples extracted from the data, and Ψ̂ = [1/{(n− 1)p}] ZZ′ =: (ψ̂ij)q×q.

For 1 ≤ j ≤ q, define the scaling/normalizing vector Dj = diag(Ψ̂−j,−j) ∈
R(q−1)×(q−1). The coefficients βj can be estimated by the Lasso as follows:

β̂j(δ) = D
−1/2
j α̂j(δ), (3.14)

where

α̂j(δ)=arg min
α∈Rq−1

(
1

2np

n∑
k=1

p∑
l=1

{
X

(k)
lj −X̄lj−(X

(k)
l,−j−X̄l,−j)D

−1/2
j α

}2
+θnj(δ)|α|1

)
(3.15)

and

θnj(δ) = δ

√
ψ̂jj log max(q, np)

np
. (3.16)

In the Lasso estimate in (3.15), the np covariates-response pairs (X
(k)
l,−j − X̄l,−j ,

X
(k)
lj −X̄lj) for k ∈ [n] and j ∈ [p] are not i.i.d. and thus the standard consistency

result of Lasso cannot be applied here. By exploring the correlation structure

among rows of X, we managed to derive the rate of convergence of the Lasso

estimator in the `1 and the `2 norms. This result may be of independent interest

for dealing with high-dimensional correlated data. For the choice of tuning pa-

rameters, our theoretical results hold for any large enough constants λ in (3.12)

for estimating Âp (see Proposition 3) and δ > 0 in (3.16) for β̂j(δ) (see Propo-

sition 4). In our experiment, we adopt a data-driven parameter-tuning strategy

from Liu (2013).

3.3. FDR control procedure

Given the constructed test statistic T̂ij , we can carry out (q2 − q)/2 tests in

(3.1) simultaneously using the popular Benjamini and Hochberg (BH) method

Benjamini and Hochberg (1995). Let the p-values pij = 2− 2Φ(|T̂ij |) for 1 ≤ i <
j ≤ q. We sort these m = (q2 − q)/2 p-values such that p(1) < · · · < p(m). For a

given 0 < α < 1, take

k̂ = max

{
0 ≤ k ≤ m : p(k) ≤

αk

m

}
.

For 1 ≤ i 6= j ≤ q, we reject H0ij if pij ≤ p(k̂) and the estimated support of Γ is

̂supp(Γ) = {(i, j) : pij ≤ p(k̂), 1 ≤ i 6= j ≤ q} ∪ {(i, i) : 1 ≤ i ≤ q}. (3.17)

We set T̂ji = T̂ij for 1 ≤ i < j ≤ q in (3.17).
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Note that the original results from Benjamini and Hochberg (1995) cannot

be directly applied to obtain the guarantee of FDR control since the test statistics

(and thus the p-values) are correlated with each other. By utilizing some tech-

niques of Liu (2013), we can prove that this procedure controls the FDR/FDP

asymptotically in ̂supp(Γ) (see Section 4.2 for details).

Estimation of supp(Ω). The estimation of supp(Ω) can be done in the

same way. In particular, we only need to consider the transpose of each matrix-

variate observation X(k), (X(1))′, . . . , (X(n))′ and change some notation (e.g., p

to q and q to p).

Estimation of supp(Ω⊗ Γ). Let ̂supp(Ω) and ̂supp(Γ) be the estimators

of supp(Ω) and supp(Γ), respectively, under the control of FDR at level α. The

support of Ω⊗ Γ can then be estimated by ̂supp(Ω)⊗ ̂supp(Γ). In Theorem 3,

we show that the FDR/FDP of this estimator is controlled at level

α′ =
α{(2− α)ab+ aq + bp}

max(ab+ aq + pb, 1)
(3.18)

asymptotically, where a and b are the numbers of total discoveries in ̂supp(Ω)

and ̂supp(Γ), respectively, excluding the diagonal entries. When the FDR/FDP

level α′ for the joint support estimation is given, to determine the FDR level α

for the estimation of supp(Ω) and supp(Γ), one can try a sequence of α’s from

small to large. For each candidate α, we obtain the value a and b by estimating

supp(Ω) and supp(Γ) and plug the obtained values into (3.18). Finally, we

choose the value α for the separate estimation that leads to the closest value to

the pre-given α′.

Remark 1. One natural approach of solving our problem is the de-correlation

method. More precisely, if Σ is known, the data matrix can be transformed as

Σ−1/2X ∼ N(Σ−1/2µ, Ip×p ⊗Ψ), based on which the method from Liu (2013)

can be applied. Therefore, a natural two-stage approach is to first obtain an

consistent estimator of Σ−1/2 (e.g., Cai, Liu and Luo (2011)) and then apply the

FDR control approach of Liu (2013) to Σ̂−1/2X(i) for 1 ≤ i ≤ n. However, this

“de-correlation” approach is not applicable here. To ensure the estimation error

between Σ̂−1/2 and Σ−1/2 is negligible for the FDR control, we find that we need

the condition
nq

{ps2(p)}1/(1−τ)
→∞ (3.19)

to replace Σ−1/2 by Σ̂−1/2. (This condition means that we need a large sample

number nq to estimate Σ−1/2 accurately). Similarly, to replace Ψ−1/2 by Ψ̂−1/2,
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we need the condition
np

{qs2(q)}1/(1−τ)
→∞. (3.20)

Hence, to get ̂supp(Σ−1)⊗ ̂supp(Ψ−1), we need (3.19) and (3.20) simultaneously.

However, when n is fixed or small, (3.19) and (3.20) are contrary. Hence, it is

impossible to do the de-correlation for rows and columns of X simultaneously.

4. Theoretical Results

In this section, we provide the properties of the test statistic at (3.11), the

guarantee of FDR control, power analysis and convergence rate of the initial

estimator. Proofs are relegated to the supplement.

Let λmin(Σ) = λ
(1)
1 ≤ · · · ≤ λ

(1)
p = λmax(Σ) be the eigenvalues of Σ and

λmin(Ψ) = λ
(2)
1 ≤ · · · ≤ λ

(2)
q = λmax(Ψ) be eigenvalues of Ψ. We make an

assumption on the eigenvalues throughout this section,

(C1). c−1 ≤ λ
(1)
1 ≤ · · · ≤ λ

(1)
p ≤ c and c−1 ≤ λ

(2)
1 ≤ · · · ≤ λ

(2)
q ≤ c for some

constant c > 0.

The condition (C1) is a standard eigenvalue assumption in high-dimensional

covariance estimation literature (see the survey Cai, Ren and Zhou (2016) and

references therein). It is natural for many important classes of covariance ma-

trices, e.g., bandable, Toeplitz, and sparse covariance matrices. The assumption

(C1) implies that 1/c′ ≤ Ap ≤ c′ (see Ap in (3.10)) for some constant c′ > 0.

We first provide some key results on the properties of the test statistic and the

estimator Âp of Ap in the next subsection.

4.1. Asymptotic normality and convergence results of the proposed

test statistics

The first result gives the asymptotic normality for the test statistic√
{(n− 1)p}/Ap(r̂ij/

√
r̂iir̂jj) in (3.9) under the null.

Proposition 1. Assume that, as np → ∞, log max(q, np) = o(np), and the

estimator β̂j for j ∈ [q] satisfies (3.6) with

an1 = o

{
1√

log max(q, np)

}
and an2 = o{(np)−1/4}. (4.1)

Under the null H0ij : γij = 0, we have, as np→∞,
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(n− 1)p

Ap

r̂ij√
r̂iir̂jj

⇒ N(0, 1)

in distribution, where r̂ii and Ap are defined in (3.8) and (3.10), respectively.

The next proposition shows that under alternatives, r̂ij/
√
r̂iir̂jj converge to

a nonzero number, which indicates that our test statistics lead to a non-trivial

power. Here ρΓ
ij· is the partial correlation coefficient between Xli and Xlj (for

any 1 ≤ l ≤ p).

Proposition 2. Suppose that conditions in Proposition 1 hold. We have, for

1 ≤ i < j ≤ q,
r̂ij√
r̂iir̂jj

− (1− γijψij)ρΓ
ij· → 0

in probability as np→∞.

The condition in (4.1) will be established later in Proposition 4. It is inter-

esting to see that in Propositions 1 and 2, we only require np→∞, which means

that the sample size n can be a constant. This is a significant difference be-

tween the estimation of MGGMs and that of vector-variate GGMs. In the latter

problem, to establish the asymptotic consistency or normality, the sample size is

usually required to go to infinity in the existing literature (see, e.g., Rothman et

al. (2008); Lam and Fan (2009); Liu (2013); Ren et al. (2015)).

We next establish the convergence rate for the estimator of Ap. To this end,

we need an additional condition on Σ.

(C2). For some 0 < τ < 2,
∑p

j=1 |σij |τ ≤ Cs(p) with s(p) = 1/(log q)2{√
nq/ log max(p, nq)

}(2−τ)∧1
uniformly in 1 ≤ i ≤ p.

Note that when 0 < τ < 1, this assumption becomes the typical weak sparsity

assumption in high-dimensional covariance estimation (Bühlmann and van de

Geer (2011)).

Proposition 3. Let λ̃ = λ
√

log max(p, nq)/nq with λ being sufficiently large.

Suppose that (C2) holds. We have Âp/Ap = 1 +OP(λ̃(2−τ)∧1s(p)) as nq →∞.

Combining Propositions 1 and 3, we have the asymptotic normality under

the null for our final test statistic T̂ij =

√
(n− 1)p/Âp(r̂ij/

√
r̂iir̂jj) in (3.11).

4.2. Guarantees on FDP/FDR control

We show that the FDP and FDR of ̂supp(Ω) ⊗ ̂supp(Γ) can be controlled
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asymptotically. To this end, we discuss the FDP and FDR of the estimation of

supp(Γ) and supp(Ω) separately. For the estimation of supp(Γ), take

FDP1 =

∑
(i,j)∈H0

I{(i, j) ∈ ̂supp(Γ)}

max
(∑

1≤i<j≤q I{(i, j) ∈ ̂supp(Γ)}, 1
) , FDR1 = E(FDP1), (4.2)

where H0 = {(i, j) : γij = 0, 1 ≤ i < j ≤ q}. Let H1 = {(i, j) : γij 6=
0, 1 ≤ i < j ≤ q}. Write $0 = Card(H0) as the total number of true nulls,

$1 = card(H1) as the number of true alternatives, and $ = (q2 − q)/2 as

the total number of hypotheses. For a constant γ > 0 and 1 ≤ i ≤ q, let

Ai(γ) = {j : 1 ≤ j ≤ q, j 6= i, |γij | ≥ (log q)−2−γ}. Theorem 1 shows that our

procedure controls FDP and FDR at a given level α asymptotically.

Theorem 1. Let the dimension (p, q) satisfy q ≤ (np)r for some r > 0. Suppose

that

Card

(
(i, j) : 1≤ i< j≤ q, |(1−γijψij)ρΓ

ij·| ≥ 4

√
Ap log q

(n− 1)p

)
≥
√

log log q,(4.3)

where Ap is defined in (3.10). Assume that $1 ≤ c$ for some c < 1 and that

{β̂i}i∈[q] satisfy (3.6) with

an1 = o

(
1

log max(q, np)

)
and an2 = o

(
(np log q)−1/4

)
. (4.4)

Under (C1), (C2), and max1≤i≤q Card(Ai(γ)) = O(qϑ) for some ϑ < 1/2 and

γ > 0, we have limnp,q→∞{FDR1/(α$0/$)} = 1 and {FDP1/(α$0/$)} → 1 in

probability as np, q →∞.

Condition (4.3) requires the number of true alternatives be at least
√

log log q.

This condition is very mild and, in fact, is a nearly necessary condition for FDP

control. Proposition 2.1 in Liu and Shao (2014) shows that, in large-scale multiple

testing problems, if the number of true alternatives is fixed, then it is impossible

for the Benjamini and Hochberg method (Benjamini and Hochberg (1995)) to

control the FDP with probability tending to one at any desired level. Here (4.3)

is only slightly stronger than the condition that the number of true alternatives

goes to infinity. The condition on Card(Ai(γ)) is a sparsity condition for Γ.

This condition is also quite weak. For the estimation of vector-variate GGMs,

the existing literature often requires the row sparsity level of precision matrix to

be less than O(
√
n). When the dimension q is much larger than n, our condition

on Card(Ai(γ)) in Theorem 1 is clearly much weaker. In Theorem 1, the sample

size n can be a fixed constant as long as the dimension p, q →∞.
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As in Theorem 1, we have the similar FDP and FDR control result for

the estimation of supp(Ω). Let H′0 = {(i, j) : ωij = 0, 1 ≤ i < j ≤ p}
and H′1 = {(i, j) : ωij 6= 0, 1 ≤ i < j ≤ p}. Further, let κ0 = Card(H′0),
κ1 = Card(H′1) and κ = (p2 − p)/2. Start with

FDP2 =

∑
(i,j)∈H′0 I

(
(i, j) ∈ ̂supp(Ω)

)
max

(∑
1≤i<j≤q I

(
(i, j) ∈ ̂supp(Ω)

)
, 1
) , FDR2 = E(FDP2). (4.5)

For a constant γ > 0 and 1 ≤ i ≤ p, take Bi(γ) = {j : 1 ≤ j ≤ p, j 6= i, |ωij | ≥
(log p)−2−γ}. Let Bq = q‖Ψ‖2F/{tr(Ψ)}2 and the partial correlation associated

with Ω be ρΩ
ij· = −(ωij/

√
ωjjωjj) for 1 ≤ i < j ≤ p. As (C2), we assume the

following condition on Ψ = (ψij)p×p,

(C3). For some 0 < τ < 2, assume that
∑q

j=1 |ψij |τ ≤ Cs(q) with s(q) ={
1/(log p)2

}{√
np/ log max(q, np)

}(2−τ)∧1
uniformly in 1 ≤ i ≤ q.

Theorem 2. Let the dimension (p, q) satisfy p ≤ (nq)r for some r > 0, and that

Card

{
(i, j) : 1≤ i< j≤ p, |(1− ωijσij)ρΩ

ij·| ≥ 4

√
Bq log p

(n− 1)q

}
≥
√

log log p. (4.6)

Assume that κ1 ≤ cκ for some c < 1 and {β̂i}i∈[p] satisfies (3.6) with

an1 = o

(
1

log max(p, nq)

)
and an2 = o((nq log p)−1/4). (4.7)

Under (C1), (C3), and max1≤i≤pCard(Bi(γ)) = O(pϑ) for some ϑ < 1/2 and

γ > 0, we have limnq,p→∞{FDR2/(ακ0/κ)} = 1 and {FDP2/(ακ0/κ)} → 1 in

probability as nq, p→∞.

By Theorems 1 and 2, we can obtain the FDP and FDR result of the es-

timator ̂supp(Ω) ⊗ ̂supp(Γ). In particular, let a0 and a be the number of false

discoveries and total discoveries in ̂supp(Ω), excluding the diagonal entries, b0
and b be the number of false discoveries and total discoveries in ̂supp(Γ), exclud-

ing the diagonal entries. It is then easy to calculate that the number of false

discoveries in ̂supp(Ω)⊗ ̂supp(Γ) is a0(q+ b) + (a− a0)b0 + pb0, and the number

of total discoveries in ̂supp(Ω)⊗ ̂supp(Γ) is pb+ a(q+ b) (excluding the diagonal

entries). We have the FDP and FDR of ̂supp(Ω)⊗ ̂supp(Γ):

FDP =
a0(q + b) + (a− a0)b0 + pb0

max(pb+ a(q + b), 1)
, FDR = E(FDP). (4.8)

The true FDP in (4.8) cannot be computed in practice since the number of false

discoveries a0 and b0 are unknown. One straightforward estimator for FDP is to
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replace the unknown quantities a0 and b0 with αa and αb, respectively, which

leads to the following FDP estimator α′:

α′ =
α{(2− α)ab+ aq + bp}

max(ab+ aq + bp, 1)
. (4.9)

Note the values of a and b in (4.9) are known, which represent the number of

total discoveries in ̂supp(Ω) and ̂supp(Γ), respectively. The FDP estimator α′

takes the value in [0, 1] and is monotonically increasing as a function of α. In the

next theorem, we show that FDP/α′ → 1 in probability as p, q →∞.

Theorem 3. Under the conditions of Theorems 1 and 2 with the sparsity condi-

tion ω1 = o(ω) and κ1 = o(κ), we have FDP/(α′)→ 1 in probability as p, q →∞.

Theorem 3 shows that the FDP of the proposed estimator ̂supp(Ω)⊗ ̂supp(Γ)

can be estimated consistently by α′. By Theorems 1 and 2, the sparsity condi-

tions ω1 = o(ω) and κ1 = o(κ) imply that FDP1/α → 1 and FDP2/α → 1 in

probability when p, q → ∞. Therefore, one can replace a0 and b0 in FDP in

(4.8) by αa and αb, respectively, and achieve the result in Theorem 3. In fact,

we can still obtain the guarantee of FDP of ̂supp(Ω)⊗ ̂supp(Γ) even without the

sparsity conditions ω1 = o(ω) and κ1 = o(κ). For any ε > 0, Theorems 1 and 2

show that P(FDP1 ≤ α(1 + ε)) → 1 and P(FDP2 ≤ α(1 + ε)) → 1 as p, q → ∞
regardless of the sparsity conditions. This further implies the guarantee on the

FDP of ̂supp(Ω)⊗ ̂supp(Γ) for any ε > 0:

P
(

FDP

α{(2ab+ aq + bp)/max(ab+ aq + pb, 1)}
≤ 1 + ε

)
→ 1, as p, q →∞.

4.3. Power analysis

We study the statistical power of the proposed method by considering the

following class of alternatives. We assume that for some c > 4,

|ρΓ
ij·| = c

√
Ap log q

(n− 1)p
and |ρΩ

kl·| = c

√
Bq log p

(n− 1)q
, (i, j) ∈ H1, (k, l) ∈ H′1.(4.10)

We will show in the next theorem that the power of the support estimators

will converge to 1 as p, q →∞.

Theorem 4. Let the dimension (p, q) satisfy p ≤ (nq)r and q ≤ (np)r for some

r > 0. Assume that (C1)-(C3), (4.4) and (4.7) hold. We have supp(Γ) ⊆
̂supp(Γ), supp(Ω) ⊆ ̂supp(Ω) and supp(Ω⊗Γ) ⊆ ̂supp(Ω)⊗ ̂supp(Γ) with prob-

ability tending to one as p, q →∞.

Recall that the power is defined by the ratio between the number of true
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discoveries in ̂supp(Ω)⊗ ̂supp(Γ) and the total number of non-zero off-diagonals

in supp(Ω ⊗ Γ). Thus, Theorem 4 shows that the power converges to 1 as

p, q → ∞. In addition, Theorem 4 shows that to detect the edge between Xij

and Xkl, the corresponding partial correlation %ij,kl = ρΓ
ij· · ρΩ

kl· can be as small

as C{1/(n− 1)}
√

log p log q/pq (Ap and Bq are bounded, see assumption (C1)).

This is essentially different from the estimation of vector-variate GGMs. If we

apply the method of estimation of vector-variate GGMs to vec(X) directly (e.g.,

the method from Ren et al. (2015)), even for an individual test (detecting a single

edge), the magnitude of the partial correlation %ij,kl needs to be C(1/
√
n).

4.4. Convergence rate of the initial estimators of regression coefficients

Finally, the next proposition shows that the convergence rate condition of β̂j
in (4.1) and (4.4) can be satisfied under some regular conditions. The convergence

rate condition in (4.7) can be established similarly. This result establishes the

consistency of Lasso for correlated samples, which in itself is interesting.

Proposition 4. Let δ in (3.16) be large enough. Suppose that (C1) holds and

max1≤j≤q |βj |0 = o(
√
np/{log max(q, np)}3/2). We have β̂j(δ) for 1 ≤ j ≤ q are

consistent in both `1 and `2 norms with the rate in (4.4).

5. Numerical Results

In this section, we present numerical results on simulations and real data

to investigate the performance of the proposed method on support recovery of

matrix-variate data. In our experiment, we adopted the data-driven parameter-

tuning approach from Liu (2013) to tune the parameters (see Section E in the

supplement for details). Due to space constraints, some simulated experimental

results and real data analysis are provided in Section E of the supplement.

5.1. Simulated experiments

In the simulations, we constructed Ω and Γ based on combinations of fol-

lowing graph structures used in Liu (2013).

1. Hub graph (“hub” for short). There are p/10 rows with sparsity 11. The

rest of the rows have sparsity 2. We took Ω1 = (ωij), ωij = ωji = 0.5

for i = 10(k − 1) + 1 and 10(k − 1) + 2 ≤ j ≤ 10(k − 1) + 10, 1 ≤ k ≤
p/10. The diagonal ωii = 1 and other entries are zero. We also took

Ω = Ω1 + (|min(λmin)|+ 0.05)Ip to make the matrix positive definite.



498 CHEN AND LIU

Table 1. Averaged empirical FDP, the estimated FDP/FDR level α′ in (4.9) and power.

p q Ω Γ n = 20 n = 100
FDP (α′) Power FDP (α′) Power

100 100 hub hub 0.192 (0.146) 1.000 0.155 (0.145) 1.000
hub band 0.158 (0.152) 1.000 0.146 (0.152) 1.000
hub random 0.188 (0.154) 0.916 0.156 (0.154) 1.000
band band 0.138 (0.161) 1.000 0.154 (0.162) 1.000
band random 0.152 (0.164) 0.998 0.127 (0.163) 1.000

random random 0.161 (0.164) 0.834 0.104 (0.165) 0.999
200 200 hub hub 0.183 (0.146) 1.000 0.145 (0.145) 1.000

hub band 0.149 (0.152) 1.000 0.144 (0.152) 1.000
hub random 0.167 (0.154) 0.981 0.153 (0.154) 1.000
band band 0.138 (0.162) 1.000 0.148 (0.162) 1.000
band random 0.158 (0.164) 1.000 0.134 (0.163) 1.000

random random 0.171 (0.166) 0.980 0.134 (0.166) 1.000
200 50 hub hub 0.166 (0.145) 1.000 0.154 (0.145) 1.000

hub band 0.159 (0.152) 1.000 0.151 (0.152) 1.000
hub random 0.138 (0.154) 0.991 0.134 (0.153) 1.000
band band 0.127 (0.161) 1.000 0.146 (0.161) 1.000
band random 0.200 (0.163) 0.894 0.120 (0.163) 0.992

random random 0.194 (0.162) 0.714 0.141 (0.165) 0.980
400 400 hub hub 0.160 (0.145) 1.000 0.141 (0.145) 1.000

hub band 0.146 (0.152) 1.000 0.144 (0.152) 1.000
hub random 0.172 (0.154) 0.999 0.151 (0.154) 1.000
band band 0.169 (0.162) 1.000 0.148 (0.162) 1.000
band random 0.159 (0.164) 1.000 0.142 (0.164) 1.000

random random 0.180 (0.166) 1.000 0.147 (0.166) 1.000

2. Band graph (“band” for short). Ω = (ωij), where ωii = 1, ωi,i+1 = ωi+1,i =

0.6, ωi,i+2 = ωi+2,i = 0.3, ωij = 0 for |i− j| ≥ 3.

3. Erdös-Rényi random graph (“random” for short). There is an edge between

each pair of nodes with probability min(0.05, 5/p) independently. We took

Ω1 = (ωij), ωii = 1 and ωij = uij ∗ δij for i 6= j, where uij ∼ U(0.4, 0.8)

is a uniform random variable and δij is a Bernoulli random variable with

success probability min(0.05, 5/p); uij and δij are independent. We also let

Ω = Ω1 + (|min(λmin)|+ 0.05)Ip so that the matrix was positive definite.

The matrix Γ was also constructed from one of these graph structures.

For each combination of Ω and Γ, we generated n (n = 20 or n = 100)

samples (X(k))nk=1, where each X(k) ∼ Np,q(0,Σ ⊗Ψ) with Σ = Ω−1 and Ψ =

Γ−1. We considered different settings of p and q: (p, q) = (100, 100), (p, q) =

(200, 50), (p, q) = (200, 200) and (p, q) = (400, 400). The FDR level α for the
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support recovery of Γ and Ω is set to 0.1 (the observations for other α’s are

similar and thus omitted for space considerations). The parameters λ and δ were

tuned using the data-driven approach in (23). All simulations are based on 100

independent replications.

In Table 1, we report the averaged true FDP in (4.8), the FDP estimator α′

in (4.9) and the power for estimating supp(Ω⊗Γ) over 100 replications. On the

one hand, according to Theorem 3, it is desirable that the true FDP be close to

α′. On the other hand, we aim for a large power. In particular, the power of the

estimator ̂supp(Ω)⊗ ̂supp(Γ) can be calculated as follows. Let A and B be the

number of nonzero off-diagonals in Ω and Γ. From the definition of a0, a, b0, b

in (4.8), we have

Power =
{pb+ a(q + b)} − {a0(q + b) + (a− a0)b0 + pb0}

pB +A(q +B)

=
p(b− b0) + (a− a0)(q + b− b0)

pB +A(q +B)
, (5.1)

where the numerator is the number of true discoveries in ̂supp(Ω)⊗ ̂supp(Γ) and

the denominator is the total number of nonzero off-diagonals in supp(Ω ⊗ Γ).

From Table 1, in all settings with n = 100, the true FDPs are close to their

estimates α′ and the powers are all very close to 1. For n = 20, a more challenging

case due to the small sample size, the true FDPs are still controlled by their

estimates α′ for most graphs. When Ω and Γ are both hub or random graphs,

the true FDPs are slightly larger than the corresponding estimates. In terms

of power with n = 20, when Ω and Γ are both generated from random graphs

and either p or q is small (e.g., p = q = 100 or p = 200, q = 50) the powers

could be away from 1 (but still above 0.7); for all other cases, the powers are

close to 1. We examined the cases in which the power is much less than one and

found that our FDP procedure generates overly sparse estimators, which leads to

lower powers. In fact, a lower power for a small n and p (or q) is expected since

we essentially use np correlated samples to estimate supp(Γ) and nq correlated

samples to estimate supp(Ω).

Due to space constraints, we relegate further simulation studies to the sup-

plement. In Section E.1 of the supplement, we present the boxplots of FDPs over

100 replications. The plots show that FDPs are well concentrated, which suggests

that the performance of the proposed estimator is quite stable. In Section E.2,

we provide experimental results on the estimation of Âp that empirically verify

our theoretical result in Proposition 3. In Section E.3, we compare our procedure

with the penalized likelihood approach in Leng and Tang (2012). When p, q are
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 f  = 1  f  = 2  f  =  3

Figure 1. ROC curves for different signal strength when Ω and Γ are bandable matrices.

small as compared to n, the penalized likelihood approach still achieves good

support recovery performance (e.g., the case n = 100, p = q = 20 as reported in

Leng and Tang (2012)). When p, q are comparable to or larger than n, our test-

ing based method achieves better support recovery performance. In Section E.4,

we provide some empirical evidences to show that the de-correlation approach in

Remark 1 cannot control FDP well. In Section E.5, we further present simula-

tion studies when the covariance matrix does not follow the form of a Kronecker

product.

5.1.1. ROC curves

We make comparisons between our method and the penalized likelihood

approach in Leng and Tang (2012) (with the SCAD penalty) in terms of the ROC

curve. We constructed the precision matrices Ω and Γ using the graph structures

in Section 5.1 while introducing an additional factor f to tune the signal strength.

In particular, for the hub graph, we set Ω1 = (ωij) with ωij = ωji = 0.5/f , for

the band graph, we set ωi,i+1 = ωi+1,i = 0.6/f and ωi,i+2 = ωi+2,i = 0.3/f ,

and for the random graph, we chose uij ∼ U(0.4/f, 0.8/f). When f = 1, the

construction of Ω and Γ is the same as that in Section 5.1. The higher the value

of f , the weaker the signal strength. Due to space constraints, we only report

the comparison when n = 20, p = q = 100 and observations are similar for other

settings of n, p, and q.

We compared the support recovery performance for different signal strengths

by varying f = 1, 2, 3 and fixed Ω and Γ to be bandable matrices. The usual ROC

curve for binary classification is based on false positive rate (a.k.a. 1− specificity)

vs true positive rate (a.k.a. sensitivity or power). In our high-dimensional setting,

Ω ⊗ Γ is a highly sparse matrix and thus the false positive rate is extremely

small for any reasonable choice of α or regularization parameter that gives a

small number of discoveries. Therefore, we choose to report the ROC curve in
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terms of FDP vs power, from which one can easily compare powers for different

methods under the same level of FDP. As seen in Figure 1, our method achieves

better performance than the method in Leng and Tang (2012) for different signal

strengths. When the factor f = 3, the ROC curve of our method is still almost

vertical. In Section E.6 in the supplement, we fix the factor f = 3 and consider

different types of Ω and Γ. For most cases, our method still achieves better

performance.

5.2. Real data analysis

For real data analysis, we investigated the performance of the proposed

method on two datasets: the U.S. agricultural export data from Leng and Tang

(2012) and the climatological data from Lozano et al. (2009). Due to space

constraints, the details of the data analysis are provided in Section E.7 in the

supplement.

6. Discussions and future work

In this paper, we propose new test statistics with FDR control guarantees

for graph estimation from matrix-variate Gaussian data. To handle the corre-

lation structure among “row samples” and “column samples”, we develop the

variance correlation technique. This variance correlation technique can be di-

rectly extended to address the problem of learning high-dimensional GGMs with

correlated samples, which has not been studied in the existing literature but with

many important applications in practice. We leave this extension as future work.

To establish the FDR control result, the correlation among “row samples”

makes the theoretical analysis significantly more challenging than the i.i.d. case

and all the analysis in the i.i.d. case must be carefully tailored. For example, we

need to establish the consistency for Lasso estimators from correlated samples.

We also need a few new large deviation bounds on sample covariance matrices

with correlated samples (see Section A in the supplement).

There are several future directions to pursue. Although our paper mainly

focuses on the support recovery and graph estimation, it is also interesting to

estimate the Kronecker product precision matrix based on the multiple testing

framework. While our work relies on the Kronecker product structure, it is

interesting to consider other forms of covariance matrices, e.g., the true covariance

matrix does not exactly follow Kronecker product structure but is close to that

structure.
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Supplementary Materials

The supplementary material consists of several technical lemmas and the

proofs of our propositions and theorems. Moreover, it includes additional simu-

lation studies and real data analysis.
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