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Abstract: We examine Peter Hall’s early research, undergraduate teaching, and

PhD supervision, using the theme of extreme order statistics to highlight interesting

aspects of these activities. Focusing on this period allows us to see Peter when, like

all academics in the early part of their careers, he was becoming an academic and

still establishing himself. That he succeeded so greatly and rapidly began to make

the many remarkable contributions that adorn his distinguished career, makes this

early, formative stage particularly interesting to explore.
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1. Introduction

Peter Hall’s many and wide-ranging contributions to statistics have been cel-

ebrated in a number of events (conference sessions, workshops and conferences)

and in a special October 2016 issue of the Annals of Statistics. In addition,

a Memoir of Peter’s life and work has been published by Robinson and Welsh

(2017). Nonetheless, some aspects of Peter’s life and work, particularly in the

very important early part of his career, have not been discussed in much detail.

The purpose of this paper is to examine Peter’s early research, undergraduate

teaching, and PhD supervision, using the theme of extreme order statistics (here-

after just called extremes) to highlight their interesting aspects.

Peter’s research on extremes uniquely straddles three important periods in

his research career: his earliest research in probability; the period in which he

redirected his research from probability to statistical theory; and his later work

on statistical theory. This enables us to illustrate how what he did and the way

he did it changed through these different periods. The research on extremes is

interesting because it contains interesting ideas of value in themselves, as well

as links to other areas of research interest to Peter. One key idea that forms a

theme for Peter’s research on extremes is that of using simple models to construct

estimators and then deriving the properties of these estimators under different
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approximate models. Particularly, later in his career, Peter incorporated methods

and problems from other areas of his research (such as the iterated bootstrap

for interval calibration or measurement error) into his research on extremes so

this work provides some insights and a nice gateway into these other areas of

his research. Since Peter did not publish as many papers on extremes as he

did in some other fields of interest such as nonparametric function estimation

or the bootstrap, his papers on extremes form a relatively manageable body of

work (particularly by Peter’s standards) for interested researchers to work with.

These features make Peter’s research on extremes uniquely useful for discussing

the evolution of Peter’s research, the development of his ideas, and the changes

in the style of writing papers.

Peter’s exceptional research productivity can make it easy to overlook other

important activities in his early academic career. Peter’s first academic appoint-

ments were as a lecturer (junior faculty member) at the University of Melbourne

from August 1976 to mid-1978 and then in the Department of Statistics in the

School of General Studies (formally renamed The Faculties in 1979) at the Aus-

tralian National University (ANU) from mid-1978. The ANU had two statistics

departments; the Department in the School of General Studies was responsible

for undergraduate teaching and research while the Department in the Institute

of Advanced Studies was a research department. Peter’s appointment changed

to a joint appointment between the two ANU departments in 1986, but Peter

carried a full teaching load at ANU until then. That is, during the period that

he redirected his research from probability to statistics and increased his produc-

tivity, Peter carried a full teaching load. In addition, he began to supervise PhD

students. I audited one of Peter’s advanced undergraduate courses (Order Statis-

tics and Related Topics) in 1982 and worked under his supervision on estimating

parameters of regular variation during my PhD (1982 – 1984). My direct ex-

perience of both of these important activities was therefore related to extremes.

Discussing Peter’s early teaching and supervision gives additional insight into

Peter and an important stage of his career.

One of the conditions of Peter’s appointment to ANU in 1978, was that he

direct some of his research effort towards statistics. Peter took this seriously and

started to work on statistical problems, beginning with nonparametric density

estimation (Hall (1980a)). His statistical research on extremes started soon after,

with Hall (1982a) treating estimation of the exponent of regular variation and

Hall (1982b) treating estimation of the endpoint of a distribution. Peter had

completed an undergraduate statistics degree at the University of Sydney, read
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Table 1. Peter’s papers in refereed journals 1977–1982: “total” is the total number of
papers, “statistics” is the number of papers in statistics (as opposed to probability), and
“joint” is the number of papers with at least one other co-author.

year total statistics joint
1977 2 0 0
1978 6 0 0
1979 8 0 1
1980 4 1 0
1981 17 8 2
1982 17 11 5

widely and was extremely smart. He sensibly worked on problems in statisti-

cal theory that made use of his strength, knowledge and ability in probability.

Nonetheless, it is remarkable that he redirected his research so successfully and

so quickly. Peter’s first promotion to Senior Lecturer came in 1983, by which

time he had published over 54 papers in refereed journals and 2 books. This was

followed by promotions to Reader in 1986, and then Special Professor in 1988.

We discuss Peter’s early probability research on extremes in Section 2 and

his teaching in Section 3. We examine his statistical work on estimating the

exponent of regular variation and the endpoint of a distribution in Sections 4 and

5, respectively; we discuss in particular the two papers Hall (1982a,b) and then

the research that these papers led to. We describe Peter’s early PhD supervision

in Section 6 and conclude with a brief discussion in Section 7.

2. Early Research on Extremes

A summary of Peter’s papers published in refereed journals between 1977

and 1982 is given in Table 1. The first column shows the number of papers, the

second shows the number of them that are clearly in statistics as opposed to

probability and the third shows the number that had additional authors. It is

clear that Peter’s research in this period was mainly in probability, his papers

were mostly single authored and he went very quickly from highly productive to

exceptionally productive while at the same redirecting his research to statistics.

Peter’s early research on extremes was focused on establishing limit theo-

rems and rates of convergence for extremes and functions of near extremes from

samples of independent random variables. This fitted very well within Peter’s

concurrent research on martingales and rates of convergence in the Central Limit

Theorem. Indeed, this is a good reason for looking at the content and style of

these papers.
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Peter’s first two papers on extremes established limit theorems and represen-

tations. In Hall (1978a), Peter considered independent and identically distributed

(iid) random variables X1, . . . , Xn in the domain of attraction of a stable law with

exponent α < 2. Let Yn1, Yn2, . . . , Ynn denote the sample arranged in decreasing

magnitude so |Yn1| ≥ |Yn2| ≥ · · · ≥ |Ynn|. Peter studied the asymptotic behaviour

of the lower and upper sums (k)Sn = Yn1 + · · ·+Ynk and S
(k)
n = Yn,k+1 + · · ·+Ynn

as first n → ∞ and then k → ∞. Suitably normalised, he showed that S
(k)
n

converges in distribution to a random variable T (k) and found the characteristic

function of the limiting random variable. He used this result to show that (k)Sn
converges in distribution to (k)T as n → ∞ and then that, as k → ∞, for a

suitable nonstochastic sequence {ck}, (k)T − ck has a limiting stable law.

In his next paper (Hall (1978b)), Peter considered i.i.d. random variables

X1, . . . , Xn with order statistics Xn1 ≤ Xn2 ≤ · · · ≤ Xnn. Suitably normalised,

the variables Xnn, Xn,n−1, . . . have a nontrivial limiting distribution ξ1, ξ2, . . ..

Peter established a Rényi-like representation (Rényi (1953)) for {ξn, n ≥ 1} and

used it to obtain limit theorems for ξn as n→∞: Let Z1, Z2, . . . be independent

standard exponential random variables, let γ be Euler’s constant, and let

ζn =

∞∑
j=n

(Zj − 1)

j
+ γ −

n−1∑
j=1

1

j
.

Then the distribution of {ξn, n ≥ 1} is the same as that of {ξ̃n, n ≥ 1}, where

ξ̃n =



exp

(
ζn
α

)
if X1 is in the domain of attraction

of the Type 1 distribution

− exp

(
−ζn
α

)
if X1 is in the domain of attraction

of the Type 2 distribution

ζn
if X1 is in the domain

of attraction of the Type 3 distribution

and α is the parameter in the limiting distribution.

The motivation given in Hall (1978b) was that “the process {ξn} deserves

study in its own right”. Later in the paper, Peter noted that the representation

can be used simply to show that various random variables are independent. In

fact, he used the results from Hall (1978a,b) in statistical work on extremes in

Hall and Wang (2005). Thus, whatever the motivation given or omitted from

the paper, the results were important. It also shows how Peter’s early research

in probability helped prepare him for and influenced him in his later research in

statistics.
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These first two papers were followed by several papers on rates of convergence

for extremes.

Hall (1979a) considered the rth largest order statistic Xnr from a set of iid

random variables. Let {cn} be a sequence of constants such that for the smallest

order statistic Xn1/cn → 1 in probability, or almost surely, then Xnr/cn → 1

in probability, or almost surely, for each r ≥ 1. Peter obtained necessary and

sufficient conditions for r(n) → ∞ sufficiently slowly such that Xnr(n)/cn → 1

in probability, or almost surely, and then investigated the rate of convergence by

establishing a central limit theorem and a law of the iterated logarithm.

For the largest order statistic Xnn from a sample of n iid standard normal

random variables, Hall (1979b) showed that, with the optimal choice of normal-

ising constants, the supremum metric and the Lévy distance between the nor-

malized Xnn and its limiting extreme value distribution decrease like 1/ log(n).

Following on from Hall (1979b), Hall (1980b) considered the problem of es-

timating the distribution function Pr(Xnn ≤ x) of the largest order statistic Xnn

from a sample of n iid standard normal random variables. The research was mo-

tivated by the result in Hall (1979b) showing that the rate of convergence of Xnn

to the extreme value distribution is very slow. In this problem Peter first showed

that taking powers of Xnn improves the rate of convergence to 1/{log(n)}2, but

no more. This means that using the limiting distribution to approximate the ac-

tual distribution is not accurate enough, so Peter derived a new approximation

with relative error tending to zero as x and n tend to infinity.

Hall (1984) considered the sample mean of n iid observations from a sym-

metric (about zero) distribution after trimming the k largest (in absolute value)

observations. If k/n→ 0 as n→∞, the trimmed mean has the same asymptotic

distribution as the mean. Peter showed that the rate of convergence can be made

arbitrarily close to O(n−1) by an appropriate choice of k. He showed further that

scaling by (n− k)1/2/σ, where σ2 is the variance of the underlying distribution,

as one ordinarily would, does not improve the rate of convergence; the scale fac-

tor needs to be a function of the last removed extreme value but is not usually

available in practice. Thus Peter reached the negative conclusion that there is no

practical way of improving the rate of convergence by trimming. Peter adopted a

non-standard description of robustness (in terms of the trimmed estimator hav-

ing a faster rate of convergence than the untrimmed estimator) so he expressed

his conclusion in terms of robustness not being achievable by trimming.

In a paper motivated by research by Daryl Daley into a storage model,

Daley and Hall (1984) derived limit laws for maxima of weighted {wn(γ)Xn}
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and translated {Xn − vn(δ)} sequences of iid random variables. They assumed

1 ≥ wn(γ) ≥ wn+1(γ) → 0 as n → ∞, wn(γ) → 1 as γ → 1, and 0 ≤ vn(δ) ≤
vn+1(δ) → ∞ as n → ∞, vn(δ) → 0 as δ → 0. Daley and Hall showed that for

wn(γ) = γn and vn(δ) = nδ, the limit law is one of Gnedenko’s standard limit

laws for extremes but that, in other cases, different limit laws can be obtained.

Peter’s early papers (including those described above) reflect the style of the

time. They are mostly short and very technical; reading them again now, it is

not always clear from the papers themselves what the specific motivation for each

paper might have been. This style was influenced by the “production process”

of that time. The papers were handwritten and then placed in a queue to be

typed. The typing was done by typists employed as secretaries (initially two and

later three in the Faculties Department of Statistics) in between the other tasks

they were required to do. They used IBM Selectric typewriters (known as “golf

ball typewriters”) which had interchangeable metal balls with different symbols

and fonts on them to type the technical parts of the manuscripts. Revision

at any stage was difficult. At the handwritten stage, for substantial changes,

pages could be rewritten and then replaced; for small changes, pages could be

cut up with scissors and then physically pasted with glue or tape and additional

material added in between. The typists would correct mistakes they had made

(using erasers, correction fluid and physical cutting and pasting) but were never

pleased to redo pages if the author simply changed their mind. Peter was very

efficient about the process and would usually write a single version of a paper.

He thought out the structure and content in his mind before starting and he did

not later change this or do much revision. Although Peter dominated the typing

queue, access to typists caused tension and Peter could be impatient about having

to wait for his papers. The contribution of the women (at that time they were all

women) who did the typing was invaluable. (Other important contributions to

research were made by Research Assistants who were hired by the Department to

assist with finding and photocopying papers from the library and Programmers

who wrote code and ran simulations.)

Typed papers were photocopied and then submitted to journals through the

postal system. It took time for the necessary letters to be written and for the

papers to be sent out for review and then returned. Reviewers saw the task of

reviewing differently from how it is seen today; extensive revision was avoided

whenever possible and minor issues of expression and style were certainly ignored.

Peter was very quick and efficient at revising and resubmitting his papers. He

expected editors and reviewers to be quick and efficient too. I have no idea
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how Peter obtained his home telephone number, but I recall Peter telephoning

Klaus Krickeberg, then editor of the Zeitschrift für Wahrscheinlichkeitstheorie

und verwandte Gebiete living in Paris, in the very early hours of the morning

Paris-time to wake him up and demand a response to a paper he had submitted.

3. Teaching

In the early part of his career, while increasing his research productivity,

Peter was also fully involved in undergraduate and graduate teaching. Peter did

not document his teaching in his curriculum vitae and it is now quite difficult

to work out exactly which courses he taught and when. Peter’s papers in the

ANU Archives include lecture notes and other course material which give some

information. However, the information is incomplete and the dates on the lecture

notes do not necessarily indicate exactly when the lectures were delivered. For

example, during Peter’s first academic appointment as a lecturer at the University

of Melbourne from August 1976 to mid 1978, he taught courses in Stochastic

Processes and Nonparametric and Introductory Statistics. It is very likely that

he taught other courses too because, in a letter to Chip Heathcote at ANU on 15

December 1977, he wrote that he had the highest teaching load in the department

at Melbourne.

On moving to ANU in mid 1978, Peter took up the then standard teaching

load of three courses per year. In 1984 Peter voluntarily taught extra courses

to ensure that he could take his first planned sabbatical leave in 1985. After

this leave, Peter’s appointment changed to a joint appointment with the research

Department of Statistics in the Institute of Advanced Studies at ANU and he

reduced his teaching load. This meant that, as his career advanced, Peter was

able to travel more. He continued to teach the course in probability, although

later this sometimes meant getting one of his post-doctoral research fellows to

deliver the lectures.

When Peter started teaching at ANU, the standard undergraduate courses

were labelled A0x, B0x and C0x with the letters denoting first, second and third

year courses. In 1982 A01 and A02 split into an Economic Statistics stream

and Statistical Techniques I and II; these were effectively new service courses

designed to allow a different focus for economics and science students and to

accommodate introducing the use of the computer to beginning students. There

was an honours stream within the second and third year courses (involving extra

material and extra questions in the assessment). There were honours (4th year
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undergraduate) and masters courses too; these specialist and advanced courses

usually had a specific title and were comparable to graduate courses. Most of the

main courses were delivered by a single lecturer, typically for several consecutive

years; the specialised and advanced courses were more often taught only once

and may have had portions taught by several different people.

The archived teaching materials from Peter’s early years at ANU suggest

that he taught A02, B01 and C04. Around 1982, he moved from teaching A02

to teaching Statistical Techniques 1 and from teaching B01 to teaching Proba-

bility Theory. Statistics A02 was the second semester of the first year introduc-

tory statistics course, B01 was the introductory mathematical statistics course

(many students started their study of statistics with this course) and C04 was

a first course on stochastic processes. Statistical Techniques 1, the first year

introductory statistics course included some basic probability, distributions and

elementary statistics. Although he was initially a probabilist and his research was

clearly in probability, Peter’s undergraduate degree in statistics at the University

of Sydney included courses in linear models and the design of experiments so he

had the background to teach these statistics courses. Probability Theory was

offered through the Department of Mathematics to attract mathematics as well

as statistics students but it was a required course for statistics honours students.

Peter had done a reading course on the 1968 edition of Chung’s book “A Course

in Probability Theory” at the University of Sydney, liked and always used the

1974 edition (Chung (1974)) for the course.

Peter taught the first year unit (most likely Statistics A02) in second semester

1980. The course had a large enough enrolment that each question in the final

exam was marked by a different person. One of the markers, George Mailath,

kindly shared the details of what followed. George placed the bags of ungraded

exam scripts on the floor on one side, the current packet he was grading on

the desk and the bags of graded exam scripts on the floor on the other side.

The overnight cleaners judged the bags on the floor to be garbage and removed

them for disposal. When this was discovered the following morning, Peter and

George went to the Canberra rubbish tip to search for the missing bags but found

nothing. Peter and George made a second trip (perhaps with some janitorial

staff) and located the area where the ANU trash had been dumped. Peter and

George returned to the tip for a third time with every available body (including

academic colleagues) to help search for the bags of scripts. Very fortunately,

they managed to find all of the bags! It is unclear what would have been done

if they had not been found, but it would have been very embarrassing. There
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were reminders every year for many years after that to avoid placing exam scripts

anywhere where they could be construed as trash (near waste paper baskets or

on the floor) - and these always made me think of Peter.

Peter also taught the more advanced courses “Stochastic Models and Pro-

cesses” (1981), “Order Statistics and Related Topics” (1982), eight lectures on

Poisson Processes in a Masters course on linear and nonlinear models, Poisson

processes and geostatistics (1983), parts of “Rank tests, Multivariate Analysis

and Time Series Analysis” (most likely the rank tests), “Goodness-of-fit tests and

Techniques of Inference” (most likely the goodness-of-fit-tests), and “Statistics

Special Topics” (1984).

In general, Peter’s lectures, like his seminars, were well-prepared, highly

organised and presented on the blackboard. Some lecturers used overhead pro-

jectors, but Peter preferred the blackboard. The level in the lectures was uncom-

promising (so advanced students could learn a great deal) but Peter was generous

in assessment and grading, so less well-prepared students could still get through.

This was particularly important in Probability Theory where some of the statis-

tics students were mathematically underprepared but could still get through the

course and learn useful things from it. Peter’s preferred lecture times were first

thing in the morning or at lunch time. My memory is that office hours were

chosen to suit Peter far more than the students, but I cannot verify this now. In

any case, to run teaching and research well required a very high degree of organ-

isation and self-discipline and I think Peter carefully partitioned the activities so

that they did not intrude on each other.

3.1. Order statistics and related topics

As a new PhD student, I audited the Honours level (4th year undergraduate)

course Peter taught in the first semester of 1982. There were two students enrolled

in the course and some Faculty members also auditing. Peter’s course description

read as follows:

The aim of the course is to provide an introduction to a broad spec-

trum of statistical topics, constructed around a single theme. The

subject of order statistics was chosen because it permits a relatively

simple mathematical discussion, and yet is applicable in a great many

areas. Thus, the emphasis is on variety, and we shall consider problems

from extreme value theory, nonparametric statistics, empirical process

theory, density estimation, U-statistics, location and scale estimation,

near neighbour methods, etc.
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This was very obviously research-led teaching, well before the phrase was in

common use. As Neville Weber commented at the time, an alternative course title

would have been ”Things I have been working on recently”! This is particularly

interesting because it reflects Peter’s statistical interests precisely when he was

redirecting his research from probability towards statistical theory. There was

no text (there could not be), although Peter liked David (1970) and the early

lectures were influenced by it. There were two 50 minute lectures per week, on

Tuesday and Thursday at 1.00 pm, meaning that the course comprised about 26

lectures.

Peter began by defining the order statistics Xn1 ≤ Xn2 ≤ · · · ≤ Xnn, the

quantiles ξp as solutions of F (ξp) = p, where F is the underlying distribution

function, and then the sample quantiles as ξ̂p = Xn,[np]+1, where [ · ] is the integer

part function. The first result Peter derived used the binomial distribution to

construct a nonparametric confidence interval for the pth quantile ξp. The second

derived Rényi’s (1953) representation.

Rényi’s Representation: if (Xni, i = 1, . . . , n) are the order statistics of a random

sample with distribution function F , then the vector (Xn1, . . . , Xnn) has the same

distribution as (F−1(exp(−
∑n−i+1

j=1 (n− j+ 1)−1Yj)), i = 1, . . . , n), where Yj are

independent standard exponential random variables.

Peter really liked Rényi’s representation and used it throughout the course

(as well as in his research, in for example Hall (1982a,b)); it is an elegant result

with a simple but clever proof (involving rearranging the sum in the exponent in

the joint density of the order statistics from an exponential distribution) which

Peter included in the course. Peter did not mention Bahadur’s (1966) represen-

tation but established the closely related expansion

ξ̂p − ξp = −∆(p)
p

f(ξp)
+Op(n

−1), (3.1)

where n1/2∆(p)
D→ N(0, (1 − p)/p), in proving the central limit theorem for a

finite set of sample quantiles.

The proof of the expansion (3.1) from Renyi’s representation that Peter gave

illustrates his approach and style. Suppose F has a density f and f is a nonzero

function with a bounded derivative in a neighbourhood of ξp for 0 < p < 1. Set

G(x) = F−1(exp(−x)) for x > 0. Then F (G(x)) = exp(−x),

f(G(x))G′(x) = − exp(−x)

and

f ′(G(x))G′(x)2 + f(G(x))G′′(x) = exp(−x).



PETER HALL ON EXTREMES 2271

Hence G′(− log(p)) = −p/f(ξp) as G(− log(p)) = ξp, and G′′(x) exists and

is bounded in a neighbourhood of − log(p). Using a Taylor expansion about

− log(p), we may deduce

G{− log(p) + δ} = ξp − δ
p

f(ξp)
+O(δ2) as δ → 0. (3.2)

Let Y1, . . . , Yn be independent standard exponential random variables and recall

we may write

ξ̂p = G


n−[np]∑
j=1

(n− j + 1)−1Yj

 . (3.3)

Now
∑n−[np]

j=1 (n−j+1)−1Yj =
∑n−[np]

j=1 (n−j+1)−1+
∑n−[np]

j=1 (n−j+1)−1(Yj−1),

n−[np]∑
j=1

(n− j + 1)−1 =

n∑
j=[np]+1

i−1 =

∫ n

np
x−1dx+O(n−1) = − log(p) +O(n−1).

Furthermore ∆(p) =
∑n−[np]

j=1 (n−j+1)−1(Yj−1) is a sum of independent random

variables with mean zero and so has variance

Var{∆(p)} =

n−[np]∑
j=1

(n− j + 1)−2 =

n∑
j=[np]+1

i−2

=

∫ n

np
x−2dx+O(n−2) =

1− p
np

+O(n−2).

By application of the Central Limit Theorem, we see that

n1/2∆(p)
D→ N

(
0,

1− p
p

)
.

Combining these results, we see that

n−[np]∑
j=1

(n− j + 1)−1Yj = − log(p) + ∆(p) +O(n−1),

where ∆ = n−1/2Z, say, where Z is normally distributed. We shall combine this

result with (3.2) and (3.3), taking δ = ∆(p) +O(n−1) in (3.2). We obtain

ξ̂p = ξp − {∆(p) +O(n−1)} p

f(ξp)
+O({∆(p) +O(n−1)}2)

= ξp −∆(p)
p

f(ξp)
+O(n−1).

Peter concluded with the remark that the central limit theorem for the quan-

tiles could be proved for f continuous and not necessarily bounded.

The proof is set out like a proof in a research paper - students have to work
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to understand the argument and the steps rather than having everything laid out

for them. It is clear from the argument leading to (3.2) that (3.2) is relevant but

it is not yet necessarily clear how; it helps to read the proof backwards but this

can only be done after the entire proof has been presented. The second half of

the proof shows some of Peter’s technical facility in working with the argument of

G in (3.3). Finally, Peter brought everything together and completed the proof

by noting that the conditions can be weakened.

After proving the central limit theorem, Peter derived the asymptotic distri-

bution of the spacing between two quantiles and showed how to use the spacing to

construct a consistent estimator of the asymptotic variance of a sample quantile.

He then lectured on Grenander’s mode estimator and kernel density estimation.

Peter treated extreme order statistics very classically by proving the result

that there are only three possible limiting distributions and discussing weak con-

vergence in various cases. He also proved a strong law for extremes.

The next topic was linear combinations of order statistics or L-estimators.

Peter approached this through the empirical process and applied the general re-

sult to Gini’s mean difference statistic. He then considered Gini’s mean difference

as a U-statistic and used this to motivate U-statistics. He derived the central

limit theorem for order 2 U-statistics and applied this to Gini’s mean difference

and the Wilcoxon signed rank statistic. He also discussed 2-sample U-statistics,

considering the Wilcoxon rank sum statistic statistic, and degenerate U-statistics.

Peter completed the course by again considering density estimation. He

showed that the near neighbour density estimator can be written as a ker-

nel density estimator and then applied results derived earlier in the course to

near neighbour estimators. (Peter used the phrase “near neighbour” rather than

“nearest neighbour” in the course.) He also considered near neighbour density

estimation in the discrete case, focussing on the binary sample space in p dimen-

sions, B = {0, 1}p. Finally, Peter presented orthogonal series density estimators

in univariate and multivariate problems with both continuous and discrete dis-

tributions. He discussed the idea of adding terms in the series to reduce the

asymptotic mean integrated/summed squared error. The topic of choosing tun-

ing parameters was to be very important in Peter’s research on nonparametric

estimation.

3.2. Poisson processes

Peter gave eight lectures in another advanced course in second semester 1983.

Geoff Lee kindly lent me a copy of the notes he took from the course. This course
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is interesting because of its connection to Peter’s subsequent research on coverage

processes; the course was very statistical in orientation, but it does show that

Peter was thinking about mosaic processes at the time.

In the first two lectures, Peter defined the Poisson process and the inhomoge-

neous Poisson process, and established a relationship between them. He then gave

three lectures on inference for Poisson processes. He derived the likelihood and

discussed maximum likelihood estimation of the parameters. He also considered

a single exponentially decaying Poisson process with intensity λ(t)a exp(−αt)
and introduced the problem of testing whether α = 0 against the alternative

that α > 0. Peter concluded his lectures in the course by giving three lectures on

mosaic processes. He introduced these processes by considering spheres of ran-

dom radius centred on the points of a Poisson process and then reduced this to a

1-dimensional pattern of segments and spaces on a line. He discussed maximum

likelihood estimation of the Poisson process parameter under the assumption of

constant underlying segment length. He referenced Roach (1968), indicating that

Roach had a different derivation and some typographical errors in the solution.

4. Estimating the Exponent of Regular Variation

Peter first papers using extremes in statistical problems appeared in 1982.

The first of these (Hall (1982a)) concerned the problem of estimating the expo-

nent of regular variation, a key parameter describing the tails of distributions

with regularly varying tails. In most of Peter’s research on regular variation, the

context is that we observe iid random variables with a distribution function F

satisfying

1− F (x) = Cx−α(1 + δ(x)), as x→∞, (4.1)

where α > 0 is the unknown exponent of regular variation, C > 0 is an un-

known scale parameter and δ(x) → 0 as x → ∞. In particular, Hall (1982a)

considered the cases δ(x) = Dx−β + o(x−β) with β > 0, D a real number, and

δ(x) = D1x
−α + · · · + Dmx

−mα + o(x−mα) which holds, for example, for the

extreme value distribution with F (x) = exp(−x−α). The distribution (4.1) with

δ(x) = 0 represents a distribution with Pareto tails. An interesting point made

in Feuerverger and Hall (1998) is that the model with δ(x) = Dx−β + o(x−β),

becomes 1−F (x) = Cx−α +CDx−α−β + o(x−α−β), which can be interpreted as

a mixture of Pareto models. The departure from an exact Pareto model is thus

represented by an approximate mixture of Pareto models.

Under the assumption that δ(x) = 0 for x > d, it follows from Rényi’s repre-
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sentation that, given Xn,n−r > d, the scaled log-spacings Ui = i{log(Xn,n−i+1)−
log(Xn,n−i)} are independent exponential random variables with mean 1/α. In

this case, Hill (1975) derived conditional maximum likelihood estimators of α

and C, given Xn,n−r > d, which are

1

α̂r
= r−1

r∑
i=1

Ui = r−1
r∑
i=1

log(Xn,n−i+1)− log(Xn,n−r)

and Ĉr = r(Xn,n−r)
α̂r/n.

By making the transformation x → x−1, the problem can be reformulated

with the tail at the origin and the estimators mapped to using the smallest (on the

transformed scale) rather than the largest order statistics. This transformation

was used in Hill (1975), Hall (1982a), and in Peter’s later papers, particularly in

the proofs, to simplify notation, but the whole problem was formulated on the

transformed scale in Feuerverger and Hall (1998) and Guillou and Hall (1999).

Hall (1982a) explored the properties of Hill’s estimator under two forms for

δ(x). For δ(x) = Dx−β + o(x−β) with D 6= 0, Hall (1982a) showed that is

optimal to choose the threshold r = r(n) to increase at the rate O(nκ), where

κ = 2β/(2β + α): if r increases more slowly, the variance of the estimator is

of a larger order than the bias of the estimator; if r increases more quickly, the

bias of the estimator is of a larger order of magnitude than the variance of the

estimator. When δ(x) = D1x
−α+ · · ·+Dmx

−mα+o(x−mα), Hall (1982a) showed

that an estimator with a faster rate of convergence (O(nm/(2m+1)) compared to

O(nκ/2)) can be obtained by combining several of Hill’s estimators α̂r computed

with different thresholds r.

Hall and Welsh (1984) used the approach developed by Farrell (1972) for

kernel density estimators to establish minimax rates of convergence for Hill’s

estimators. Under δ(x) = Dx−β + o(x−β) with D 6= 0, they showed that the

minimax optimal rate of convergence for estimating α is O(nκ/2), where κ =

2β/(2β + α). Hall and Welsh (1985a) assumed that the optimal threshold r ∼
hnκ, with κ known, and proved invariance principles for A∗n(h) = nκ/2(α̂[hnκ]−α)

and C∗n(h) = (log n)−1nκ/2(Ĉ[hnκ] −C). The motivation for treating κ as known

is that under δ(x) = Dx−β + o(x−β) with β = α (as in the second form for δ(x)

used in Hall (1982a)), κ = 2/3. They then constructed a direct estimator of the

value of h that minimises the asymptotic mean squared error of Hill’s estimator.

The direct estimator of the optimal h required three tuning parameters so was

not particularly practical. However, it was a first improvement on Hill’s (1975)

suggestion of choosing r by increasing r until a test of the hypothesis that the
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scaled log-spacings have an exponential distribution is rejected; Hall and Welsh

(1985a) noted that this procedure overestimates the threshold r used to construct

Hill’s estimator so it is not consistent.

In Hall (1990), a general paper on using the bootstrap to estimate the mean

squared error of an estimator to give us a criterion to minimise to choose tuning

parameters, one of the examples discussed in detail is choosing the threshold r in

Hill’s estimator. Hall (1990) suggested using the m out of n bootstrap to estimate

the mean squared error of Hill’s estimator of α as a function of r, minimising

this estimate to obtain r̂m and then rescaling r̂m from sample size m back to the

original sample size n. This last step is difficult in general. To make it feasible,

Hall (1990) assumed, as in Hall and Welsh (1985a), that the optimal r ∼ hnκ,

with κ known, so that we only need to estimate h and, more importantly, rescaling

is achieved straightforwardly by multiplying r̂m by (n/m)κ.

Hall and Weissman (1997) also considered the problem of choosing r in Hill’s

estimator as particular case in a general problem. The problem was that of

estimating the probability of exceeding a given value x or of estimating a quantile

that is beyond the observed data; following the paper, we focus on the first

problem. Given an estimator θ̂(r) of θ, where r is a tuning parameter, and a

model Fθ(x) such that F̄ (x)/F̄θ(x)→ 1 as x→∞, where F̄ (x) = 1− F (x), the

general problem is to choose r to optimise E{F̄θ̂(r)(x) − F̄ (x)}2. The value x is

taken to be of larger order than O(n1/(2β+α)+ε) so that it is beyond the range of

the data (the large order statistics under the model with δ(x) = Dx−β + o(x−β)

are of order O(n1/α) in probability). The approach used in Hall and Weissman

(1997) is to estimate the mean squared error at (y,m), where the value y << x

and the sample of size m < n, rather than at (x0, n), to minimise the estimated

mean squared error over r to obtain r̂(y,m) and then back transform r̂(y,m) to be

an estimator on (x0, n). Here y is required to be within the range of the data, so

effectively the problem is transformed to a less extreme version in such a way that

log(y)/ log(m) = log(x)/ log(n). This is achieved by setting y = O(n1/(2β+α)−ε1)

and m = O(n1−ε2) for ε1, ε2 > 0. Hall and Weissman (1997) used the m out of

n bootstrap to estimate the mean squared error and concentrated on the Pareto

type model (4.1) with δ(x) = 0. They suggested estimating r̂(y,m) for two values

of m, regressing these on log(m) to estimate the intercept log(C) and the slope

γ and then setting r̂(x, n) = Ĉnγ̂ . This means that the bootstrap requires two

tuning parameters (compared to three in Hall and Welsh (1985a)).

Guillou and Hall (1999) proposed a different method for choosing the thresh-

old r for Hill (1975) estimator that does not require specifying a particular
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form for δ(x) in (4.1). The method is based on the scaled log spacings Ui =

i{log(Xn,n−i+1) − log(Xn,n−i)} which we have noted are independent exponen-

tially distributed random variables with mean 1/α if the model (4.1) holds with

δ(x) = 0, and approximately independent exponential random variables when

δ(x) 6= 0. Guillou and Hall (1999) showed that the order of the approximation

to the asymptotic distribution of the estimator is determined by the bias of the

estimator, so their idea was to choose r as large as possible subject to a finite

bound on the bias of the estimator. They achieve this by finding the smallest

integer r̂ such that |Tt| > ccrit for all t ≥ r̂, where ccrit is a fixed positive value

(suggested from empirical experience to be between 1.25 and 1.5) and Tt is a

symmetrically weighted sum of the Ui that is standardised under the assumption

that the Ui are exactly exponentially distributed. The idea is to increase r until

the bias has a significant effect on the approximation to the sampling distribu-

tion of Hill’s estimator. As Guillou and Hall (1999) noted, this is similar in spirit

to Hill’s (1975) suggestion of testing the U ′is for exponentiality but it treats the

scaled log-spacings cumulatively rather than separately.

Most of Peter’s research in regular variation was concerned with Hill’s esti-

mators. Peter did mention (in some of the papers described above) that the re-

sults for Hill’s estimators could be extended to the kernel estimators proposed by

Csörgő, Deheuvels and Mason (1985) as alternatives to Hill’s estimators, but he

did not publish any detailed work on these estimators. However, Feuerverger and

Hall (1998) proposed and studied their own alternative estimators of the parame-

ters α and C in the model (4.1) with δ(x) = Dx−β+o(x−β). Feuerverger and Hall

(1998) considered the scaled log-spacings Ui = i{log(Xn,n−i+1) − log(Xn,n−i)}.
They suggested treating r of these as exponential with mean α−1 exp(D1(i/n)β1),

where D1 = −β1C−β1D and β1 = β/α, and suggested using either maximum

likelihood or regression estimators to estimate the unknown parameters. The

regression estimator is obtained by minimising

r∑
i=1

{
log(Ui)− µ−D1

(
1

n

)β1

}2

,

where the intercept µ = − log(α) − γ and γ is Euler’s constant. The suggested

estimator of α is either

α̂ = exp(−γ − µ̂),

which follows from the regression formulation, or
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1

α̂
= r−1

r∑
i=1

Ui exp

(
−D̂1

(
i

n

)β̂1

)
,

which follows from expressing the maximum likelihood estimator of α as a func-

tion of the other unknown parameters and then replacing them by their estima-

tors. The problem is much simpler if β1 is known (often β1 = 1) or a known

function of α (often β1 = 1/α). Feuerverger and Hall (1998) suggested pilot

estimates of the parameters (including β1) that can be computed to distinguish

these cases.

Feuerverger and Hall (1998) considered the different problem of estimating

tail parameters from record values. Record values are data recorded only if they

exceed all previous values; simple examples are given by records in jumping and

throwing events in field sports. Feuerverger and Hall (1998) adopted the slightly

different model

F (x) = 1− x−αK(x), where K(x) = C(log x)β + o{(log x)β},

with 0 ≤ β < 1, as x→∞. If the record values are Y1, . . . YN , then the role of the

scaled log spacings in the earlier analysis is here played by the log-spacings {Vi},
where V1 = log(Y1)− α−1 log(C) and Vi = log(Yi+1)− log(Yi), i = 1, . . . , N − 1,

which, when K(x) = C, are independent exponential random variables with

mean 1/α. The maximum likelihood estimator of α now satisfies

1

α̃
= N−1

[
log(Y1)− α−1 log(C) +

N−1∑
i=1

{log(Yi+1)− log(Yi)}

]
= N−1 log(YN )− (Nα)−1 log(C).

The scale parameter C cannot be estimated consistently from the record values

alone but the first term N−1 log(YN ) = 1/α̃0, say, is of larger order than the

second term so α̃ is asymptotically equivalent to α̃0. In fact, α̃0 is the best

performing estimator of α in Berred (1992); it is interesting that it is similar

to Hill’s estimator but does not involve a threshold parameter. Berred (1992)

estimated the exponent of regular variation using record values but did not use

the inter-record times. Feuerverger and Hall (1998) also considered including

inter-record times. They showed that including inter-record times improves the

rate of convergence of the estimator (by two orders of magnitude), but com-

mented that the constant in the convergence result is much larger than that for

α̃0, and so in small samples may outweigh the gains in rate of convergence. An

interesting technical aspect of the problem is that, even under the simple mod-

els with K(x) = C, the maximum likelihood estimators are not regular and the



2278 WELSH

information matrix is not well-defined. This is treated by using the relationship

between maximum likelihood and maximum probability estimators, a technique

Peter had used earlier in Hall (1982b). Also, as noted in the abstract to the pa-

per, if F is continuous then the joint distribution of any number of record times

does not depend on F so there is no information about F in the record times.

However, the record times and record values jointly contain more information

about F than the record values alone.

5. Estimating Boundaries

The second of Peter’s papers in 1982 to use extremes in statistical problems

tackled the problem of estimating the endpoint of a distribution (Hall (1982b)).

There are strong parallels between the two (1982) papers in terms of how Peter

set up the problems and the approach he took to solving them. In Hall (1982b),

Peter assumed that we observe iid random variables with a distribution function

F satisfying

1− Fθ(x) = C(θ − x)k+1{1 + δ(θ − x)}, as x→ θ, (5.1)

where C ≥ 0, k ≥ 0 and θ is a location parameter representing the endpoint

of the support of F , so Fθ(x) = 1 for x > θ. For δ(x) = 0, results of Polfeldt

(1970a,b) and Woodroofe (1974) show that the maximum likelihood estimator

of θ based on the whole sample converges at the same rate as θ̃ = Xnn when

0 < k < 1. This means that, when 0 < k < 1, estimators of θ based on a fixed,

finite number of order statistics cannot be improved on. This is not true when

k ≥ 1, the case that mainly interested Peter.

In Hall (1982b), Peter assumed that δ(θ − x) = 0 for θ − ε < x < θ with

ε > 0. Then, conditional on Xn,n−r+1 > θ − ε, when k is known, Peter showed

that the maximum likelihood estimator of θ satisfies

k

n
=

r−1∑
j=1

Xn,n−j+1 −Xn,n−r+1

θ −Xn,n−j+1
, θ > Xnn

and Ĉ = r
/
n(θ̂ −Xn,n−r+1)

k+1. He then studied the asymptotic distribution of

the estimators under the more general model (5.1) with δ(x) = O(x`), ` > 0.

Let m = min{1, `/(k + 1)}. If k > 1, r → ∞ and r/n2m/(2m+1) → 0 as n → ∞,

Hall (1982b) showed that n1/(k+1)r(k−1)/2(k+1)(θ̂ − θ) is asymptotically normal.

He also showed that if k = 1 and r = O(n2m/(2m+1)), then {n log(r)}1/2(θ̂ − θ)
is asymptotically normal. Peter pointed out that there are situations in which

2m/(2m + 1) = 2/3 or 2/(k + 3) so the conditions on r do not require detailed
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knowledge of `. He noted that if we took δ(x) = Dx` + o(x`), we could derive

asymptotic mean squared errors, but he did not present these results because they

depend on C and D so are “of little practical value”. Finally, Peter considered the

case with k > 1 but otherwise unknown. The conditional maximum likelihood

estimators are more complicated than when k is known but Peter showed that the

estimator of θ computed with k unknown has similar properties to that computed

with k known, except that the variance is reduced by k−2. The similarity in the

approach to Hall (1982a) is striking.

One of the interesting features of the problem of estimating the endpoint

for Peter is that it is irregular. Obviously, the endpoint of the distribution is an

unknown parameter. If k > 2, we can differentiate the integral of the likelihood

twice under the integral sign. For 1 < k < 2, we can only differentiate once

under the integral sign so the Fisher information has to be defined in terms of

first rather than second derivatives. For k = 1, we cannot differentiate under the

integral so Peter linked the estimator to the maximum probability estimator and

showed that the maximum likelihood estimators of θ when C is known and C is

unknown have the same asymptotic distributions. i.e. information about C does

not help in estimating θ.

Peter returned to the problem of estimating the endpoint when the shape

parameter is small in Hall and Wang (2005). They formulated the problem in

terms of the lower endpoint, assumed that the observations have density function

f(x) ∼ (x− θ)α−1g(x; θ, ω), θ < x,

where θ is the location parameter representing the endpoint of the distribution,

α is the shape parameter, ω contains parameters other than θ and g converges

to a strictly positive constant as x ↓ θ, and studied the asymptotic properties of

penalized likelihood estimators. Hall and Wang (2005) introduced the penalty

as coming from the prior distribution with density p(θ) = (Xn1 − θ)/(Xn2 − θ).
They interpreted this prior as “informative and empirical” near the smallest

order statistic Xn1 but uninformative elsewhere. Hall and Wang (2005) obtained

asymptotic distributions for the penalized likelihood estimators of θ in the cases

0 < α < 1, 1 ≤ α < 2 and α ≥ 2. They showed, using results from Hall

(1978a,b), that the penalized likelihood estimator achieves the optimal rate of

convergence, Op(n
−1/α), the asymptotic distributions are normal for α ≥ 2 and

much more complicated for α < 2. These results mean that we cannot use normal

approximations or the conventional nonparametric bootstrap for inference about

θ; we can use an m out of n bootstrap or a parametric bootstrap, which Hall
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and Wang preferred because it avoids having to choose m. They noted that the

intervals become more anti-conservative as α increases and recommended using

iterated bootstrap calibration to adjust the coverage of the bootstrap intervals.

Frontiers or boundaries generalise the concept of the endpoint of a distribu-

tion to more than one dimension and, not surprisingly, Peter was interested in

this generalization of endpoint estimation. Frontier estimation is a key part of

productivity analysis of firms. In the context of frontier analysis using longitudi-

nal or panel data, Härdle, Hall and Simar (1995) considered a simple fixed effect

regression model with different intercepts and different variances for each firm in

which the problem of interest is to estimate the maximum intercept. They used

weighted least squares estimates of the regression parameters and the residual

bootstrap with the percentile method to set a confidence interval. They showed

that consistency requires distinct intercepts; if the second largest intercept is close

to the largest, then the coverage of the confidence interval can be poor. Härdle,

Hall and Simar (1995) used the iterated bootstrap to estimate the true coverage

and then found the nominal coverage which gives the desired coverage. They ap-

plied the method to railway data from different countries in which the response is

number of employees per kilometre of network and there are various explanatory

variables. This of course provided an opportunity for Peter to bring together his

two great interests, trains and statistics. Hall, Park and Stern (1998) considered

mostly parametric polynomial frontier estimators but also nonparametric local

polynomial estimators in the two-dimensional case under the assumption that

the data form a Poisson process inside the frontier. A key part of the approach

is obtaining approximations to the asymptotic distributions of the estimators

and then simulating from them to produce Monte Carlo estimates of the bias

which can be used to adjust for bias. The asymptotic approximations involve

joint extreme value distributions. Hall, Park and Stern (1998) also addressed the

problem of constructing simultaneous confidence intervals for the frontier.

Hall and Simar (2002) considered the problem of boundary estimation when

the data are subject to measurement error. In particular, they considered the

problem of estimating the boundary of a distribution from independent data ob-

served with an additive error which has variance σ2. This paper shows how to

reduce the L1 error from O(σ) as σ ↓ 0 to O(σ2) or smaller. The main complica-

tion in the problem is identifiability as the error distribution is usually assumed

to be symmetric, whereas in this context it is most often asymmetric. Hall and

Simar (2002) dealt with this issue by first solving the problem where the den-

sity function is flat approaching its endpoint and the error density is unimodal
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(with known mode at zero) with support extending beyond the endpoint. The

known unique mode together with the assumed flatness ensures identifiability.

They then treated the flat density assumption as approximate as σ ↓ 0. The

endpoint parameter is the argument that maximises the derivative of the density

of the observed data and this leads to a natural kernel estimator. Hall and Simar

(2002) considered both univariate and bivariate cases, explicitly bringing end-

point and frontier estimation together. It is striking that Hall and Simar used

the approach of initially assuming a simple model to hold in order to construct

an estimator and then studying its properties in the more general case that the

model holds only approximately in a limit; this approach runs through much of

Peter’s work on extremes. This paper is also a key paper in Peter’s research on

measurement error and deconvolution. Carroll and Hall (1988) established mini-

max rates of convergence for nonparametric estimators of the density of interest

in the additive measurement error model. According to Delaigle (2016), the very

slow (logarithmic) rate of convergence when the underlying density is normal,

discouraged Peter from working on deconvolution. However, the small variance

(σ ↓ 0) asymptotics applied in Hall and Simar (2002) lead to faster (algebraic)

rates of convergence and this result reinspired Peter’s interest in deconvolution

problems.

6. PhD Supervision

During the period in the early 1980s when Peter was redirecting his research

towards statistical theory, dramatically increasing his productivity and carry-

ing a full teaching load, Peter also began to supervise PhD students. His first

involvement with PhD supervision was with Brenton Clarke who completed in

1980. Brenton was a PhD student of Chip Heathcote but Chip’s health deterio-

rated (he ended up having triple bypass surgery in 1981) and Peter stepped in to

help while Brenton was writing up. I was next and became the first PhD student

Peter listed on his curriculum vitae.

I first met Peter when I came to ANU in late 1981 to meet potential PhD su-

pervisors and discuss potential projects. The PhD in Australia was (and largely

still is) a pure research degree with no coursework so students needed to decide

who they wanted to work with and on what topic either before starting or very

soon thereafter. I thought Chip Heathcote would be a good supervisor so I ap-

plied to the Faculties Department of Statistics and they brought me to Canberra

to meet the faculty members. I had seen Peter present a research seminar at the
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University of Sydney earlier in the year but this was our first meeting. Peter was

tall, had old-fashioned sideburns (shaved off in 1988), and at times a slight stut-

ter (that he later overcame). My memory is that Peter showed me seven or eight

preprints and reprints of his work, at least half of which concerned the law of

the iterated logarithm for various density estimators. The list probably included

Hall (1981a), Peter’s first paper in the Annals of Statistics, Hall (1981b) and the

two statistical papers on extremes Hall (1982a,b) that we have already discussed.

Hall (1981b) is the only paper on the law of the iterated logarithm for density

estimators that I can find in Peter’s curriculum vitae that could have been on

the list (showing the unreliability of memory) but the impression remains strong

and is in some sense correct: I did not realise at that time that Peter was still

very much a probabilist just starting to redirect his research to statistical theory.

I did however find Peter’s papers very mathematical and intimidating.

The ANU was just starting a system in which each PhD student had a super-

vision panel consisting of a supervisor and 2 advisors: Chip was my supervisor

and Peter and Des Nicholls my advisors. I began working with Chip on empirical

characteristic functions, extending work that had been done by Ray Chambers

(during an MSc) and published in Chambers and Heathcote (1981). Chip was

still recovering from his surgery so would come in to work in the morning and then

go home to rest before lunch; in retrospect, what he did was amazing. One of the

key ideas that Chip and Ray had had was that one could choose the argument

of the empirical characteristic function to minimise the asymptotic variance of

the estimator and that this minimising value should be non-zero when the error

distribution is non-normal. Investigating this and then modifying the criterion

a little led to a test for normality and this was the first paper out of my thesis

work (Hall and Welsh (1983)). It was written with Peter rather than Chip which

I think reflects the fact that I had some technical questions which Peter helped

with and perhaps that Chip was not around so much at the time. I did manage

to write two papers with Chip. I was at a bit of a loose end while Chip was going

through the second manuscript, mainly I think because neither he nor I had an

immediate idea of where to take the work next. At this point in 1983, Peter sug-

gested I work with him on regular variation. I must have gained in confidence,

perhaps from sitting in on his course on order statistics, from working with him,

and from getting to know him because I agreed. Effectively, Peter took over

directing me at that point, although Chip remained formally my supervisor.

Chip had given me a copy of Chambers and Heathcote and a preprint of

Csörgő (1983) and suggested extending the paper; Peter gave me a copy of Hall
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(1982a) and Farrell (1972) and suggested that I try to apply Farrell’s argument

to establish minimax rates of convergence for Hill’s estimator. This was inter-

esting and challenging; the result was published in Hall and Welsh (1983). I

was interested in adaptive estimation (a key part of the empirical characteristic

function work when the value of the empirical characteristic function argument

is estimated) so I suggested we do this for the Hill estimator to allow for an es-

timated tuning parameter. This led to Hall and Welsh (1985a). The final paper

at this time that I wrote with Peter (Hall and Welsh (1985b)) arose out of my

robustness interests; we proved a central limit theorem for the median absolute

deviation from the median. The proof used my favourite Bahadur’s representa-

tion rather than Peter’s favourite Rényi’s representation and this later turned

out to be useful for extending this and other results to regression problems. This

was an extremely productive, stimulating time and I learned a great deal from

Peter.

Peter’s supervision style was to treat me as a (not very) junior colleague.

At the start of my PhD he came into my office and said I should subscribe

to Biometrika and join the Institute for Mathematical Statistics, the American

Statistical Association and the Royal Statistical Society as the student rate was

low and I would obtain copies of their journals. (I was already a member of

the Statistical Society of Australia.) I dutifully did so and felt proud to join

the wider statistical community. Peter was available for questions, turned work

around quickly and expected me to get on with the work. He would help with

specific questions but he did not do the work for me (or his other students) and

he was open to my suggestions for problems to work on. Peter would also drop by

to discuss other aspects of his work. Mostly Peter would write out his problem,

solve it himself and then depart, thanking me for having been very helpful! Peter

was keen to write papers as soon as we had enough material and encouraged me

to do so too. I think this was both excellent advice and excellent training. One

day Peter came into my office and said I had done enough work to write up a

thesis and should now do so. This meant writing it out in long hand which took

some time. Peter continued to provide support through the rest of my career

and I am very grateful to him for this.

During my time as a PhD student, Phil Kokic completed a research masters

with Peter on geometric probability while working at the Australian Bureau of

Statistics, and Julian Wightwick came out from England to do a PhD on rates of

convergence in the central limit theorem. The next students were Matt Wand and

Michael Martin. I think Peter’s supervision style suited us all very well, though
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I think some later students found Peter’s high expectations too demanding.

I married at the start of my PhD and my wife and I became friends with

Peter and his wife, Jeannie. They entertained us at their home and we entertained

them in our student flat. Initially, before I bought a car, going to their home

required Peter to come and pick us up and then drop us back afterwards. As

Peter and Jeannie lived at the then southern extremity of Canberra, this was

very kind and generous. I discovered that Peter had a very sweet tooth (a gift

of coconut ice one day may not have even made it home) and that he liked the

soft spreadable walnut cheese that had two bands of walnuts in it that he bought

from The Contented Cow, a cheese shop in Belconnen Shopping Centre.

7. Discussion

We have used the theme of extremes in Peter Hall’s early research, teaching

and PhD supervision to illustrate the period in his career when he was estab-

lishing himself before becoming famous. The recognition and rewards for his

outstanding productivity and wide-ranging contributions were slow to come; nei-

ther the University of Melbourne nor ANU seemed at the time to appreciate the

phenomenon that they had hired. Undoubtedly, this experience left its mark

on Peter. But he did succeed and he continued to succeed spectacularly well

throughout his career.

The focus on Peter’s research has been on early research on extremes so we

have not even covered all of Peter’s research on extremes. Peter also published

three papers with Nader Tajvidi on modelling bivariate extremes and estimating

trends in extremes, in the early 2000s. The marginal distributions of bivariate

extremes must be one of the three classical types of extreme value distribution

but the link between them, the dependence function, can be quite general. Hall

and Tajvidi (2000a) proposed nonparametric estimators of the dependence func-

tion in the bivariate case. One of their estimators modified an earlier proposal

of Pickands (1981); they showed that this estimator and its derivative are both

root-n consistent. Their other estimator used constrained smoothing splines with

the tuning parameter selected by cross validation. Hall and Tajvidi (2004) used

these methods to construct compact and semi-infinite bivariate as well as condi-

tional prediction regions for extremes. They used bootstrap calibration to ensure

correct coverage of the prediction regions. They compared their prediction re-

gions with the prediction regions obtained from six parametric models for the

dependence function to illustrate the advantages of flexibility and simplicity.
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Hall and Tajvidi (2000b) worked on estimating temporal trends when fit-

ting parametric models to extreme values from a weakly dependent time series.

They developed a nonparametric local-likelihood approach with temporal cross-

validation for selecting window width. They applied the method to Swedish wind-

storm data and Victorian temperature data using models with approximately

Pareto, generalized-Pareto, extreme-value or normal marginal distributions and

their own time-varying probability plots to assess goodness of fit. One of the inter-

esting results from the paper relates to the use of normal distributions: in cases

where both location and scale are estimated together, the normal distribution

was shown to have special features that permit it to play what Hall and Tajvidi

described as a universal role as a “nominal” model for the marginal distribution.

By this, they meant that fitting the normal distribution avoids inconsistency if

the model is incorrect and avoids having to compute an initial undersmoothed

mean to compute the variance.

These papers do not fit closely with Peter’s work on regular variation or esti-

mating the endpoint of a distribution but they do fit well with his other research

on nonparametric smoothing and methods for tuning parameter selection. As

mentioned in the introduction, Peter’s research on extremes links in well with

his research in other areas. These and Peter’s other later papers on extremes

are also very different from his early papers; they are clearly in statistics, multi-

authored, longer, and much more attention is paid to motivation. The changes

in the requirements for publication and the way Peter embraced them are clear.

One thing that did not change however, was the drive, exceptional work-ethic

and outstanding productivity that characterised his whole career.
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