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Abstract: In nonparametric regression with errors in the explanatory variable, the

regression function is typically assumed to be smooth, and in particular not to

have a rapidly changing derivative. Not all data applications have this property.

When the property fails, conventional techniques, usually based on kernel methods,

have unsatisfactory performance. We suggest an adaptive, wavelet-based approach,

founded on the concept of explained sum of squares, and using matrix regularisa-

tion to reduce noise. This non-standard technique is used because conventional

wavelet methods fail to estimate wavelet coefficients consistently in the presence of

measurement error. We assume that the measurement error distribution is known.

Our approach enjoys very good performance, especially when the regression func-

tion is erratic. Pronounced maxima and minima are recovered more accurately

than when using conventional methods that tend to flatten peaks and troughs. We

also show that wavelet techniques have advantages when estimating conventional,

smooth functions since they require less sophisticated smoothing parameter choice.

That problem is particularly challenging in the setting of measurement error. A

data example is discussed and a simulation study is presented.

Key words and phrases: Chirp, cross-validation, deconvolution, discontinuity, errors

in variables, error sum of squares, explained sum of squares, kernel methods.

1. Introduction

This paper was initiated in July 2013 when the second author was visiting

Professor Peter Hall at The University of Melbourne as part of his special study

leave. Most of the theoretical treatment was performed during this time and Pe-

ter’s contribution was instrumental to the initiation of the paper. In particular,

the idea to use the explained sum of squares approach which is fundamental for

this paper, was Peter’s. Since the numerical implementation, testing and simu-

lation were challenging and time consuming, it took a while to get a manuscript

that could be submitted for publication. Although theoretical and numerical

results were presented at some seminars and conferences, the manuscript was

never published until Peter’s tragic and untimely death. Jason Tran was a PhD

https://doi.org/10.5705/ss.202016.0393
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student of Peter’s and contributed to proving the main statement of the paper by

essentially simplifying some of the original assumptions. The current manuscript

is a tribute to Peter’s contributions to the methodology of measurement error

models.

In some regression problems the explanatory variable, X, is not observed

directly. Instead we know the value, W = X +U, of X corrupted by an error, U,

incurred when measuring X. In this setting the observed data are pairs (Wi, Yi)

for 1 ≤ i ≤ n, all distributed as (W,Y ), where Y denotes the response when the

explanatory variable is X :

W = X + U, Y = g(X) + V. (1.1)

Here g represents the regression mean g(x) = E(Y |X = x), V represents experi-

mental error, satisfying E(V |X) = 0, and we wish to estimate g. There is a large

and extensive literature on estimating g in this setting when that function is rel-

atively smooth. In particular, the existing methodology typically uses smoothing

methods, for example modified kernel estimators, the performance of which dete-

riorates as g becomes more erratic. In this paper we suggest relatively adaptive

methods using wavelet techniques and based on minimising an “explained sum

of squares” (ESS) in errors-in-variables regression. This nonstandard technique

is motivated by the difficulty of estimating wavelet coefficients in the presence of

measurement error. In particular, those coefficients cannot be estimated using

conventional arguments.

Our ESS approach can also be used in a variety of other settings and, in

particular, it is straightforward to employ for non-wavelet techniques based on

orthogonal series. In the wavelet context it enjoys very good performance, par-

ticularly in cases where g is more erratic than encompassed by the standard

assumption that g has several bounded derivatives. For example, if g has a rel-

atively pronounced peak or trough then our wavelet-based approach generally

recovers that feature more accurately than does a conventional approach.

The existing methodology dates from work of Carroll and Hall (1988) and

Stefanski and Carroll (1990). An excellent introduction to the literature is given

in the monograph by Carrol et al. (2006). More recent contributions include those

of Delaigle and Meister (2007), Maity and Apanasovich (2011), and Delaigle, Hall

and Jamshidi (2015). The last paper deals for the first time with constructing

confidence bands for the regression function.

An interesting approach to constructing an estimator of the regression func-

tion g has been suggested in Comte and Taupin (2007). To avoid the unrealistic
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situation in the usual Nadaraya-Watson construction, whereby it is assumed that

g and the density fX of the random variable X belong to the same smoothness

class, the authors relax this assumption by applying a construction of an adaptive

estimator as a ratio of penalized contrast function-based estimators of the prod-

uct of gfX and of the density fX itself. However the behaviour of their estimator

is driven by the slowest rate of the two estimators and it remains unclear how

optimal such estimator can be. Hence they raise the question of constructing a

good estimator that is different from the Nadaraya-Watson type estimator.

We will introduce our methodology in Section 2. There are, as yet, no

competing approaches to constructing wavelet estimators in errors-in-variables

regression. Arguably the closest existing technique has been developed in Ches-

neau (2010), who proposed methodology in the case where X is known to be

uniformly distributed on a specified interval. In this case one can use “peri-

odised” wavelet functions, and both practical implementation and theoretical

justification are relatively straightforward. Chesneau (2010) focuses on cases

where g is relatively smooth, and in fact much of the motivation for his approach

derives from the fact that it can be readily used to estimate derivatives of g, as

well as of g itself. The context of our work is quite different: the distribution

of X is unknown, and is unlikely to be uniform, and the function g is relatively

erratic and might not have several derivatives at all points in its support.

2. Methodology

2.1. Overview of wavelet expansions and regression estimators

The classical monograph Daubechies (1992) can be consulted for a rigorous

introduction of the wavelet theory as an important tool in approximation theory.

For statistical and inferential aspects of wavelets, including software implemen-

tations in the popular R software, see Nason (2008). The wavelet expansion of a

function g is given by

g(u) =
∑
j

α0
jφj(u) +

∞∑
k=0

∑
j

α0
jkψjk(u), (2.1)

where φj(u) = ρ1/2φ(ρu − j) and ψjk(u) = ρ
1/2
k ψ(ρku − j); φ and ψ denote

compactly supported “father” and “mother” wavelet functions, respectively; ρ ≥
1, a positive number potentially depending on n, is sometimes called the primary

resolution level (see, e.g., Hall and Penev (2001)); and ρk = 2kρ for positive

integers k. In (2.1), and in similar formulae below,
∑

j denotes summation over
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all positive and negative integers j. However, since ϕ and ψ in our methodology

are always assumed to be compactly supported, all but a finite number of terms

in the infinite series in (2.1) vanish. Sometimes in the literature, j is used to

denote the scale and k is used as a location index.

Our goal is to estimate g(u) for values of u in the compact interval [a, b]

supporting fX and g.

Using a conventional hard thresholding rule to ensure adaptivity, one would

estimate g by the function ĝ(u) = ĝt,ρ,m(u) :

ĝ(u) =
∑
j

α̂jφj(u) +

m∑
k=0

∑
j

α̂jkI(|α̂jk| > tσ̂jk)ψjk(u), (2.2)

where α̂j and α̂jk estimate αj and αjk, respectively; I(|α̂jk| > tσ̂jk) = 1 if

|α̂jk| > tσ̂jk, and equals 0 otherwise; σ̂jk is an estimator of the variance of α̂jk;

and the threshold, t > 0, is a tuning parameter. Wavelet estimators are generally

robust against choice of m, often taken to be a constant multiple of log n and, in

particular, usually is not chosen specifically from the data. The value of σ̂jk can

be computed using bootstrap methods, although it is often adequate to employ

an upper bound. Theoretical arguments (Donoho and Johnstone (1994)) suggest

taking t = (C log n)1/2 where C, for example C = 2, is a positive constant.

We take an unconventional approach, motivated by the presence of error in

measurements of the explanatory variables. Specifically, we first estimate α0
j and

α0
jk directly, using an argument based on explained (or error) sum of squares;

see Section 2.3. Next we fit the model at (2.2), but with the thresholding term

I(|α̂jk| > tσ̂jk) replaced by 1. Then we use matrix regularisation to reduce noise;

see Section 2.4 for details. The resulting estimator, ĝ, is

ĝ(u) =
∑
j

α̂jφj(u) +

m∑
k=0

∑
j

α̂jkψjk(u), (2.3)

rather than (2.2). We have conducted numerical experiments using explicit reg-

ularisation, as at (2.2), and found that its performance is generally similar to,

but on average slightly inferior to, matrix regularisation.

2.2. Regression estimation in the measurement error model

In the case of regression with measurement error, the observed data pairs

(Wi, Yi), for 1 ≤ i ≤ n, are generated by the model at (1.1), where U denotes

a measurement error, V is an experimental error and satisfies E(V ) = 0, and

the variables U, V and X are completely independent of one another. The dis-
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tribution of U is assumed known. Since this assumption seems strong, different

attempts have been made in the past to alleviate it. The literature on such

methods is vast. Rather than listing some of it, we refer to Section 1 of the

recent paper Delaigle and Hall (2016), and to the reference list therein. This

paper demonstrates, via a completely new approach, that identification in the

deconvolution problem can in principle be achieved even when the distribution of

U is unknown (but symmetric) and without extra data of any type. The paper

Delaigle and Hall (2016) deals with density deconvolution but, as the authors

point out, the methodology can be extended to regression with meeasurement

error. However, we will continue using the assumption of a known distribution

of U in the rest of this paper.

The methodology in Section 2.3 will rely on estimators f̂W and f̂X of the

densities fW and fX of W and X, respectively. Construction of those quantities

is straightforward. Indeed, since we observe data W1, . . . ,Wn then f̂W can be

computed very conventionally:

f̂W (w) =
1

nh1

n∑
i=1

L

(
w −Wi

h1

)
,

where L is a standard univariate kernel, which we take to be a bounded, sym-

metric, univariate probability density.

The deconvolution kernel estimator f̂X(x) has been introduced first by Car-

roll and Hall (1988) and by Stefanski and Carroll (1990). Let K be a bounded,

integrable function on the real line, satisfying
∫∞
−∞K(x)dx = 1, and let KFt

denote the Fourier transform of K : KFt(t) =
∫∞
−∞ exp (itu)K(u)du. Let fFtU be

the characteristic function corresponding to the density fU of U, let h2 > 0 be a

bandwidth, and define

KU (u) =
1

2π

∫ ∞
−∞

exp(−itu)
KFt(t)

fFtU (t/h2)
dt,

where the notation i, only when appearing in an exponent, is
√
−1 rather than

an index. The deconvolution kernel estimator of fX is given by

f̂X(x) =
1

nh2

n∑
i=1

KU

(
x−Wi

h2

)
for x ∈ [a, b].
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2.3. Explained sum of squares

As

E {g(X)|W = w} =
1

fW (w)

∫ b

a
g(x)fU (w − x)fX(x)dx, (2.4)

we deduce that if g is given by (2.1) then

E {g(X)|W = w} =
1

fW (w)

∑
j

α0
j

∫ b

a
φj(x)fU (w − x)fX(x)dx

+

∞∑
k=0

∑
j

α0
jk

∫ b

a
ψjk(x)fU (w − x)fX(x)dx

 . (2.5)

Formula (2.5) motivates computing α̂j and α̂jk by minimising the explained sum

of squares,

S(α) =

n∑
i=1

Yi − 1

f̂W (Wi)

∑
j

αj

∫ b

a
φj(x)fU (Wi − x)f̂X(x)dx

+

m∑
k=0

∑
j

αjk

∫ b

a
ψjk(x)fU (Wi − x)f̂X(x)dx


2

wi, (2.6)

where f̂W and f̂X are estimators of fW and fX , respectively. Here wi denotes a

nonnegative weight and α, a vector of finite length p, say, denotes the concate-

nation of values of αj for all j, and αjk, the latter only for 1 ≤ k ≤ m but for all

j. The right-hand side of (2.6) becomes a little simpler, and numerically more

robust, if we take wi = f̂W (Wi)
2vi, where vi is a bounded, nonnegative weight,

which gives:

S(α) =

n∑
i=1

Yif̂W (Wi)−
∑
j

αj

∫
φj(x)fU (Wi − x)f̂X(x)dx

−
m∑
k=0

∑
j

αjk

∫
ψjk(x)fU (Wi − x)f̂X(x)dx


2

vi. (2.7)

Since only a finite number of values αj , αjk are nonzero, and those values are

identified from the support of the wavelet, then, prior to regularisation, comput-

ing α̂ = argminαS(α) is a matter of matrix inversion.
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2.4. Regularisation

Taking each vi = 1 for simplicity, we write (2.7) as

S(α) = ‖Z −Aα‖2,

where Z is an n-vector with components Yi, f̂W (Wi) and A, a function of the

data, is an n× p matrix. Thus, A = Q1ΛQ
T
2 where Q1 and Q2 are, respectively,

n×n and p×p orthogonal matrices, and Λ is a diagonal matrix with components

λ1 ≥ λ2 ≥ · · · ≥ λmin(n,p) ≥ 0 down the main diagonal. The minimum-norm

value of α̂ = argminαS(α) is

α̂ = A−Z = Q2Λ
−QT1 Z, (2.8)

where A− and Λ− denote Moore-Penrose inverses and, in particular, Λ− = D(p1),

with p1 denoting the largest j ≤ p such that λj > 0, and where, for q ≤ p1, we

define

D(q) = diag(λ−11 , . . . , λ−1q , 0, . . . , 0).

We regularise by choosing q ≤ p1 to minimise a cross-validation estimator of

mean squared prediction error, and then we take

α̂ = α̂(q) = Q2D(q)QT1 Z, (2.9)

in place of the value at (2.8). Our estimator of g is then defined as at (2.3),

although with α̂ given by (2.9), and depends on the q chosen largest eigenvalues

of Λ.

To construct the cross-validation criterion, let f̂W,−i, f̂X,−i and ĝ−i denote

the versions of f̂W , f̂X and ĝ computed from the dataset {(W1, Y1), . . . , (Wn, Yn)}
excluding the ith pair. Let I be a subset of the set {1, . . . , n} for which f̂W (Wi),

or perhaps f̂W,−i(Wi), is bounded above a given positive constant. Reflecting on

(2.4), define

T (q) =
∑
i∈I

{
Yi −

1

f̂W,−i

∫
ĝ−i(x)fU (Wi − x)f̂X,−i(x)dx

}2

. (2.10)

Alternatively we could multiply the ith summand on the right-hand side of (2.10)

by f̂W,−i(Wi)
2, and take the sum over i = 1, . . . , n. The quantity ĝ−i, on the right-

hand side of (2.10), depends on q, although this is suppressed in the notation.

That dependence is the source of the dependence on q of the left-hand side of

(2.10). We choose q = q̂ to minimise T (q). In numerical practice we have found

that replacing f̂W,−i and f̂X,−i by their non leave-one-out variants, f̂W and f̂X ,

usually has negligible effect on results. Of course, it produces significant savings

in computation time.
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3. Computation and Numerical Examples

3.1. Computing wavelet and kernel estimators, and tuning parameters

Our numerical experiments were performed in FORTRAN 95. We employed

compactly supported wavelets from the Daubechies family, with extremal phase

and highest number of vanishing moments compatible with the width of the

wavelets support (see Daubechies (1992, p.195)). A parameter N determines

the length of the support for both father and mother wavelets as 2N − 1. The

smoothness (regularity) of these wavelets increases with N. We chose N = 5

throughout. This, in our experience, represents a compromise between smooth-

ness and length of the compact support for this family. Although these wavelets

do not have an explicit analytic formula, they can be approximated arbitrarily

accurately via some refinement schemes.

Smoothing parameters involved in the definition of S(α) at (2.6), include

the initial resolution ρ and the bandwidths h1 and h2 used to construct the den-

sity approximations f̂W and f̂X , respectively. We chose h1 using the iterative

bandwidth selector proposed by Engel, Herrmann and Gasser (1994), after exper-

imenting with other methods. Although h2 ideally should be chosen larger than

h1, we found it to be convenient, and to give good results, if we took h1 = h2.

Some theoretical work by Hall and Penev (2001) has been done for the choice

of ρ in the setting of wavelet regression without measurement error. In principle,

a practical choice could be to include ρ itself as a part of the cross-validation

functional of Section 2.4, and to also optimize it with respect to ρ. A much less

computationally demanding alternative is to choose ρ from a certain range of

values and then to compensate for a slight inaccuracy via a choice of the value

of q through the cross-validation procedure. This approach works well because

the choice of q turns out to be by far the most important choice of a tuning

parameter in our model and, in that sense, the precise choice of ρ is only of

secondary importance. Using experimentation we found that m = 5, and ρ in

the range from 3 to 10, gave excellent results for n between 100 and 1,000, and

we recommend these choices in applications. We took ρ = 3 throughout the

simulations reported in Section 3.2, and employed cross-validation to select q;

see (2.10).

In Sections 3.2 and 3.3 the results obtained using our approach are com-

pared with those found by conventional errors-in-variables regression estimator

of Nadaraya-Watson type, first proposed in Fan and Truong (1993), with band-

width chosen using the SIMEX method of Delaigle and Hall (2008). Intuitively, if
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the noise-to-signal ratio, or nsr, for the measurement error is small then it could

simply be ignored without having much impact on the resulting estimators. Tak-

ing the same approach when the nsr is larger, however, would be expected to

cause serious damage to the fit. Our method, which takes the influence of the

measurement error in its stride, should perform better in such cases, especially

for more complex signals, as long as the sample size is large enough for model

parameters to be estimated sufficiently accurately. To assess this hypothesis we

also constructed standard kernel and wavelet estimators without acknowledging

that noise is present. We found that the standard conventional wavelet estimator

that simply disregards the measurement error in the input variable, performed

poorly in our simulation. The empirical wavelet coefficients in this case need to

be evaluated using observations on an irregular grid, and that is known to cause

difficulties for the wavelet estimator (see, e.g., Hall and Turlach (1997); Cai and

Brown (1998)).

By now, there are some remedies for such cases, based on the second-

generation wavelets (or lifting) that have performed well in empirical work. The

original lifting approach of W. Sweldens was exploited in a series of papers (see,

e.g., Claypoole et al. (2003); Delouille, Simoens and von Sachs (2004); Jansen,

Nason and Silverman (2009); Nunes, Knight and Nason (2006) and the references

therein). However, the difficulties are further exacerbated in our case due to the

fact that the input variables are not uniformly distributed, and that their values

are observed inexactly due to the presence of measurement error. As a result

the wavelet coefficients were evaluated inaccurately, which degraded the quality

of the estimated curve. For this reason we do not include results obtained using

the conventional wavelet estimator.

The standard kernel regression estimator of Nadaraya-Watson type that does

not acknowledge the noise U performed noticeably better, and we briefly discuss

the performance of this method in our simulation comparison in Section 3.2.

To make the comparison as fair as possible, we employed a particularly reliable

method for kernel regression, with a sophisticated tuning parameter choice in this

case. In particular, we borrowed the procedure described theoretically in Chapter

7 of the monograph by Müller (1988). We used a second-order minimum variance

kernel, discussed in Chapter 5 of Müller (1988), for the estimation step, and

applied cross-validation with a choice of 20 different widths, utilising routines in

Chapter 12 of Müller (1988). In this way a fair comparison, described in the next

section, was implemented using three methods: Our new wavelet technique in the

presence of measurement error (WAVERR), the kernel method in the presence
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of measurement error (KERERR), and conventional kernel regression ignoring

measurement error.

3.2. Simulation study

We took the variance of U to be 0.05, 0.10 or 0.15 times that of X; these

values represent nsr. The kernel K, in Section 2.2, was the standard normal

density. Sample sizes used predominantly were n = 300, 600 or 900, which are

relatively small compared with those in conventional statistical applications of

wavelets, where typically n = 512, 1,024, 2,048, 4,096 or more. We shall discuss

results for smaller and larger sample sizes in text. We first report results for

model 1, where g(x) = 5 sin(2x) exp(−16x2/50), and model 2, where g(x) =

−3 cos2{−x− (π/15)} if x < 0, equals 0 if x = 0, and equals 3 cos2{x− (π/15)}
if x > 0. In particular, model 1 is particularly smooth but has increasingly small

oscillations, of constant wavelength, in the tails, whereas model 2 has a marked

discontinuity at the origin. In each case the distributions of X and V were both

normal N(0, 1.5), and the distribution of the measurement error, U, was Laplace.

The discontinuity in model 2 could in principle be handled with kernel meth-

ods. For example, in the error-free case, if we knew that there was a discontinuity,

we could estimate the discontinuity and make adjustments to the estimator tak-

ing the discontinuity into account (see e.g., Gijbels, Hall and Kneip (1999)). The

problem seems not to have been studied in the measurement error literature for

the regression case until now. In any case, the essential advantage of the wavelet-

based procedure we propose for estimating erratic regression means, is that the

adjustment to the discontinuity happens in an automatic way.

Remark 1. Our choice of the kernel K as the standard normal density is pos-

sible, and justified in view of the choice of the measurement error model to

be Laplace distributed, (the ordinary smooth family of distributions (Fan and

Truong (1993))). It would not be possible to choose K as above if, for example,

the measurement error was also normally distributed (super smooth in Fan and

Truong’s sense), because then the integral in the definition of the deconvolution

kernel KU would not exist if n was large enough.

For each combination of model and sample size, we repeated the data gener-

ating process and the curve fitting steps 101 times for the two methods WAVERR

and KERERR, and calculated the corresponding integrated squared error,

ISE =

∫ 2

−2
{ĝ(x)− g(x)}2 dx,
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Table 1. Values of 103 times the median of 101 simulated values of ISE (integrated
squared error) for the WAVERR and KERERR estimators, for noise-to-signal ratios
0.05, 0.10 and 0.15 and sample sizes n = 150, 300, 600, 900 and 1,200 in cases where g
is the smooth function in model 1, or the function with a pronounced discontinuity in
model 2.

nsr 0.05 0.10 0.15
model n WAVERR KERERR WAVERR KERERR WAVERR KERERR

1 150 4.97 3.98 8.63 7.64 15.60 11.58
1 300 3.33 4.24 6.27 6.32 13.04 8.10
1 600 2.20 2.93 3.71 5.07 7.53 6.70
1 900 1.84 2.94 3.39 4.80 6.14 5.90
1 1,200 1.41 2.39 2.67 3.56 5.24 5.25
2 150 6.48 7.07 10.18 10.60 18.40 10.81
2 300 5.47 6.88 8.52 8.75 12.98 9.58
2 600 4.87 5.44 7.07 7.32 9.91 8.27
2 900 4.25 5.35 5.59 6.79 7.57 8.17
2 1,200 3.99 5.24 5.52 6.77 7.46 7.80

of the fit for each method. Quantities proportional to medians of the 101 ISE

values are reported in Table 1. From Table 1 in the cases nsr = 0.05 and nsr

= 0.10, and for each model and each sample size, the median value of ISE is less

for the wavelet based estimator than for its kernel counterpart. In the setting

of model 1, the wavelet estimator operates for smooth functions as though it

were a kernel estimator with a kernel of slightly higher order than the actual

kernel method that we employed. For smaller sample sizes the relationship is

reversed; for example, when n = 150 and nsr = 0.05, the median values of ISE for

WAVERR and KERERR are, respectively, 4.97 and 3.98, reflecting the relatively

poor performance of WAVERR for smaller sample sizes, discussed below.

The trend is also observed for model 2, where the wavelet estimator outper-

forms its kernel counterpart for all sample sizes and for nsr = 0.05 and nsr =

0.10. The regression mean in model 2 has a jump discontinuity, and the pattern

of performance in this setting reflects the known advantages of using wavelet

methods in such instances. It can be shown that, in this case, even when there

is no measurement error, the expected value of ISE for the kernel estimator and

an optimal choice of bandwidth is of size no larger than a constant multiple of

n−1/2, and cannot be reduced by using higher order kernels.

To get a visual idea about the reasons behind the better overall performance

of the wavelet-based procedure as illustrated in the table, we present graphs of

“typical” estimated curves when using the three estimation methods for each
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(a) (b)

Figure 1. Left panel: Estimators of a smooth curve (model 1). Right panel: estimators of
a discontinuous curve (model 2). Typical (median ISE) curves, n = 300, noise-to-signal
ratio 0.05. True model: longdashed line, WAVEERR estimator: solid line, KERERR
estimator: dot-dashed line.

of the chosen sample sizes. We define as typical the fits that produced the

median ISE values for the WAVEERR method out of the 101 simulated functions.

The main reason for the better performance of the WAVEERR method is that,

as a wavelet-based procedure, WAVEERR allows one to zoom in better into

discontinuities, peaks and troughs. Figure 1 illustrates an overlay of the fits

when the noise-to-signal ratio was 0.05.

The relatively poor performance of the wavelet approach for relatively high

nsr and small sample sizes, as seen in Table 1 when nsr = 0.15, can be seen

too for sufficiently small sample sizes, smaller than those addressed by Table 1.

The consistent pattern is that for each value of nsr, and each model, there is a

sample size, nnsr say, above which the kernel method is outperformed by the

wavelet approach, and below which the kernel method gives best performance

and the ratio of median ISE for the wavelet method, to median ISE for the

kernel method, decreases as n increases. The value of nnsr increases with nsr.

Any improvements that the wavelet approach has to offer arise partly through the

qualitatively different appearance of wavelet estimators, rather than just through

reduced values of integrated squared error. This is seen in the context of model

2, where the wavelet estimator tracks the jump discontinuity relatively closely. It

is more subtle, however, for relatively smooth models such as model 1. In those

settings, particularly when turning points in the function g are relatively narrow,
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even though they have many bounded derivatives, the wavelet estimator reaches

more deeply into the peak or trough.

Table 1 compares WAVERR and KERERR. In an extended version of this

paper, we made a thorough comparison with the Nadaraya-Watson conventional

regression method that completely ignores the measurement error (we call this

method REGNOERR). The results for the same sample sizes and the same nsr,

as expected, were worse than those in Table 1, and we do not include them. Some

numbers for the median ISE for model 2 in the case of REGNOERR are listed

for comparison: when nsr = 0.05 : 5.71 and 5.45 for n = 600 and n = 900; when

nsr = 0.10 : 8.08 and 7.91 for n = 600 and n = 900; when nsr = 0.15 : 10.06 and

9.78 for n = 600 and n = 900. These results are worse than the related results

in Table 1 and the median ISEs virtually do not change when the sample size is

increased from 600 to 900, which indicates a non-consistency of the REGNOERR

method. This is well-known in the measurement error literature.

We have also experimented, in an extended version of this paper, with the

regression function g(x) = 3 sin
{

2π(x+ 0.1x2)
}

that has the features of a chirp.

Our simulations show clearly that the wavelet estimator does a much better job

of reaching into peaks and troughs of the true regression mean. Here we also

assessed the performance of the standard kernel estimator when no allowance

was made for measurement error. Even when nsr = 0.05, there was always an

increase in median ISE if we did not allow for measurement error. Of course,

improvements in performance were greater for larger values of nsr.

3.3. Application to GDP data

Gross Domestic Product (GDP) is recorded quarterly and is prone to signif-

icant error (Fixler (2009)). It represents a sum of several (seven in the case of

the USA) components, each of which is measured with error. Sources of error

are discussed by Young (1994), and on web pages of the US Bureau of Economic

Analysis. The average absolute values of the revisions are reported, typically

with an error of about 2%. Economic theory suggests that there is a long-term

association between economic activity and stock prices. Additionally, the Dow

Jones Industrial Average (DJIA) is an average of the price of 30 of the largest

and most widely traded US stocks, and so it should be interpretable as a noisy

function of stock prices.

With this in mind we examined a scatterplot of the Dow Jones Industrial

Average (DJIA) index, scaled by the factor 1,000, and the seasonally adjusted

US Real GDP, in trillions of 2009 US dollars. The data are available from the



2302 HALL, PENEV AND TRAN

US Federal Reserve at http://research.stlouisfed.org/fred2/series/. We extracted

quarterly data from January 1 1973 to January 1 2015, a sample size of 169. The

year 1973 is motivated as the starting point since in that year the US decoupled

completely the value of the US dollar and the gold standard. The relationship

between GDP and DJIA was much less volatile prior to 1973, and so wavelet

methods are not as well motivated in that time period.

Work of Young (1994) suggests taking the standard deviation, σ, of the

Laplace distribution to equal 0.2, which we did. The fit is stable with respect

to values of σ in the range 0.15 to 0.25. The graph in Figure 2 compares two

fits, obtained using conventional deconvolution kernel and wavelet methods, re-

spectively. Bandwidths for the conventional method were chosen using SIMEX.

The parameters involved in the wavelet fit were ρ = 5,m = 4 and N = 5, and q

was determined by cross-validation. Historical records, for example during finan-

cial crises in 2002, 2003 and 2009, demonstrate sharp falls in DJIA despite the

relative stability of GDP figures. These falls influenced significantly the regres-

sion means at certain GDP values. However, the conventional estimator is not

able to estimate these erratic values accurately. As Figure 2 shows, the wavelet

estimator adapts better.

4. Theoretical Properties

In this section we show that our estimator ĝ, for an empirically chosen set

of wavelet coefficients, is consistent for g. Let [a, b] be the support of fX , and

(c, d) be a bounded interval containing [a, b]. Assumption 1(c) below, asserts that∫
[a,b] |dg(x)| <∞ where the integral denotes the total variation of g. Let B1 > 0

denote the finite value of the latter integral. We put B2 = supx∈[a,b] |g(x)| and,

given B3 > max(B1, B2) and an integer m ≥ 1, define Am to be the set of vectors

α of potential wavelet coefficients such that (4.1) and (4.2) hold:

g(x|α,m) = 0 for all x /∈ [c, d], (4.1)

sup
x∈[c,d]

|g(x|α,m)| ≤ B3,

∫
[c,d]
|dg(x|α,m)| ≤ B3. (4.2)

We have simplified notation by not indicating the dependence of Am on B3.

From Section 2, φ and ψ are compactly supported. We assume too that

either they are Haar wavelets, or they are differentiable and hence of bounded

variation. Then, if α0 is taken to be the true sequence of wavelet coefficients α0
j

for j ∈ N and α0
jk for k ∈ {0, . . . ,m}, j ∈ N in (2.1), conditions (4.1) and (4.2)

both hold for all sufficiently large m. Therefore Am is nonempty for such m.

http://research.stlouisfed.org/fred2/series/
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Figure 2. The black data dots are values of (GDP, DJIA) pairs, the dashed line depicts
the conventional estimator KERERR of the regression mean, and the solid line shows
the wavelet-based estimator WAVERR.

Assumption A1. (a) fX is continuous, with support equal to the compact

interval [a, b], and of bounded variation; (b) fW is continuous and fW (w) > 0 for

all w ∈ R; (c) g is of bounded variation on [a, b]; (d) for each m, the coefficient

vector α used to construct g(x|α,m) is constrained to lie in Am; (e) fFtU has at

most a countable number of zeros on the real line; and (f) the distribution of V

is compactly supported.

Remark 2. Cohen, Daubechies and Vial (1993) construct wavelets that can

serve as an orthonormal basis on a compact interval rather than on the whole

real line. If one were to use such wavelets to estimate g, [c, d] in the construction

of Am can be replaced precisely by [a, b].

Remark 3. Examination of the form of the deconvolution kernel KU suggests

that the Fourier transform fFtU should not vanish at one or more points in the real

line, otherwise there are poles in the integral defining KU and a problem arises

since the integral does not exist. In the numerical examples we present in this

paper with the Laplace density model for U, the Fourier transform does not vanish

and there is no issue. However, a more advanced construction, suggested first in



2304 HALL, PENEV AND TRAN

Hall and Meister (2007), that modifies the calculation of KU via introduction of

ridging, helps to avoid the issue even in cases where fFtU has at most a countable

number of zeros on the real line, hence our Assumption A1(e).

In Fan and Truong (1993) and in other papers in the regression with measure-

ment error literature, there is no assumptions of compact support for X whereas

this assumption is utilised in the consistency proof for our procedure. While this

seems a limitation of our method, we make much less restrictive assumptions

on the regression function by allowing it to be discontinuous whereas other ap-

proaches require smoothness of the regression function (existence of derivatives

of certain order). Also, we believe that the assumption of compact support of

X is not too restrictive because this compact support can be made very large

to satisfy all practically interesting situations. Not least, our numerical exam-

ples and experimentations demonstrate that the method performs very well even

when the support of X is not necessarily compact.

Assumption A2. (a) the density estimators f̂X and f̂W converge at rate n−r in

L2, in the sense that
∫ b
a (f̂X −fX)2 = Op(n

−2r) and
∫∞
−∞(f̂W −fW )2 = Op(n

−2r),

and moreover supw∈R |f̂W (w) − fW (w)| = Op(n
−r) where 0 < r < 1/2; and (b)

m = m(n) diverges, subject tom ≤ m0(n) wherem0(n)→∞ and 2m0(n) = o(nr).

This assumption is somewhat generous toward the estimator f̂W ; we would

expect f̂W to converge to fW an order of magnitude faster than does f̂X to fX ,

although we only require the same rate for both estimators. In addition, we

mention that the required polynomial convergence rate for f̂X in Assumption 2

is only possible to achieve if the distribution of U is ordinary smooth (otherwise

the attainable rate is much slower (Fan and Truong (1993)).

Define S(α) as at (2.7), with vi ≡ 1 there.

Theorem 1. If Assumptions A1–A2 hold, and the estimator ĝ at (2.3) is com-

puted using wavelet coefficients α̂j and α̂jk that minimise S(α), at (2.7), with α̂

constrained to lie in Am, then, for all q ∈ (0,∞),∫
[a,b]
|ĝ − g|q → 0 (4.3)

in probability as n→∞.

A similar argument can be used to justify using the cross-validatory criterion

T (q), at (2.10), weighted by the square of f̂W,−i(Wi) :
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T (q) =
∑
i∈I

{
Yif̂W,−i(Wi)−

∫
ĝ−i(x)fU (Wi − x)f̂X,−i(x)dx

}2

.

At present we are able only to establish consistency, not convergence rates.

With the weak modelling assumptions and the specificity of our estimation

method, establishing convergence rates seems to be a challenging problem.

Supplementary Materials

A detailed proof of the theorem is given in the Supplementary Material.
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