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Abstract: We propose a methodology for denoising, variance-stabilizing, and nor-

malizing signals whose varying mean and variance are linked via a single parameter,

such as Poisson or scaled chi-squared. Our key observation is that the signed and

square-rooted generalized log-likelihood ratio test for the equality of the local means

is approximately distributed as standard normal under the null. We use these test

statistics within the Haar wavelet transform at each scale and location, referring to

them as the likelihood ratio Haar (LRH) coefficients of the data. In the denoising

algorithm, the LRH coefficients are used as thresholding decision statistics, which

enables the use of thresholds suitable for i.i.d. Gaussian noise. In the variance-

stabilizing and normalizing algorithm, the LRH coefficients replace the standard

Haar coefficients in the Haar basis expansion. We prove the consistency of our

LRH smoother for Poisson counts with a near-parametric rate, and various numer-

ical experiments demonstrate the good practical performance of our methodology.

Key words and phrases: Anscombe transform, Box-Cox transform, Gaussianization,

Haar-Fisz, log transform, variance-stabilizing transform.

1. Introduction

The popularity of wavelets and their potential for useful applications in data

science did not escape the attention of Peter Hall, who wrote, amongst others, on

threshold choice in wavelet curve estimation (Hall and Patil (1996b,a)), wavelet

methods for functions with many discontinuities (Hall, McKay and Turlach (1996)),

wavelets for regression with irregular design (Hall and Turlach (1997)) and block-

thresholded wavelet estimators (Hall, Kerkyacharian and Picard (1999)). I learned

of Peter through wavelets by reading some of his papers on the topic during my

doctoral study. I remember my surprise at discovering that both my then PhD su-

pervisor, Guy Nason, and someone else I knew, Prakash Patil, had co-authored

papers with Peter Hall. When I shared my surprise with Guy, he responded

by saying that he did not know many people who were not Peter’s co-authors!

https://doi.org/10.5705/ss.202017.0029
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Even though I can unfortunately count myself in this “minority” category, I have

learned and am still learning a great deal from Peter, especially by appreciat-

ing the careful and elegant way in which he used mathematics to support his

arguments.

Traditional wavelet transformations are orthonormal transformations of the

input data into coefficients that carry information about the local behaviour

of the data at a range of dyadic scales and locations. They tend to offer sparse

representation of the input data, with a small number of wavelet coefficients often

being able to encode much of the energy of the input signal, and are computable

and invertible in linear time via recursive pyramid algorithms (Mallat (1989);

Daubechies (1992)). Reviews of the use of wavelets in statistics can be found, for

example, in Vidakovic (1999) and Nason (2008). One canonical task facilitated

by wavelets is the removal of noise from signals, which usually proceeds by taking

a wavelet transform of the data, thresholding away the (typically many) wavelet

coefficients that are small in magnitude, preserving those few that are large in

magnitude, and taking the inverse wavelet transform. Since the seminal paper

by Donoho and Johnstone (1994) in which the general idea was first proposed,

several other methods for wavelet smoothing of one-dimensional signals have

appeared, but the vast majority make the i.i.d. Gaussian noise assumption. By

contrast, the focus of this article is the treatment of signals in which the variance

of the noise is a function of its mean; this includes Poisson- or scaled-chi-squared-

distributed signals. (Throughout the paper, we refer to a distribution as a ‘scaled

chi-squared’, or simply ‘chi-squared’, if it takes the form σ2m−1χ2
m.)

The simplest example of a wavelet transform, and the focus of this article,

is the Haar transform, which can be described as a sequence of symmetric scaled

differences of consecutive local means of the data, computed at dyadic scales and

locations and naturally forming a binary tree consisting of ‘parents’ and ‘chil-

dren’. Its local difference mechanism means that it offers sparse representations

for (approximately) piecewise-constant signals. Our starting point is the obser-

vation that testing whether or not each Haar coefficient of a signal exceeds a

certain threshold (in the denoising task described above) can be interpreted as

the likelihood ratio test for the equality of the corresponding local means of the

signal in the i.i.d. Gaussian noise model. In this paper, we take this observation

further and propose similar multiscale likelihood ratio tests for other distribu-

tions, most notably those in which the variance is a function of the mean, such

as Poisson or scaled chi-squared. The proposed multiscale likelihood ratio tests

reduce to the traditional thresholding of Haar wavelet coefficients for Gaussian
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data, but take entirely new forms for other distributions. This leads to a new,

unified class of algorithms useful for problems such as e.g. Poisson intensity es-

timation, Poisson image denoising, spectral density estimation in time series, or

time-varying volatility estimation in finance. (Extension of our methodology to

images is as straightforward as the extension of the standard one-dimensional

Haar wavelet transform to two dimensions.)

The new multiscale likelihood ratio tests naturally induce a new construction,

likelihood ratio (Haar) wavelets, which have the benefit of producing (equivalents

of) Haar wavelet coefficients that are asymptotically standard normal under the

null hypothesis of the corresponding local means being equal, even for inhomoge-

neous non-Gaussian signals. This makes it much easier to choose a single thresh-

old parameter in smoothing these kinds of data, and serves as a basis for new

normalizing transformations for these kinds of data that bring their distribution

close to Gaussianity. We demonstrate both these phenomena. The device that

enables these results is Wilks’ theorem, according to which the signed square-

rooted likelihood ratio statistic is often approximately distributed as standard

normal, a fact that, we believe, has not been explored in a variance-stabilization

context before.

Wavelet-based Poisson noise removal, with or without the use of a variance-

stabilizing and/or normalizing transform, has a long history. For a Poisson vari-

able X, the Anscombe (1948) transform 2(X + 3/8)1/2 brings its distribution

to approximate normality with variance one. Donoho (1993) proposes to pre-

process Poisson data via the Anscombe transform, and then use wavelet-based

smoothing techniques suitable for i.i.d. Gaussian noise. This and a number of

other wavelet-based techniques for denoising Poisson-contaminated signals are

reviewed and compared in Besbeas, De Feis and Sapatinas (2004). These include

the translation-invariant multiscale Bayesian techniques by Kolaczyk (1999a) and

Timmermann and Nowak (1997, 1999), shown to outperform earlier techniques

in Kolaczyk (1997, 1999b) and Nowak and Baraniuk (1999). Willett and Nowak

(2003) propose the use of “platelets” in Poisson image denoising. The Haar-Fisz

methodology of Fryzlewicz and Nason (2004), drawing inspiration from earlier

work by Fisz (1955) outside the wavelet context, proceeds by decomposing the

Poisson data via the standard Haar transform, then variance-stabilizing the Haar

coefficients by dividing them by the MLE of their own standard deviation, and

then using thresholds suitable for i.i.d. Gaussian noise with variance one. Closely

related ideas appear in Luisier et al. (2010) and Reynaud-Bouret and Rivoirard

(2010). Jansen (2006) extends the Haar-Fisz idea to other wavelets. As an alter-
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native to Anscombe’s transform, which is known not to work well for low Poisson

intensities, Zhang, Fadili and Starck (2008) introduce a more involved square-

root-type variance-stabilizing transform for (filtered) Poisson data. Hirakawa and

Wolfe (2012) propose Bayesian Haar-based shrinkage for Poisson signals based

on the exact distribution of the difference of two Poisson variates (the Skellam

distribution).

In multiplicative set-ups, such as signals distrubuted as Xk = σ2km
−1χ2

m, the

logarithmic transform stabilizes the variance exactly, but does not bring the dis-

tribution of the transformed Xk close to normality, especially not for small values

of m such as 1 or 2. In the context of spectral density estimation in time series,

in which the signal is approximately exponentially distributed, wavelet shrinkage

for the logged (and hence variance-stabilized) periodogram is studied, amongst

others, in Moulin (1994), Gao (1997), Pensky, Vidakovic and De Canditis (2007)

and Freyermuth, Ombao and von Sachs (2010). An alternative route, via pre-

estimation of the variance of the wavelet coefficients (rather than via variance

stabilization) is taken in Neumann (1996). Haar-Fisz or wavelet-Fisz estimation

for the periodogram or other (approximate) chi-squared models is developed in

Fryzlewicz, Sapatinas and Subba Rao (2006), Fryzlewicz and Nason (2006) and

Fryzlewicz, Nason and von Sachs (2008). In more general settings, wavelet esti-

mation for exponential families with quadratic or cubic variance functions is con-

sidered in Antoniadis and Sapatinas (2001), Antoniadis, Besbeas and Sapatinas

(2001) and Brown, Cai and Zhou (2010). The Haar-Fisz or wavelet-Fisz transfor-

mations for unknown distributions are studied in Fryzlewicz (2008), Fryzlewicz,

Delouille and Nason (2007), Motakis et al. (2006) and Nason (2014). Variance-

stabilizing transformations are reviewed in the (unpublished) manuscript by Foi

(2009).

Our approach departs from the existing literature in that our variance-

stabilization and normalization device does not involve either the pre-estimation

of the variance (as, effectively, in the Haar-Fisz transform) or the application of

a Box-Cox-type transform (as in the Anscombe variance stabilization for Poisson

data or the logarithmic transform in multiplicative models). By contrast, we use

the entire likelihood for the purpose of variance-stabilization and normalization.

As a result, the thresholding decision in our proposed smoothing methodology

is not based on the usual wavelet detail coefficients, but on the newly-proposed

likelihood ratio Haar coefficients. For completeness, we mention that Kolaczyk

and Nowak (2004) construct multiscale decompositions of the Poisson likelihood,

which leads them to consider binomial likelihood ratio tests for the purpose of
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thresholding; however, this is done in a context that does not use the signed

and square-rooted generalized log-likelihood ratio tests or utilize their variance-

stabilizing or normalizing properties.

The paper is organized as follows. Section 2 motivates and introduces the

concept of likelihood ratio Haar coefficients and outlines our general methodology

for smoothing and variance stabilization/normalization. Section 3 describes our

method in two special cases, those of the Poisson and the scaled chi-squared dis-

tribution. Section 4 formulates and discusses a consistency result for the Poisson

smoother. Section 5 provides a numerical study illustrating the practical perfor-

mance of our smoothing and variance stabilization/normalization algorithms.

2. General Methodology

Let X1, . . . , Xn be a sequence of independent univariate random variables

such that Xk ∼ F (θk), where F (θ) is a family of distributions parameterized

by a scalar parameter θ such that E(Xk) = θk. Our two running examples

are: Xk ∼ Pois(λk), and Xk ∼ σ2km
−1χ2

m (throughout the paper, we refer to

the latter example as ‘scaled chi-squared’ or simply ‘chi-squared’). Extensions to

higher-dimensional parameters are possible, but certain aspects of the asymptotic

normality are then lost.

We recall the traditional Haar transform and the fundamentals of signal

smoothing via (Haar) wavelet thresholding. In the following, we assume that

n = 2J , where J is an integer. Extensions to non-dyadic n are possible, see

e.g. Wickerhauser (1994). Given the input data X = (X1, . . . , Xn), we define

s0 = (s0,1, . . . , s0,n) = X. The Haar transform recursively performs the steps

sj,k = 2−1/2(sj−1,2k−1 + sj−1,2k), dj,k = 2−1/2(sj−1,2k−1 − sj−1,2k), (2.1)

for j = 1, . . . , J and k = 1, . . . , 2J−j . The indices j and k are thought of as

“scale” and “location” parameters, respectively, and the coefficients sj,k and dj,k
as the “smooth” and “detail” coefficients (respectively) at scale j, location k. It

is easy to express sj,k and dj,k as explicit functions of X:

sj,k = 2−j/2
k2j∑

i=(k−1)2j+1

Xi, dj,k = 2−j/2

(k−1)2j+2j−1∑
i=(k−1)2j+1

Xi −
k2j∑

i=(k−1)2j+2j−1+1

Xi

 .

Defining dj = (dj,k)
2J−j

k=1 , the Haar transform H of X is H(X) = (d1, . . . ,dJ , sJ,1).

The “pyramid” algorithm at (2.1) enables the computation of H(X) in O(n)

operations. H(X) is an orthonormal transform of X and can be inverted by

undoing (2.1). If the mean signal Θ = (θ1, . . . , θn) is piecewise-constant, then
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those coefficients dj,k that correspond to the locally constant segments of Θ are

zero-centered. This justifies a procedure for estimating the mean vector Θ: take

the Haar transform of X, retain those coefficients dj,k for which |dj,k| > t for

a certain threshold t and set the others to zero, then take the inverse Haar

transform of the thus-“hard”-thresholded vector. In the i.i.d. Gaussian noise

model, in which Xk = θk + εk, where ε ∼ N(0, σ2) with σ2 assumed known, the

operation |dj,k| > t is the likelihood ratio test for the local constancy of Θ in the

following sense.

1. Assume (θu)
(k−1)2j+2j−1

u=(k−1)2j+1 = θ(1) for all u, and (θv)
k2j

v=(k−1)2j+2j−1+1 = θ(2) for

all v. The indices u (respectively v) are the same as those corresponding to

the Xu’s (Xv’s) with positive (negative) weights in dj,k.

2. Test H0 : θ(1) = θ(2) against H1 : θ(1) 6= θ(2); the Gaussian likelihood

ratio test reduces to |dj,k| > t, where t is naturally related to the desired

significance level. H0 can alternatively be phrased as E(dj,k) = 0, and H1

as E(dj,k) 6= 0.

Because under each H0, the variable dj,k is distributed as N(0, σ2) due to the

orthonormality of the Haar transform, the same t can meaningfully be used across

different scales and locations (j, k).

In models other than Gaussian, the operation |dj,k| > t can typically no

longer be interpreted as the likelihood ratio test for the equality of θ(1) and θ(2).

Moreover, the distribution of dj,k is not generally the same under each H0 but

will, in many models, vary with the local (unknown) parameters (θi)
k2j

i=(k−1)2j+1,

which makes the selection of t in the operation |dj,k| > t challenging. This is, for

example, the case in our running examples, Xk ∼ Pois(λk) and Xk ∼ σ2km−1χ2
m,

both of which are such that Var(Xk) is a non-trivial function of E(Xk), which

translates into the dependence of dj,k on the local means vector (θi)
k2j

i=(k−1)2j+1,

even under the null hypothesis E(dj,k) = 0.

In the (non-Gaussian) model under consideration, our proposal is to rem-

edy this by replacing the operation |dj,k| > t with a likelihood ratio test for

H0 : θ(1) = θ(2) against H1 : θ(1) 6= θ(2) suitable for the distribution at hand.

More specifically, denoting by L(θ |Xk1 , . . . , Xk2) the likelihood of the constant

parameter θ given the data Xk1 , . . . , Xk2 , and by θ̂(1), θ̂(2) the MLEs of θ(1), θ(2),

respectively, we design a new Haar-like transform, in which we replace the “test

statistic” dj,k by
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gj,k = sign
(
θ̂(1) − θ̂(2)

)2 log

supθ(1) L(θ(1) |X(k−1)2j+1, . . . , X(k−1)2j+2j−1)

supθ(2) L(θ(2) |X(k−1)2j+2j−1+1, . . . , Xk2j )

supθ L(θ |X(k−1)2j+1, . . . , Xk2j )


1/2

,

(2.2)

the signed and square-rooted generalized log-likelihood ratio statistic for testing

H0 against H1. The rationale is that by Wilks’ theorem, under H0, this quan-

tity is asymptotically distributed as N(0, 1) for a class of models that includes,

amongst others, our two running examples. We refer to gj,k as the likelihood ratio

Haar coefficient of X at scale j and location k. By performing this replacement,

we tailor-make a new Haar transform suitable for the distribution of the input

vector.

2.1. General methodology for smoothing

We now outline the general methodology for signal smoothing (denoising)

involving likelihood ratio Haar wavelets. The problem is to estimate Θ from

X. Let I be the indicator function. The basic smoothing algorithm proceeds as

follows.

1. With X on input, compute the coefficients sj,k, dj,k, and gj,k as defined by

(2.1) and (2.2).

2. Estimate each µj,k := E(dj,k) by

µ̂j,k =

{
0 j = 1, . . . , J0,

dj,kI(|gj,k| > t) j = J0 + 1, . . . , J.
(2.3)

3. Defining µ̂j = (µ̂j,k)
2J−j

k=1 , compute the inverse Haar transform of the vector

(µ̂1, . . . , µ̂J , sJ,1) and use it as the estimate Θ̂ of Θ.

We set µ̂j,k = 0 at the finest scales because of a certain strong asymptotic nor-

mality argument; see the proof of Theorem 1. This theorem also specifies the

permitted magnitude of J0. The operation in the second line of (2.3) is referred

to as hard thresholding; soft thresholding, in which the surviving coefficients are

shrunk towards zero, is also possible. The threshold t is a tuning parameter of

the procedure and we discuss its selection later. The above algorithm differs from

the standard smoothing using Haar wavelets in that we use gj,k, rather than dj,k,

as the thresholding statistic.
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2.2. General methodology for variance stabilization and normalization

Due to the fact that gj,k will typically be distributed as close to N(0, 1) under

each H0 (that is, for the majority of scales j and locations k), replacing the

coefficients dj,k with gj,k can be viewed as “normalizing” or “Gaussianizing” the

input signal in the Haar wavelet domain. The standard inverse Haar transform

will then yield a normalized version of the input signal. We outline the basic

algorithm.

1. With X on input, compute the coefficients sj,k and gj,k as defined by (2.1)

and (2.2).

2. Defining gj = (gj,k)
2J−j

k=1 , compute the inverse Haar transform of the vector

(g1, . . . ,gJ , sJ,1) and denote the resulting vector by G(X).

Throughout the paper, we refer to G(X) as the likelihood ratio Haar transform

of X. In the online supplement, we show that the likelihood Haar transform is

invertible, at least in the Poisson and chi-squared cases. An invertible variance-

stabilization transformation such as G(X) is useful as it enables the smoothing

of X in a modular way: (i) apply G(X), (ii) use any smoother suitable for i.i.d.

standard normal noise, (iii) take the inverse of G(X) to obtain a smoothed version

of X.

3. Specific Examples: Poisson and Chi-Squared

ForXi ∼ Pois(λ), we have P (Xi = k) = exp(−λ)(λk/k!) for k = 0, 1, . . . , and

if Xs, . . . , Xe ∼ Pois(λ), then the MLE λ̂ of λ is X̄e
s = {1/(e− s+ 1)}

∑e
i=sXi.

This, after straightforward algebra, leads to

gj,k = sign
(
X̄

(k−1)2j+2j−1

(k−1)2j+1 − X̄k2j

(k−1)2j+2j−1+1

)
2j/2

×
{

log
(
X̄

(k−1)2j+2j−1

(k−1)2j+1

)
X̄

(k−1)2j+2j−1

(k−1)2j+1

+ log
(
X̄k2j

(k−1)2j+2j−1+1

)
X̄k2j

(k−1)2j+2j−1+1

− 2 log
(
X̄k2j

(k−1)2j+1

)
X̄k2j

(k−1)2j+1

}1/2
, (3.1)

using the convention 0 log 0 = 0. For Xi ∼ σ2im
−1χ2

m = Γ(m/2,m/(2σ2i )), if

Xs, . . . , Xe ∼ Γ(m/2,m/(2σ2)), then the MLE σ̂2 of σ2 is X̄e
s = {1/(e− s+ 1)}∑e

i=sXi. This gives

gj,k = sign
(
X̄

(k−1)2j+2j−1

(k−1)2j+1 − X̄k2j

(k−1)2j+2j−1+1

)
2j/2
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×
[
m

{
log
(
X̄k2j

(k−1)2j+1

)
− 1

2
log
(
X̄

(k−1)2j+2j−1

(k−1)2j+1

)
−1

2
log
(
X̄k2j

(k−1)2j+2j−1+1

)}]1/2
. (3.2)

Up to the multiplicative factor m1/2, the form of the transform in (3.2) is the same

for any m, which means that the chi-squared likelihood ratio Haar coefficients

gj,k (computed with an arbitrary m) also achieve variance stabilization if m is

unknown (but possibly to a constant different from one). In both the Poisson

and the chi-squared cases, gj,k is a function of the local means X̄
(k−1)2j+2j−1

(k−1)2j+1 and

X̄k2j

(k−1)2j+2j−1+1, which is unsurprising as these are sufficient statistics for the

corresponding population means in both these distributions. These local means

and, therefore, the coefficients gj,k, can be computed in computational time O(n)

using the pyramid algorithm at (2.1).

4. L2 Theory for the Likelihood Ratio Haar Poisson Smoother

In this section, we provide a theoretical mean-square analysis of the perfor-

mance of the signal smoothing algorithm involving likelihood ratio Haar wavelets,

described in Section 2.1. Although we focus on the Poisson distribution, the

statement of the result and the mechanics of the proof are similar for certain

other distributions, including scaled chi-squared.

Theorem 1. Let Λ = (λ1, . . . , λn) be a positive piecewise-constant vector, there

exist up to N indices η1, . . . , ηN for which ληi 6= ληi−1. Let n = 2J , where J is

a positive integer. Assume Λ is bounded from above and away from zero, and

let Λ̄ := maxi λi, Λ := mini λi, Λ′ = Λ̄ − Λ and λ̄es = {1/(e− s+ 1)}
∑e

i=s λi.

Let Xk ∼ Pois(λk) for k = 1, . . . , n. Let Λ̂ be obtained as in the algorithm of

Section 2.1, using threshold t and with a fixed β ∈ (0, 1) such that J0 = blog2 n
βc.

Then, with dj,k and µj,k defined in the algorithm of Section 2.1, and with X̄e
s =

{1/(e− s+ 1)}
∑e

i=sXi, on set A ∩ B, where

A = {∀ j = J0 + 1, . . . , J, k = 1, . . . , 2J−j (λ̄k2
j

(k−1)2j+1)
−1/2|dj,k − µj,k| < t1},

B = {∀ j = J0, . . . , J, k = 1, . . . , 2J−j

2j/2(λ̄k2
j

(k−1)2j+1)
−1/2|X̄k2j

(k−1)2j+1 − λ̄
k2j

(k−1)2j+1| < t2},

whose probability approaches 1 as n→∞ if t1 = C1 log1/2 n and t2 = C2 log1/2 n

with C1 > {2(1− β)}1/2 and C2 > {2(1− β)}1/2, if threshold t is such that

t ≥ t1

(1− t22−(J0+1)/2Λ−1/2)1/2
, (4.1)
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we have

n−1‖Λ̂− Λ‖2 ≤ 1

2
n−1N(Λ′)2(nβ − 1)

+ 2n−1N Λ̄1/2
{

(J − J0)(t2 + t21)Λ̄
1/2 + t2t2(2 + 21/2)n−β/2

}
+ n−1t21λ̄

n
1 ,

where ‖ · ‖ is the l2-norm of its argument.

Bearing in mind the magnitudes of t2 and J0, we can see that the term

t22
−(J0+1)/2Λ−1/2 becomes arbitrarily close to zero for large n, and therefore,

from (4.1), the threshold constant t can become arbitrarily close to t1. In par-

ticular, it is safe to set t to be the “universal” threshold suitable for iid N(0, 1)

noise (Donoho and Johnstone (1994)), t = {2 log n}1/2. It is in this sense that

our likelihood ratio Haar construction achieves variance stabilization and nor-

malization: in order to denoise Poisson signals in which the variance of the noise

depends on the local mean, we make it possible to use the universal Gaussian

threshold, as if the noise were Gaussian with variance one. In classical Haar

wavelet thresholding with |dj,k| > t̃ as the thresholding decision, t̃ would have to

depend on the level of the Poisson intensity Λ over the support of dj,k, which is

unknown; our approach circumvents this.

If the number N of change-points does not increase with the sample size

n, then the dominant term in the mean-square error is of order O(nβ−1). This

suggests that β should be set to be “arbitrarily small”, in which case the MSE

arbitrarily close to the parametric rate O(n−1).

5. Practical Performance

In the online supplement, we demonstrate that the likelihood ratio Haar

coefficients appear to offer better normalization and variance stabilization than

the Fisz coefficients. In this section, we show that this translates into better

MSE properties of the likelihood ratio Haar smoother than the analogous Haar-

Fisz smoother, in both the Poisson and the exponential models, on the examples

considered. For comprehensive comparison of the performance of the Haar-Fisz

smoother to that of other techniques, see Fryzlewicz and Nason (2004), Besbeas,

De Feis and Sapatinas (2004) and Fryzlewicz (2008), among others. Our test

signals are [1] Donoho and Johnstone’s (1994) blocks and [2] bumps functions,

scaled to have (min, max) of [1] (0.681, 27.029) and [2] (1, 12.565), both of length

n = 2,048. We consider the following models: (1a), (2a): Poisson models, in

which the signals [1], [2] (respectively) play the role of the Poisson intensity Λ,
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Table 1. MSE over 1,000 simulations for the two methods and four models described in
Section 5.

Method \Model (1a) (1b) (2a) (2b)
Haar-Fisz 0.615 8.647 0.357 1.053

Likelihood ratio Haar 0.605 7.958 0.341 0.905

Figure 1. Sample likelihood ratio Haar reconstruction in model (1a), see Section 5 for
details.

so that Xk ∼ Pois(λk); (1b), (2b): Exponential models, in which the signals

[1], [2] (respectively) play the role of the exponential mean σ2, so that Xk ∼
σ2k Exp(1) = σ2k2

−1χ2
2.

For all models, we compared the MSE performance of “like-for-like” like-

lihood ratio Haar and Haar-Fisz smoothers, both constructed as described in

Section 2.1, except the Haar-Fisz smoother used the corresponding coefficients

fj,k in place of gj,k. We used the non-decimated (translation invariant, station-

ary, maximum overlap) Haar transform (Nason and Silverman (1995)) to achieve

fast averaging over all possibly cyclic shifts of the input data. For better compar-

ison of the effects of thresholding alone, we used J0 = 0. We used the universal

threshold t = {2 log n}1/2. Figures 1 and 2 show sample reconstructions for the

likelihood ratio Haar method in the Poisson models (1a), (2a).

Table 1 shows that the likelihood ratio Haar smoother outperforms Haar-

Fisz across all the models considered. For the Poisson models, the improvement

is fairly modest (2% for blocks, 4% for bumps) but for the exponential models,
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Figure 2. Sample likelihood ratio Haar reconstruction in model (2a), see Section 5 for
details.

it is more significant (8% for blocks, 14% for bumps). One important reason for

this improved performance is that, as demonstrated in the online supplement, the

likelihood ratio Haar coefficients have a higher magnitude than the corresponding

Fisz coefficients, and therefore more easily survive thresholding. This implies that

the likelihood ratio Haar smoother lets through “more signal” compared to the

Haar-Fisz smoother if both use the same threshold, however chosen. Another

possible reason is that, as shown in the online supplement, the likelihood ratio

Haar coefficients are closer to variance-one normality than the Fisz coefficients

and therefore the use of thresholds designed for standard normal noise may be

more suitable for them.

We now briefly illustrate the normalizing and variance-stabilizing properties

of the likelihood ratio Haar transform G(·) described in Section 2.2, using data

simulated from models (1a) and (1b). We used the non-decimated version of the

Haar transform.

Figure 3 illustrates the results for the Poisson case. In both the Poisson

and the exponential examples, the likelihood ratio Haar transform is a very good

normalizer and variance-stabilizer: the transformed data minus the transformed

signal shows good agreement with an i.i.d. normal sample; its sample variance

equals 1.07 for the Poisson model and 1.14 for the exponential model. Particularly

for the exponential model, the likelihood ratio Haar transform is a significantly

better normalizer than the Haar-Fisz transform (not shown here).
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Figure 3. The Poisson model. Top left: Poisson intensity Λ (white) and simulated data
X (black). Top right: the likelihood ratio transform G(Λ) (white) and G(X) (black).
Middle left: G(X)−G(Λ). Middle right: Q-Q plot of G(X)−G(Λ) against the normal
quantiles. Bottom left: sample acf plot of G(X)−G(Λ). Bottom right: sample acf plot
of (G(X)−G(Λ))2.

5.1. California earthquake data

We revisited the Northern California earthquake dataset, analysed in Fry-

zlewicz and Nason (2004) and available from http://quake.geo.berkeley.edu/

ncedc/catalog-search.html. We analyzed the time series Nk, k = 1, . . . , 1,024,

where Nk is the number of earthquakes of magnitude 3.0 or more which occurred

in the kth week, the first week under consideration starting April 22nd, 1981 and

the final ending December 5th, 2000. We took Nk ∼ Pois(λk) and estimated Λ

http://quake.geo.berkeley.edu/ncedc/catalog-search.html
http://quake.geo.berkeley.edu/ncedc/catalog-search.html
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Figure 4. Northern California earthquake data: Nk (dashed) and the likelihood ratio
Haar estimate (thick solid). See Section 5.1 for details.
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Figure 5. The likelihood ratio Haar smooth of Mk under the Poisson assumption.

using our likelihood ratio Haar smoother, as described in Section 5.

The estimate and the data are shown in Figure 4. The appearance of the

estimator reveals an interesting phenomenon, not necessarily easily seen in the

noisy data: for many of the intensity spikes observed in this dataset, the intensity

in the time period just before the spike appears to be much lower than the inten-

sity in the period following the spike, which may point to a degree of persistence
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in the seismic activity following the major spikes in activity observed in these

data.

Further, we analysed the histogram of counts Mk, k = 0, . . . , 255, defined

as the number of weeks in which k earthquakes of magnitude 3.0 or more which

occurred. The raw data (not shown here) show an apparent bimodality with

modes at 4 and 6. To verify whether this is a spurious or “real” effect, we

smoothed Mk using our likelihood ratio Haar smoother suitable for Poisson data

(note that Mk, being a histogram, can approximately be modelled as Poisson-

distributed). Figure 5 reveals that our fit preserves the bimodality, which gives

support to the argument that this is a genuine, rather than spurious, effect. This

finding points towards a mixture model with two components: one corresponding

to “quieter” periods (i.e. those with a low intensity of earthquakes of magnitude

3.0 or more) and the other to periods with high earthquake intensity.

Supplementary Materials

The supplementary materials contain the proof of our theoretical result and

further technical details.
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