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1 Links between likelihood ratio Haar wavelets and the Haar-
Fisz methodology (with numerical examples)

This section compares the likelihood ratio Haar coefficients gj,k, defined in the general,
Poisson and chi-squared cases in formulae (2), (4) and (5) of the main paper, respectively,
to the Fisz coefficients fj,k (Fryzlewicz and Nason, 2004), which the above work defines
as the Haar coefficients dj,k divided by the maximum likelihood estimates of their own
standard deviation under the null hypothesis E(dj,k) = 0. We start with the Poisson case
and note that by Fryzlewicz and Nason (2004), fj,k is then expressed as

fj,k = 2j/2−1
X̄

(k−1)2j+2j−1

(k−1)2j+1
− X̄k2j

(k−1)2j+2j−1+1√
X̄k2j

(k−1)2j+1

.

We first note that sign(gj,k) = sign(fj,k) and that Lemma 3.2, used with f(u) = u log u; f(0) =
0 in the notation of that lemma, reduces to |gj,k| ≥ |fj,k|. Moreover, since the inequality in
Lemma 3.2 arises as a simple application of Jensen’s inequality to the convex function f(·),
it is intuitively apparent that the less convexity in f(·), the closer gj,k will be to fj,k. Noting
that f ′′(u) = u−1 and therefore the degree of convexity in f(u) decreases as u increases,
it can heuristically be observed that gj,k and fj,k should be closer to each other for larger

values of X̄
(k−1)2j+2j−1

(k−1)2j+1
and X̄k2j

(k−1)2j+2j−1+1
(i.e. for high Poisson intensities), and further

apart otherwise.

To illustrate this phenomenon and other interesting similarities and differences between
the Fisz and the likelihood ratio Haar coefficients in the Poisson case, consider the fol-

lowing two numerical examples, in which we simulate 1000 realisations of X̄
(k−1)2j+2j−1

(k−1)2j+1
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and X̄k2j

(k−1)2j+2j−1+1
and compute the corresponding 1000 realisations of {g(i)j,k}

1000
i=1 and

{f (i)j,k}
1000
i=1 .

• j = 2, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) = 10, E(X̄k2j

(k−1)2j+2j−1+1
) = 10.5. As is apparent from

Figure 1, the values of g
(i)
j,k − f

(i)
j,k are close to zero. Figure 2 provides further evidence

that the empirical distributions of f
(i)
j,k and g

(i)
j,k are difficult to distinguish by the

naked eye. Q-q plots (not shown) exhibit good agreement for both g
(i)
j,k and f

(i)
j,k

with the normal distribution, and we have V̂ar(g
(i)
j,k) = 1.06 and V̂ar(f

(i)
j,k) = 1.05,

which provides evidence that both the likelihood ratio Haar coefficients and the Fisz
coefficients achieve good variance stabilization in this high-intensity case.

• j = 2, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) = 0.2, E(X̄k2j

(k−1)2j+2j−1+1
) = 0.7. Figures 3 and 4 demon-

strate that in this low-intensity case, the distributions of f
(i)
j,k and g

(i)
j,k are now further

apart. The Fisz coefficients and the likelihood ratio Haar coefficients seem to be simi-

larly close to the normal distribution, with the empirical skewness and kurtosis for f
(i)
j,k

being 0.39 and 2.52 (respectively) and those for g
(i)
j,k being 0.35 and 2.53 (respectively).

However, the likelihood ratio Haar coefficients achieve far better variance stabilization

in this low-intensity example: we have V̂ar(g
(i)
j,k) = 0.92 versus V̂ar(f

(i)
j,k) = 0.68.
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Figure 1: The Poisson case. His-
togram of the empirical distribu-

tion of {|g(i)j,k| − |f (i)j,k |}
1000
i=1 with

j = 2, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) = 10,

E(X̄k2j

(k−1)2j+2j−1+1
) = 10.5.
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Figure 2: The Poisson case. Box-
plots of the empirical distributions of

{g(i)j,k}
1000
i=1 (left) and {f (i)j,k}

1000
i=1 (right)

with j = 2, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) = 10,

E(X̄k2j

(k−1)2j+2j−1+1
) = 10.5.

We now turn to the chi-squared distribution. The Fisz coefficients for the σ2χ2
1 distribution

are derived in Fryzlewicz et al. (2006), those for the exponential distribution (σ22−1χ2
2)

appear in Fryzlewicz et al. (2008) and the general case σ2m−1χ2
m is covered in Fryzlewicz

(2008). In the general case of the σ2m−1χ2
m distribution, using the notation from the current
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Figure 3: The Poisson case. His-
togram of the empirical distribu-

tion of {|g(i)j,k| − |f (i)j,k |}
1000
i=1 with

j = 2, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) = 0.2,

E(X̄k2j

(k−1)2j+2j−1+1
) = 0.7.
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Figure 4: The Poisson case. Box-
plots of the empirical distributions of

{g(i)j,k}
1000
i=1 (left) and {f (i)j,k}

1000
i=1 (right)

with j = 2, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) = 0.2,

E(X̄k2j

(k−1)2j+2j−1+1
) = 0.7.

paper, the Fisz coefficients fj,k are expressed as

fj,k = 2
j−3

2 m1/2
X̄

(k−1)2j+2j−1

(k−1)2j+1
− X̄k2j

(k−1)2j+2j−1+1

X̄k2j

(k−1)2j+1

. (1)

As in the Poisson case, we obviously have sign(gj,k) = sign(fj,k). Lemma 3.2, used with
f(u) = − log u in the notation of that lemma, reduces to |gj,k| ≥ |fj,k|. Moreover, by the
same convexity argument as in the Poisson case, gj,k and fj,k will be closer to each other

for larger values of X̄
(k−1)2j+2j−1

(k−1)2j+1
and X̄k2j

(k−1)2j+2j−1+1
.

A major difference between the Poisson and the chi-square cases is that in the chi-square
case, fj,k is a compactly supported random variable (see formula (1)), whereas gj,k is not.
This difference does not apply in the Poisson case, in which neither fj,k nor gj,k are com-
pactly supported. This has implications for how quickly fj,k and gj,k approach the normal
distribution (with increasing j or m) in the chi-square case, and we illustrate this numeri-
cally below.

As before, we simulate 1000 realisations of X̄
(k−1)2j+2j−1

(k−1)2j+1
and X̄k2j

(k−1)2j+2j−1+1
and compute

the corresponding 1000 realisations of {g(i)j,k}
1000
i=1 and {f (i)j,k}

1000
i=1 . We consider the following

four cases.

• m = 1, j = 2, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) = 10, E(X̄k2j

(k−1)2j+2j−1+1
) = 10.5. In this case,

the likelihood ratio Haar coefficients provide far better variance stabilization and

normalization than the Fisz coefficients. For f
(i)
j,k , we have the following empirical

values: variance 0.67, skewness 0.03, kurtosis 1.81. For g
(i)
j,k, we have variance 1.29,

skewness 0.03, kurtosis 3.06. Figure 5 confirms the superiority of the likelihood ratio
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Haar coefficients over the Fisz coefficients as regards their closeness to the normal
distribution.

• m = 1, j = 2, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) = 0.2, E(X̄k2j

(k−1)2j+2j−1+1
) = 0.7. This low-sigma case

differs from the previous one mainly in that both the likelihood ratio Haar coefficients
and the Fisz coefficients are skewed to the right, although the Fisz coefficients (much)

more so. For f
(i)
j,k , we have the following empirical values: variance 0.59, skewness 0.89,

kurtosis 2.70. For g
(i)
j,k, we have variance 1.23, skewness 0.46, kurtosis 3.1. Figure 6

provides further visual evidence of the higher degree of symmetry in the likelihood
ratio Haar coefficients and its closeness to the normal distribution.

• m = 2, j = 2, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) = 10, E(X̄k2j

(k−1)2j+2j−1+1
) = 10.5. As m increases,

both the likelihood ratio Haar coefficients and the Fisz coefficients move closer towards
variance-one normality, although again the likelihood ratio Haar coefficients beat Fisz.

For f
(i)
j,k , we have the following empirical values: variance 0.81, skewness 0.05, kurtosis

2.19. For g
(i)
j,k, we have variance 1.16, skewness 0.03, kurtosis 2.97. Figure 7 shows

both empirical distributions.

• m = 2, j = 2, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) = 0.2, E(X̄k2j

(k−1)2j+2j−1+1
) = 0.7. In this low-sigma

case also, the likelihood ratio Haar coefficients appear to be far closer to variance-one

normality than the Fisz coefficients. For f
(i)
j,k , we have the following empirical values:

variance 0.57, skewness 1.15, kurtosis 4.08. For g
(i)
j,k, we have variance 1.04, skewness

0.45, kurtosis 3.64. Figure 8 shows both empirical distributions.
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Figure 5: The chi-squared case. Boxplots

of the empirical distributions of {g(i)j,k}
1000
i=1

(left) and {f (i)j,k}
1000
i=1 (right) with m =

1, j = 2, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) = 10,

E(X̄k2j

(k−1)2j+2j−1+1
) = 10.5.
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Figure 6: The chi-squared case. Boxplots

of the empirical distributions of {g(i)j,k}
1000
i=1

(left) and {f (i)j,k}
1000
i=1 (right) with m =

1, j = 2, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) = 0.2,

E(X̄k2j

(k−1)2j+2j−1+1
) = 0.7.

Overall, our empirical observations from the above (and other unreported) numerical ex-
ercises are as follows. For fine scales (i.e. those for which j is small) and for low degrees
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Figure 7: The chi-squared case. Boxplots

of the empirical distributions of {g(i)j,k}
1000
i=1

(left) and {f (i)j,k}
1000
i=1 (right) with m =

2, j = 2, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) = 10,

E(X̄k2j

(k−1)2j+2j−1+1
) = 10.5.
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Figure 8: The chi-squared case. Boxplots

of the empirical distributions of {g(i)j,k}
1000
i=1

(left) and {f (i)j,k}
1000
i=1 (right) with m =

2, j = 2, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) = 0.2,

E(X̄k2j

(k−1)2j+2j−1+1
) = 0.7.

of freedom m, the likelihood ratio Haar coefficients are much closer to a normal variable
with variance one than the corresponding Fisz coefficients. From the properties of the chi-
squared distribution, the effect of increasing j while keeping m constant is similar to the
effect of increasing m while keeping j constant. As m or j increases, the likelihood ratio
Haar coefficients appear to move closer to the normal distribution with variance one. How-

ever, for the same to happen with Fisz coefficients, the two means, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) and

E(X̄k2j

(k−1)2j+2j−1+1
), need to be relatively close to each other. The latter phenomenon can

also be observed in the Poisson case for increasing j. This is not unexpected as the results
from Fisz (1955) suggest that the asymptotic normality with variance one arises when the
two means approach each other asymptotically; no results are provided in Fisz (1955) on
the case in which the two means diverge.

We end this section with an interesting interpretation of Lemmas 3.2 and 3.4 in the case of
the Poisson distribution. Note that together, they imply

2j/2−1

∣∣∣X̄(k−1)2j+2j−1

(k−1)2j+1
− X̄k2j

(k−1)2j+2j−1+1

∣∣∣√
2

1

X̄
(k−1)2j+2j−1

(k−1)2j+1

+ 1

X̄k2j

(k−1)2j+2j−1+1

≥ |gj,k| ≥ 2j/2−1

∣∣∣X̄(k−1)2j+2j−1

(k−1)2j+1
− X̄k2j

(k−1)2j+2j−1+1

∣∣∣√
1
2

(
X̄

(k−1)2j+2j−1

(k−1)2j+1
+ X̄k2j

(k−1)2j+2j−1+1

) ,

on in other words, the magnitude of the likelihood ratio Haar coefficient is bounded from
below by the magnitude of the corresponding Fisz coefficient and from above by the magni-
tude of a “Fisz-like” coefficient in which the arithmetic mean in the denominator has been
replaced by the harmonic mean.
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2 Invertibility of the likelihood Haar transform

Inverting the standard Haar transform proceeds by transforming each pair of coefficients
(sj,k, dj,k) into (sj−1,2k−1, sj−1,2k), hierarchically for j = J, . . . , 1 (note that s0,k = Xk).
Similarly, to demonstrate that the likelihood Haar transform is invertible, we need to show
that it is possible to transform (sj,k, gj,k) into (sj−1,2k−1, sj−1,2k).

We first show the invertibility of the Poisson likelihood ratio Haar transform. Denoting for

brevity u = X̄
(k−1)2j+2j−1

(k−1)2j+1
, v = X̄k2j

(k−1)2j+2j−1+1
and ignoring some multiplicative constants

and the square-root operation in gj,k, which are irrelevant for invertibility, this amounts to
showing that (u, v) can be uniquely determined from (u + v)/2 and sign(u − v){u log u +
v log v − (u + v) log((u + v)/2)}. The term sign(u − v) determines whether u ≤ v or vice
versa, so assume that u ≤ v w.l.o.g. Denoting by a the known value of u+ v, observe that
the function (a − v) log(a − v) + v log v is strictly increasing for v ∈ [a/2, a], which means
that v can be determined uniquely and therefore that the Poisson likelihood ratio Haar
transform is invertible.

We now show the invertibility of the chi-squared likelihood ratio Haar transform. We denote

u = X̄
(k−1)2j+2j−1

(k−1)2j+1
, v = X̄k2j

(k−1)2j+2j−1+1
and ignore some multiplicative constants and the

square-root operation in gj,k which are irrelevant for invertibility. Assume that u ≤ v w.l.o.g.
Denoting by a the known value of u + v, observe that the function − log(a − v) − log v is
strictly increasing for v ∈ [a/2, a), which means that v can be determined uniquely and
therefore that the chi-squared likelihood ratio Haar transform is invertible.

3 Technical results including proof of Theorem 4.1 from the
main paper

Lemma 3.1 Let function f : [u, v] → R be such that f ′ is continuous on [u, v] and f
′′

is
continuous on (u, v). There exists a point ξ ∈ (u, v) such that

f(u)− 2f

(
u+ v

2

)
+ f(v) =

(u− v)2

4
f
′′
(ξ).

Proof. Let z = (u+ v)/2 and δ = (v − u)/2, then

f(u)− 2f

(
u+ v

2

)
+ f(v) = f(z − δ)− 2f(z) + f(z + δ).

Defining g(x) = f(z − x)− 2f(z) + f(z + x), Taylor’s theorem yields

g(δ) = g(0) + δg′(0) +
δ2

2
g′′(ξ′) =

δ2

2
g′′(ξ′) =

δ2

2
{f ′′(z + ξ′) + f ′′(z − ξ′)}, (2)

where ξ′ ∈ (0, δ). By the intermediate value theorem, there exists a ξ ∈ (z−ξ′, z+ξ′) ⊂ [u, v]
such that {f ′′(z + ξ′) + f ′′(z − ξ′)}/2 = f ′′(ξ), which by (2) completes the result.

Lemma 3.2 Let function f : [u, v] → R be such that f ′ is continuous on [u, v] and f
′′

is
convex on (u, v). Then

f(u)− 2f

(
u+ v

2

)
+ f(v) ≥ (u− v)2

4
f
′′
(
u+ v

2

)
.
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Proof. Straightforward from the convexity of f ′′ and (2).

Lemma 3.3 Let function f : [u, v] → R be such that f ′ is continuous on [u, v] and f
′′

is
nonincreasing on [u, v). Then

f(u)− 2f

(
u+ v

2

)
+ f(v) ≤ (u− v)2

8

{
f ′′
(
u+ v

2

)
+ f ′′(u)

}
.

Proof. Straightforward from (2) and the fact that f ′′ is nonincreasing on [u, v).

Lemma 3.4 Let function f : [u, v] → R be such that f ′ is continuous on [u, v] and f
′′

is
convex on [u, v]. Then

f(u)− 2f

(
u+ v

2

)
+ f(v) ≤ (u− v)2

8

{
f ′′(v) + f ′′(u)

}
.

Proof. Straightforward from the convexity of f ′′ and (2).

Lemma 3.5 The Poisson distribution satisfies Cramer’s conditions.

Proof. The Poisson distribution is log-concave, and Schudy and Sviridenko (2011), Lemma
7.4, show that all log-concave random variables Z are central moment bounded with real
parameter L > 0, that is, satisfy for any integer i ≥ 1,

E|Z − E(Z)|i ≤ i LE|Z − E(Z)|i−1.

Moreover, again by Schudy and Sviridenko (2011), Lemma 7.5, we have

L = 1 + max(E(|Z − E(Z)| | Z ≥ E(Z)), E(|Z − E(Z)| | Z < E(Z))),

which for the Pois(λ) distribution gives L = O(λ1/2). But

E|Z − E(Z)|i ≤ i LE|Z − E(Z)|i−1

≤ i!Li−2E(Z − E(Z))2,

which completes the proof of the lemma.

Proof of Theorem 4.1 from the main paper.

We first show that P (A ∩ B)→ 1. We have

P (Ac) ≤
J∑

j=J0+1

2J−j∑
k=1

P ((λ̄k2
j

(k−1)2j+1)
−1/2|dj,k − µj,k| ≥ t1). (3)

Since by Lemma 3.5, the Poisson distribution satisfies Cramer’s conditions, Λ is bounded
from above and away from zero, and 2J0 = O(nβ) for β ∈ (0, 1), the strong asymptotic
normality from the Corollary underneath the proof of Theorem 1 in Rudzkis et al. (1978)
can be used, which in our context implies that if t1 = O(log1/2 n), then

P ((λ̄k2
j

(k−1)2j+1)
−1/2|dj,k − µj,k| ≥ t1) ≤ CΦ(t1), (4)
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where Φ(·) is the cdf of the standard normal distribution and C is a universal constant.
Using (4), Mills’ ratio inequality and the fact that t1 = C1 log1/2 n, we bound (3) from
above by C̃ log−1/2 n n1−β−C

2
1/2, where C̃ is a constant, which proves that P (A)→ 1. The

proof that P (B)→ 1 is identical.

We now turn to the estimator. Due to the orthonormality of the Haar transform, we have

n−1‖Λ̂− Λ‖2 = n−1
J∑
j=1

2J−j∑
k=1

(µ̂j,k − µj,k)2 + n−1(sJ,1 − λ̃)2, (5)

where λ̃ = n−1/2
∑n

k=1 λk.

We first consider scales j = 1, . . . , J0, for which µ̂j,k = 0. At each scale j, there are at
most N indices k for which µj,k 6= 0. From the definition of dj,k, for those µj,k, we have
µj,k ≤ 2j/2−1Λ′, which gives

J0∑
j=1

2J−j∑
k=1

(µ̂j,k − µj,k)2 ≤ N(Λ′)2
J0∑
j=1

2j−2 = N(Λ′)2(2J0−1 − 1

2
). (6)

We now consider the remaining scales j = J0 + 1, . . . , J and first take an arbitrary index
(j, k) for which λi is not constant for i = (k − 1)2j + 1, . . . , k2j . For such a (j, k), we have
(using Lemma 3.2 in the second inequality)

(µ̂j,k − µj,k)2 = (dj,kI(|gj,k| > t)− µj,k)2

≤ 2d2j,kI(|gj,k| ≤ t) + 2(dj,k − µj,k)2

≤ 2d2j,kI(|dj,k| ≤ t(X̄k2j

(k−1)2j+1)
1/2) + 2(dj,k − µj,k)2

≤ 2t2X̄k2j

(k−1)2j+1 + 2(dj,k − µj,k)2

≤ 2t2(λ̄k2
j

(k−1)2j+1 + t22
−j/2(λ̄k2

j

(k−1)2j+1)
1/2) + 2t21λ̄

k2j

(k−1)2j+1.

Summing the bound over the at most N indices k within each scale for which λi is not
constant for i = (k − 1)2j + 1, . . . , k2j , as well as over scales j = J0 + 1, . . . , J , and noting
that λ̄k2

j

(k−1)2j+1
≤ Λ̄, gives the upper bound of

2N Λ̄1/2
{

(J − J0)(t2 + t21)Λ̄
1/2 + t2t2(1 + 2−1/2)2

−J0+1
2

}
. (7)

We finally consider again the scales j = J0 + 1, . . . , J and those indices (j, k) for which λi is
constant for i = (k− 1)2j + 1, . . . , k2j , which implies µj,k = 0. For each such (j, k), we have

(µ̂j,k)
2 = d2j,kI(|gj,k| > t).

Consider the following sequence of inequalities, with the first one being implied by Lemma
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3.4, and the second using the fact that λ̄
(k−1)2j+2j−1

(k−1)2j+1
= λ̄k2

j

(k−1)2j+2j−1+1
= λ̄k2

j

(k−1)2j+1
.

|gj,k| > t ⇒ |dj,k|2−1/2
∣∣∣∣∣∣ 1

X̄
(k−1)2j+2j−1

(k−1)2j+1

+
1

X̄k2j

(k−1)2j+2j−1+1

∣∣∣∣∣∣
1/2

> t

⇒
|dj,k|

(λ̄k2
j

(k−1)2j+1
− δ)1/2

> t ∨ |X̄(k−1)2j+2j−1

(k−1)2j+1
− λ̄(k−1)2

j+2j−1

(k−1)2j+1
| ≥ δ

∨ |X̄k2j

(k−1)2j+2j−1+1 − λ̄
k2j

(k−1)2j+2j−1+1| ≥ δ

⇔
|dj,k|

(λ̄k2
j

(k−1)2j+1
)1/2

> t

(
1− δ

λ̄k2
j

(k−1)2j+1

)1/2

∨ 2j/2(λ̄
(k−1)2j+2j−1

(k−1)2j+1
)−1/2|X̄(k−1)2j+2j−1

(k−1)2j+1
− λ̄(k−1)2

j+2j−1

(k−1)2j+1
| ≥ δ2j/2(λ̄(k−1)2

j+2j−1

(k−1)2j+1
)−1/2

∨ 2j/2(λ̄k2
j

(k−1)2j+2j−1+1)
−1/2|X̄k2j

(k−1)2j+2j−1+1 − λ̄
k2j

(k−1)2j+2j−1+1| ≥

δ2j/2(λ̄k2
j

(k−1)2j+2j−1+1)
−1/2. (8)

Let us set δ = t22
−j/2(λ̄k2

j

(k−1)2j+1
)1/2, then if

t1 ≤ t(1− t22−j/2(λ̄k2
j

(k−1)2j+1)
−1/2)1/2, (9)

then the right-hand side of the implication (8) is negated on A ∩ B, which implies that so
is the left-hand side, and therefore µ̂j,k = 0. Note (9) is satisfied if (6) from the main paper
holds.

Putting together (6) and (7) and noting that n−1(sJ,1− λ̃)2 ≤ n−1t21λ̄n1 on A, we bound (5)
by

1

2
n−1N(Λ′)2(nβ−1)+2n−1N Λ̄1/2

{
(J − J0)(t2 + t21)Λ̄

1/2 + t2t2(2 + 21/2)n−β/2
}

+n−1t21λ̄
n
1

on condition that (6) from the main paper holds, which completes the proof.
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