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Abstract: The threshold autoregressive (TAR) model and the smooth threshold

autoregressive (STAR) model have been popular parametric nonlinear time series

models for the past three decades or so. As yet there is no formal statistical test in

the literature for one against the other. The two models are fundamentally different

in their autoregressive functions, the TAR model being generally discontinuous

while the STAR model is smooth (except in the limit of infinitely fast switching

for some cases). Following the approach initiated by Cox (1961, 1962), we treat

the test problem as one of separate families of hypotheses. The test statistic under

a STAR model is shown to follow asymptotically a chi-squared distribution, and

the one under a TAR model can be expressed as a functional of a chi-squared

process. We present numerical results with both simulated and real data to assess

the performance of our procedure.

Key words and phrases: Non-nested test, separate family of hypotheses, STAR

model, TAR model

1. Introduction

Regime switching models are a central area of research activities in time

series analysis in both the statistical and the econometric literature. In the lat-

ter, important applications relate to many aspects of economics, e.g., business

cycles, unemployment rates, exchange rates, prices, interest rates, and others.

As far as time series analysis is concerned, the notion of regime switching can

be traced to the introduction of the threshold autoregressive (TAR) model by

Tong (1978) and Tong and Lim (1980); see also Tong (2011). In the non-time

series context, the idea of smooth regime switching was first introduced by Bacon

and Watts (1971). The idea was later systematically incorporated in the time

series literature by Chan and Tong (1986) under the name of a smooth thresh-

old autoregressive (STAR) model, as an extension of the TAR model and the

https://doi.org/10.5705/ss.202016.0497


2858 GAO, LING AND TONG

exponential autoregressive model of Ozaki (1980). The STAR model was enthu-

siastically pursued by Luukkonen, Saikkonen and Teräsvirta (1988), Teräsvirta

(1994), van Dijk, Teräsvirta and Franses (2002), and Teräsvirta, Tjøstheim and

Granger (2010). They changed smooth threshold to smooth transition, whilst

retaining the same acronym, STAR. However, in applications, practitioners typ-

ically assume either a TAR model or a STAR model on prior and often arbitrary

grounds. Given the fundamentally different switching characteristics (discontin-

uous vs. smoothly continuous) of the two models, leading to possibly different

interpretations, it is clear that there is a definite need for a statistical test to help

us make an informed decision on the basis of the data.

This paper aims to fill this long standing gap. It is also prompted by two of

the wishes expressed in Cox (1961, 1962), namely time series and continuous vs.

discontinuous hypotheses. As far as we are aware, our paper represents the first

attempt at testing for separate families of hypotheses in nonlinear time series

analysis. However, there is an interesting challenge in this. Although the STAR

model includes the TAR model as a special case for many smooth functions, it

does so only in the form of a limiting case with the switching becoming infinitely

fast. This renders standard nested tests impotent. In fact, experience in tests

for linearity within TAR models (e.g. Chan and Tong (1990)) shows that the

standard likelihood ratio test statistic follows a complicated distribution, which

is typically not a chi-squared distribution. To develop a test that has sufficient

power and is simple to use in practice, we adopt an alternative approach to

treat this non-standard problem. In this paper, we shall follow the approach of

non-nested tests initiated by Cox (1961, 1962). We develop non-nested tests for

departure from a STAR/TAR model in the direction of a TAR/STAR model,

within the context of separate families of hypotheses. The separate families are

defined by disallowing infinitely fast switching in the STAR model. We show

that the test statistic under a STAR model follows a chi-squared distribution,

asymptotically, and that the one under a TAR model can be expressed as a

functional of a chi-squared process. Numerical studies are carried out on both

simulated and real data to assess the performance of our procedure.

This paper is organized as follows. Section 2 presents the STAR and TAR

models and the non-nested testing procedure. Section 3 derives the asymptotic

distributions of the proposed score tests and the related algorithm. Section 4

gives the asymptotic local power analysis. Section 5 presents a simulation study.

Section 6 analyzes two empirical examples. Section 7 provides the proofs of the

theorems. In the supplementary material, we give a discussion on some nested
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hypothesis testing approaches, and report some simulation results to make a

comparison with our proposed tests. The proofs of Theorems 3–4 and some

related tables are also given in the supplementary material.

2. The Models and the Testing Procedure

The time series {yt : t = 0,±1,±2, . . .} is said to follow a STAR(p) model if

yt = X ′t−1θ1 +X ′t−1θ2G(qt−1, s, r) + εt, (2.1)

where Xt = (1, yt, . . . , yt−p+1)′, θi = (φi0, φi1, . . . , φip)
′, i = 1, 2. qt ∈ Fpt , the

σ-field generated by (yt, yt−1, . . . , yt−p+1), and Ft is the σ-field generated by

(yt, yt−1, . . .), r is the threshold value and s > 0 is the switching parameter. Here,

{εt} is a sequence of independent and identically distributed (i.i.d.) random

variables with mean zero and variance 0 < σ2 < ∞, and εt is independent

of Ft−1. G(qt−1, s, r) is a smooth switching function, for example, the logistic

smooth switching function

G(qt−1, s, r) =
1

1 + e−s(qt−1−r)
(2.2)

is a popular choice. Model (2.1) with logistic smooth switching function (2.2) is

commonly called an LSTAR model. There are other smooth switching functions

in the literature such as the normal distribution function in Chan and Tong

(1986), the exponential STAR (ESTAR) models with

G(qt−1, s, r) = 1− e−s(qt−1−r)2 ,

and the second order logistic smooth function; see van Dijk, Teräsvirta and

Franses (2002) for details.

The true values of the parameters are denoted by θi0, s0, and r0, respectively.

A popular nonlinear time series model is the TAR(p) model

yt = X ′t−1θ1 +X ′t−1θ2I(qt−1 > r) + εt, (2.3)

where I(·) is the indicator function. Figure 1 plots I(x > 0) and G(x, s, 0) of the

logistic and the exponential ones for different s with a fixed threshold r = 0.

This figure highlights the difficulty in distinguishing a TAR model from a

STAR model when s is large, especially for the logistic functions. Standard

practice in STAR modeling restricts s to lie in a finite interval, namely s ∈ [s1, s2]

with 0 < s1 < s2 < ∞. A similar restriction is assumed for s in the general

G(qt−1, s, r). Note that a STAR model has one more parameter, s, than a TAR

model of the same order.

Model (2.1) (under the restriction on s) and model (2.3) are two non-nested
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Figure 1. (a). I(x > 0) and G(x, s, 0) = 1/(1 + e−sx); (b). I(x > 0) and G(x, s, 0) =

1− e−sx2

.

models. Testing for non-nested models has been studied in the literature, starting

from Cox (1961, 1962). Cox (2013). In the econometric literature, Pesaran and

Deaton (1978) proposed the Cox-Pesaran-Deaton (CPD) test, but the power of

the CPD test is not clear in theory. Another approach to test non-nested models

is to form a compound model as in Atkinson (1970), and treat the problem

as one of testing model specification. This approach was further developed by

Davidson and MacKinnon (1981) for the non-nested regression models; see also

MacKinnon, White and Davidson (1983). From models (2.1) and (2.3), we can

construct a compound model as

yt = X ′t−1θ1 + (1− δ)X ′t−1θ2G(qt−1, s, r) + δX ′t−1θ2I(qt−1 > r) + εt. (2.4)

Unlike Davidson and MacKinnon (1981), the ‘slope’ parameters (θ2) in the

smooth part and in the discontinuous part are the same. This is because their

estimates tend to be very close whether we fit a TAR model or a STAR model

to given data (-see Ekner and Nejstgaard (2013)). Based on model (2.4), we

consider the following two hypotheses:

H0 : δ = 0 against Ha : δ 6= 0 (2.5)

and

H̃0 : δ = 1 against H̃a : δ 6= 1. (2.6)

Hypothesis (2.5) tests the departure of a STAR model in the direction of model

(2.4) where δ 6= 0, while hypothesis (2.6) tests the departure of a TAR model in

the direction of model (2.4) where δ 6= 1.

We will study the score tests for (2.5) and (2.6) in the next section. Let

θ = (θ′1, θ
′
2)′ and λ = (θ′, s, r)′, and assume that θ ∈ Θ ⊂ R2p+2, r ∈ Γ ⊂ R and
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λ ∈ Λ ⊂ R2p+4, where Θ, Γ and Λ are compact sets. We first introduce some

assumptions.

Assumption 1. {yt} generated by (2.1) or by (2.3) is strictly stationary and

ergodic.

For this, see the discussions in Chan and Tong (1986) for the STAR model

and Chan (1993) for the TAR model.

Assumption 2. (i) εt and qt have absolutely continuous distributions with uni-

formly continuous and positive densities on R and Eε4
t <∞; (ii) The conditional

density of Xt given qt = r, fX|q(x|r), is bounded, continuous, and positive on

Rp+1 for all r ∈ Γ.

Assumption 2(i) is conventional for the noise εt and threshold variable qt,

where the moment condition Eε4
t <∞ conforms with condition 2 in Chan (1993).

Assumption 2(ii) implies the existence of the joint density of (X ′t, qt)
′, which is

used to establish (S2.2) in the supplementary material.

Assumption 3. (i) E(‖Xt‖2|qt = r) ≤ K <∞ for all r ∈ Γ; (ii) E(‖Xt‖2I(r1 <

qt ≤ r2)|Ft−p) ≤ K℘t−p|r2 − r1|, where ℘t−p ∈ Ft−p independent of r1 and r2

with E℘t−p ≤ K <∞ for any r1 ≤ r2 in Γ, and K > 0 is a constant independent

of t and Γ.

In what follows, we use the notation K as a generic constant whose value

can change. By Assumption 2(ii), Assumption 3(i) is similar to Assumption 1.4

in Hansen (2000), but we only require a finite second moment here. Assump-

tion 3(ii) is similar to condition (C3) in Chan (1990), while here we use condi-

tional expectation without specifying the form of qt. For most smooth transition

functions, a second moment is enough to satisfy Lemma 1 and the functions of

interest in the proofs of Theorems 1 and 2, including the LSTAR and ESTAR

models. When qt−1 = yt−d for some 1 ≤ d ≤ p, by Assumption 2, it is not hard to

verify Assumption 3(ii). For example, if p = 2 and d = 2, then Xt = (1, yt, yt−1)′

and qt = yt−1. For the nontrivial term in Assumption 3(ii) we have

E{|yt|2I(r1 < yt−1 ≤ r2)|Ft−2}
≤ KE{(|εt|+ |εt−1|+ ψt−2)2I(r1 − φt−2 < εt−1 ≤ r2 − φt−2)|Ft−2}
≤ Kκt−2E{I(r1 − φt−2 < εt−1 ≤ r2 − φt−2)|Ft−2}
= Kκt−2{Fε(r2 − φt−2)− Fε(r1 − φt−2)}
≤ Kκt−2|r2 − r1|,
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where φt−2, ψt−2, and κt−2 are Ft−2-measurable functions of the autoregressors,

Fε(·) is the distribution of εt and the last inequality above is due to Taylor’s

expansion and the boundedness of the density function of εt by Assumption 2.

Let

εt(λ) = yt −X ′t−1θ1 −X ′t−1θ2G(qt−1, s, r),

εt(θ, r) = yt −X ′t−1θ1 −X ′t−1θ2I(qt−1 > r).

Denote by λ̂n the least squares estimator (LSE) of λ0 in model (2.1) and (θ̂n, r̂n)

the LSE of (θ0, r0) in model (2.3),

λ̂n = arg min
λ∈Λ

n∑
t=1

ε2
t (λ), (2.7)

(θ̂n, r̂n) = arg min
(θ,r)∈Θ×Γ

n∑
t=1

ε2
t (θ, r). (2.8)

Assumption 4. Under model (2.1),

√
n(λ̂n − λ0) = −Σ−1

1

1√
n

n∑
t=1

∂εt(λ0)

∂λ
εt + op(1),

where Σ1 = E{∂εt(λ0)/∂λ∂εt(λ0)/∂λ′}.

For Assumption 4 to hold, see the discussion in Section 5.2 in van Dijk,

Teräsvirta and Franses (2002) on the estimation of the STAR model. For general

conditions, see Klimko and Nelson (1978), Ling and McAleer (2010), among

others. When G(qt−1, s, r) is the standard normal distribution function, sufficient

conditions are given in Chan and Tong (1986).

Assumption 5. Under model (2.3), r̂n − r0 = Op(1/n) and

√
n(θ̂n − θ0) = −Σ−1

2

1√
n

n∑
t=1

∂εt(θ0, r0)

∂θ
εt + op(1),

where Σ2 = E{∂εt(θ0, r0)/∂θ∂εt(θ0, r0)/∂θ′}.

For assumption 2.5 to hold, we refer to Chan (1993), where V-ergodicity for

the time series and discontinuity for the autoregressive function in model (2.3)

are discussed.

3. Asymptotic Properties of Score Tests

Consider the (conditional) quasi-log-likelihood function of model (2.4),
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L(δ, λ) = −1

2

n∑
t=1

{yt−X ′t−1θ1−(1−δ)X ′t−1θ2G(qt−1, s, r)−δX ′t−1θ2I(qt−1 > r)}2.

Let Dt(r, s) = G(qt−1, s, r)− I(qt−1 > r). We first consider the hypothesis (2.5),

under H0 (i.e. δ = 0), we obtain the score function and information matrix as

follows.

∂L(0, λ)

∂δ
=−

n∑
t=1

[
{yt −X ′t−1θ1 −X ′t−1θ2G(qt−1, s, r)}

× {−X ′t−1θ2I(qt−1 > r) +X ′t−1θ2G(qt−1, s, r)}
]

=−
n∑
t=1

εt(λ)X ′t−1θ2Dt(r, s) (3.1)

and
∂2L(0, λ)

∂2δ
= −

n∑
t=1

θ′2Xt−1X
′
t−1θ2D

2
t (r, s). (3.2)

The score based test statistic for testing H0 is defined as

T1n =

{
− ∂2L(0, λ̂n)

∂2δ

}−1{∂L(0, λ̂n)

∂δ

}2

, (3.3)

where λ̂n is defined in (2.7).

Assumption 6.

(i). |G(qt−1, s, r)| ≤ 1;

(ii).

∣∣∣∣∂G(qt−1, s, r)

∂s

∣∣∣∣ ≤ K(|qt−1|α1 + 1) and

∣∣∣∣∂G(qt−1, s, r)

∂r

∣∣∣∣ ≤ K(|qt−1|α2 + 1);

(iii).

∣∣∣∣∂2G(qt−1, s, r)

∂2s

∣∣∣∣ ≤ K(|qt−1|α3 + 1) and

∣∣∣∣∂2G(qt−1, s, r)

∂2r

∣∣∣∣ ≤ K(|qt−1|α4 + 1);

(iv).

∣∣∣∣∂2G(qt−1, s, r)

∂r∂s

∣∣∣∣ ≤ K(|qt−1|α + 1),

where α1, α2, α3, α4, α ≥ 0 and K is a generic constant independent of t as

before.

Assumption 6(i) is natural because G(qt−1, s, r) is a switching function be-

tween 0 to 1, and Assumption 6(ii)–(iii) are similar to A1–A2 in Francq, Horváth

and Zaköıan (2010). Here we also need the derivatives with respect to the thresh-

old r. Assumptions 6(i)–(ii) are needed for the existence of the limiting distri-

butions in Theorems 1–2, and Assumptions 6(iii)–(iv) are used to prove (7.6).

Elementary calculations show that Assumptions 6(i)-(iv) hold for the LSTAR

model with α1 = 1, α2 = 0, α3 = 2, α4 = 0 and α = 1.
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Let

ω1 = E{θ′20Xt−1X
′
t−1θ20D

2
t (r0, s0)},

ω2 = ω1 −
{
EX ′t−1θ20Dt(r0, s0)

∂εt(λ0)

∂λ′

}
Σ−1

1

{
EX ′t−1θ20Dt(r0, s0)

∂εt(λ0)

∂λ

}
,

with their estimators

ω̂1n =
1

n

n∑
t=1

{θ̂′2nXt−1X
′
t−1θ̂2nD

2
t (r̂n, ŝn)},

ω̂2n = ω̂1n −
1

n

n∑
t=1

{
X ′t−1θ̂2nDt(r̂n, ŝn)

∂εt(λ̂n)

∂λ′

}

Σ̂−1
1n

1

n

n∑
t=1

{
X ′t−1θ̂2nDt(r̂n, ŝn)

∂εt(λ̂n)

∂λ

}
,

respectively, where Σ̂1n =
∑n

t=1{∂εt(λ̂n)/∂λ∂εt(λ̂n)/∂λ′}/n. Let σ̂2
0n = −2L(0,

λ̂n)/n. It is not hard to show that σ̂2
0n →p σ

2 as n→∞ under H0.

Theorem 1. Under H0, if Assumptions 1–4 and 6 hold, and E‖Xt−1‖2(|qt−1|2κ+

1) <∞ with κ = max(α1, α2, α3, α4, α), then

S1n :=
T1n

σ̂2
0n

ω̂1n

ω̂2n
−→L χ2

1,

as n→∞, where χ2
1 is a chi-squared distribution with one degree of freedom.

Under H0, we need to specify the interval [s1, s2] for grid search to give

an estimator ŝn. (van Dijk, Teräsvirta and Franses, 2002, p. 21) also discussed

this issue without giving a recommended interval. In the absence of theoretical

results, we can either follow the suggestion of Di Narzo, Aznare and Stigler

(2013), adopting a default interval s ∈ [1, 40], or choose other intervals according

to simulation experience, when using lstar function in R to fit an LSTAR model.

Next, we consider the hypothesis (2.6). We fix s > 0 as a constant in (2.1).

Under H̃0, we obtain the score function and information matrix as follows.

∂L(1, λ)

∂δ
=−

n∑
t=1

[
{yt −X ′t−1θ1 −X ′t−1θ2I(qt−1 > r)}

× {−X ′t−1θ2I(qt−1 > r) +X ′t−1θ2G(qt−1, s, r)}
]

=−
n∑
t=1

εt(θ, r)X
′
t−1θ2Dt(r, s) (3.4)

and
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∂2L(1, λ)

∂2δ
= −

n∑
t=1

θ′2Xt−1X
′
t−1θ2D

2
t (r, s). (3.5)

For a given s > 0, the score-based test statistic for testing H̃0 against H̃a is

T2n(s) =

{
−∂

2L(1, θ̂n, s, r̂n)

∂2δ

}−1{
∂L(1, θ̂n, s, r̂n)

∂δ

}2

, (3.6)

where θ̂n and r̂n are defined in (2.8). In (3.6), we have a nuisance parameter s,

which is not identified under H̃0. In the spirit of Francq, Horváth and Zaköıan

(2010), we assume s ∈ [1/s̄, s̄] for an s̄ > 0 instead of [s1, s2]. Let D[1/s̄, s̄] be

the Skorokhod space and =⇒ denote the weak convergence.

Theorem 2. Under H̃0, if Assumptions 1–3, 5 and 6 hold, and E‖Xt−1‖2

(|qt−1|2α1 + 1) <∞ , then,

(a)
1√
n

∂L(1, θ̂n, s, r̂n)

∂δ
=⇒ σZ(s) in D

[
1

s̄
, s̄

]
,

(b) sup
s∈[1/s̄,s̄]

∣∣∣∣− 1

n

∂2L(1, θ̂n, s, r̂n)

∂2δ
− ω(s)

∣∣∣∣→p 0,

as n → ∞, where ω(s) = E{θ′20Xt−1X
′
t−1θ20D

2
t (r0, s)}, Z(s) is Gaussian pro-

cess with EZ(s) = 0 and EZ(s)Z(τ) = E{θ′20Xt−1X
′
t−1θ20Dt(r0, s)Dt(r0, τ)} −

{EX ′t−1θ20Dt(r0, s) ∂εt(θ0, r0)/∂θ′} Σ−1
2 {EX ′t−1θ20Dt(r0, τ)∂εt(θ0, r0)/∂θ}.

Remark 1. With part (a), since ω(s) and EZ(s)Z(τ) involve neither derivatives

of any order with respect to r nor second-order derivatives with respective to s,

and εt(θ, r) is linear in θ, the moment condition in Theorem 2 is slightly weaker

than that in Theorem 1.

Under H̃0, we also need to specify the form of the smooth function G and

different G’s may give different power.

Following Hansen (1996) and Francq, Horváth and Zaköıan (2010), among

others, we use the supremum statistic sups∈[1/s̄,s̄] T2n(s)/σ̂2
1n as our test statistic,

where σ̂2
1n = −2L(1, θ̂n, s, r̂n)/n, which does not depend on s. It is not hard to

show that σ̂2
1n →p σ

2 as n → ∞ under H̃0. By Theorem 2 and the Continuous

Mapping Theorem, it follows that

S2n := sup
s∈[1/s̄,s̄]

T2n(s)

σ̂2
1n

−→L sup
s∈[1/s̄,s̄]

Z2(s)

ω(s)
, (3.7)

which is the limiting distribution of our test statistic. Following Hansen (1996),

Francq, Horváth and Zaköıan (2010), and using (7.4), (7.23) and Glivenko-
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Cantelli theorem, we can show that the following algorithm can be used to

simulate the quantiles of the distribution of sups∈[1/s̄,s̄] Z
2(s)/ω(s) conditional

on the data {y1, . . . , yn}.

Algorithm 1. For i = 1, . . . , N :

(i) generate an i.i.d. N(0, 1) sample ε
(i)
1 , . . . , ε

(i)
n ;

(ii) set

Z(i)
n (s) =− 1√

n

n∑
t=p+1

X ′t−1θ̂2nDt(r̂n, s)ε
(i)
t +

 1

n3/2

n∑
t=p+1

X ′t−1θ̂2nDt(r̂n, s)

× ∂εt(θ̂n, r̂n)

∂θ′

}
Σ̂−1

2n

n∑
t=p+1

ε
(i)
t

∂εt(θ̂n, r̂n)

∂θ
,

ω̂n(s) =
1

n

n∑
t=p+1

{
θ̂′2nXt−1X

′
t−1θ̂2nD

2
t (r̂n, s)

}
;

(iii) compute S(i) , sups∈[1/s̄,s̄] (Zn
(i)(s))2/ω̂n(s).

Here Σ̂2n =
∑n

t=p+1{∂εt(θ̂n, r̂n)/∂θ∂εt(θ̂n, r̂n)/∂θ′}/n. Conditional on {y1, . . . ,

yn}, the sequence {S(i), i = 1, . . . , N} constitutes an independent and identically

distributed sample of the random variable sups∈[1/s̄,s̄] T2n(s)/σ̂2
1n. The (1 − α)-

quantile of the distribution of sups∈[1/s̄,s̄] Z
2(s)/ω(s) can be approximated by the

empirical (1 − α)-quantile of the artificial sample {S(i), i = 1, . . . , N}, denoted

by cα. The rejection region of the test at the nominal level α is{
sup

s∈[1/s̄,s̄]

T2n(s)

σ̂2
1n

> cα

}
.

The limiting distribution in (3.7) depends on the data and the simulated distri-

bution by Algorithm 1 only converges exactly to the limiting one in (3.7) under

H̃0, e.g. the data come from a TAR model. When the data come from an LSTAR

one, we are not clear about the limiting behavior of the estimators and hence

Algorithm 1 does not necessarily converge to the exact one in (3.7). However,

when the data come from LSTAR models, the power is still satisfactory, as can

be seen from our empirical results in Section 5.

As for the choice of s̄, we are not aware of any definitive guidance in the

statistical literature concerning this issue in a general context. See, e.g., Chan

(1990) for threshold problems and Davis, Huang and Yao (1995) for change-point

problems, among others. Following the reference manual of lstar function in
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Di Narzo, Aznare and Stigler (2013), we also recommend a default s̄ = 40 in

practice according to our simulation experience.

4. Asymptotic Power Under Local Alternatives

This section investigates the asymptotic local power of S1n and S2n defined

in Theorem 1 and (3.7), respectively. We consider the hypotheses,

H0 : δ = 0 against Han : δ =
γ√
n

for some fixed γ 6= 0, (4.1)

H̃0 : δ = 1 against H̃an : δ = 1 +
γ√
n

for some fixed γ 6= 0, (4.2)

where (4.1) and (4.2) correspond to (2.5) and (2.6), respectively. For model (2.4),

we define

ε(λ, δ) = yt −X ′t−1θ1 − (1− δ)X ′t−1θ2G(qt−1, s, r)− δX ′t−1θ2I(qt−1 > r). (4.3)

Let FZ be the Borel σ-field on RZ with Z = {0,±1,±2, . . .} and P a proba-

bility measure on (RZ ,FZ). Let Pnλ,δ be the restriction of P on Fn, the σ-field

generated by {Y0, y1, . . . , yn} with Y0 = {y0, y−1, . . . , y1−p}. Suppose the errors

{ε1(λ, δ), ε2(λ, δ), . . .} under Pnλ,δ are i.i.d. with density g, and are independent

of Y0. The log-likelihood ratio Λn,λ(δ1, δ2) of Pnλ,δ2 to Pnλ,δ1 is then

Λn,λ(δ1, δ2) =

n∑
t=1

{log g(εt(λ, δ2))− log g(εt(λ, δ1))}.

For simplicity, we assume εt(λ0, δ0) ∼ N(0, σ2) in the rest of this section. This

can be generalized to the non-normal case without difficulty; see, for example,

Jeganathan (1995). Thus, the density g of εt is absolutely continuous with deriva-

tives and finite Fisher information 0 < I(g) =
∫ +∞
−∞ {g

′(x)/g(x)}2g(x)dx < ∞.

In this section, all the expectations are taken under H0 or H̃0 according to the

context.

Theorem 3. If Assumptions 1–5 and 6 hold, then Pn
λ0,δ0+γ/

√
n

is contiguous to

Pnλ0,δ0
, where δ0 = 0 or 1.

Theorem 4. Suppose that Assumptions 1–5 and 6 hold.

(i) Under Han, if the conditions in Theorem 1 are satisfied, we have

S1n →L χ2
1

(
γ
√
ω2

σ

)
; (4.4)

(ii) Under H̃an, if the conditions in Theorem 2 are satisfied, we have

S2n −→L sup
s∈[1/s̄,s̄]

{Z(s) + σ−1µ(s)}2

ω(s)
, (4.5)
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Table 1. Empirical size and power for testing H0.

n

α 400 800 1,500 3,000 5,000
0.1 0.136 0.096 0.116 0.102 0.102

size s0 = 2 0.05 0.084 0.056 0.046 0.048 0.054
0.01 0.038 0.0124 0.006 0.010 0.008
0.1 0.100 0.108 0.098 0.102 0.084

size s0 = 5 0.05 0.054 0.064 0.046 0.050 0.036
0.01 0.008 0.010 0.006 0.008 0.014
0.1 0.112 0.108 0.102 0.104 0.100

size s0 = 10 0.05 0.046 0.044 0.072 0.048 0.044
0.01 0.010 0.010 0.018 0.006 0.008
0.1 0.516 0.592 0.664 0.830 0.912

power 0.05 0.460 0.526 0.610 0.792 0.900
0.01 0.378 0.390 0.482 0.702 0.844

as n → ∞, where S1n and ω2 are defined as in Theorem 1, χ2
1(γ
√
ω2/σ) is a

non-central chi-squared distribution with mean 1 + γ
√
ω2/σ; S2n, ω(s) and Z(s)

are defined as in (3.7) and Theorem 2, and µ(s) = γE{Z(s)Z(s0)} for some s0

which is specified under H̃an.

5. Simulation Studies

We examined the performance of the statistic S1n and S2n in finite samples

through Monte Carlo experiments. In the experiments, we used the logistic

smooth functions in (2.2). Similar results can be obtained from others. The

sample sizes (n) were 400, 800, 1,500, 3,000, and 5,000, and the number of

replications was 500 for each case. The null hypothesis H0 was the LSTAR(1)

model with (θ′0, r0) = (−0.9,−0.4, 2, 0.9, 0.8) and s0 = 2, 5, and 10, respectively,

and the smooth switching function was given by (2.2) with qt−1 = yt−1. The null

hypothesis H̃0 was a TAR(1) model with qt−1 = yt−1 and parameters (θ′0, r0)

as before. We set the significance levels at 0.01, 0.05 and 0.1; the corresponding

critical values for χ2
1 are 6.635, 3.841 and 2.706, respectively. We used the package

tsDyn in R software and lstar function to fit the logistic STAR model when

testing H0. From Table 1, the size becomes closer to the nominal level in each

case as the sample size increases. Table 1 also shows that the power increases

with the sample size. Generally speaking, one requires a sample size in excess of

1,500 for decent power. The results are summarized in Table 1.

When testing H̃0, we set s̄ = 15, 30, and 45 in (3.7). We first simulated

the critical values by Algorithm 1 with N = 10,000 and they are reported in
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Table 2. Empirical size and power for testing H̃0 when s̄ = 15.

n

data s0 α 400 800 1,500 3,000 5,000
0.1 0.170 0.154 0.156 0.146 0.160

size TAR 0.05 0.070 0.072 0.082 0.080 0.086
0.01 0.014 0.020 0.020 0.018 0.012
0.1 0.582 0.704 0.748 0.904 0.982

power LSTAR s0 = 1 0.05 0.442 0.532 0.640 0.832 0.950
0.01 0.198 0.272 0.378 0.638 0.864
0.1 0.382 0.604 0.776 0.886 0.962

power LSTAR s0 = 2 0.05 0.224 0.432 0.642 0.822 0.930
0.01 0.070 0.170 0.364 0.606 0.820
0.1 0.956 1 1 1 1

power LSTAR s0 = 5 0.05 0.916 1 1 1 1
0.01 0.720 0.996 1 1 1
0.1 0.910 0.996 1 1 1

power LSTAR s0 = 10 0.05 0.856 0.994 1 1 1
0.01 0.622 0.970 1 1 1
0.1 0.786 0.990 1 1 1

power LSTAR s0 = 15 0.05 0.690 0.976 1 1 1
0.01 0.442 0.926 1 1 1

Figure 2. Power for testing H̃0 with s̄ = 15 for different values of s0. The solid line
denotes the power at level α = 0.1 and the dotted line at level α = 0.05.

Tables S12–S13 in the supplementary material. Based on the critical values in

Table S13, we used 500 replications in this experiment for each case and Tables 2–

4 report the sizes and powers when testing H̃0 for s̄ = 15, 30, and 45, respectively.

From Tables 2–4, the sizes are very close to their nominal levels, and the power

increases with the sample size. We plot the power against different values of s0

in Figure 2 for s̄ = 15. Similar patterns can be found for other s̄. For each s̄,
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Table 3. Empirical size and power for testing H̃0 when s̄ = 30.

n

data s0 α 400 800 1,500 3,000 5,000
0.1 0.138 0.160 0.180 0.118 0.150

size TAR 0.05 0.064 0.078 0.100 0.060 0.080
0.01 0.012 0.010 0.014 0.008 0.016
0.1 0.584 0.664 0.752 0.892 0.962

power LSTAR s0 = 1 0.05 0.402 0.500 0.622 0.804 0.934
0.01 0.146 0.198 0.324 0.552 0.784
0.1 0.390 0.520 0.668 0.774 0.864

power LSTAR s0 = 2 0.05 0.220 0.378 0.552 0.672 0.768
0.01 0.060 0.126 0.270 0.444 0.578
0.1 0.962 1 1 1 1

power LSTAR s0 = 5 0.05 0.888 0.998 1 1 1
0.01 0.640 0.996 1 1 1
0.1 0.868 0.998 1 1 1

power LSTAR s0 = 10 0.05 0.802 0.996 1 1 1
0.01 0.534 0.956 1 1 1
0.1 0.786 0.980 1 1 1

power LSTAR s0 = 15 0.05 0.638 0.952 1 1 1
0.01 0.342 0.842 1 1 1

the power is initially lower when s0 = 1, 2 than when s0 = 5, 10, and 15, but

when the sample size is larger than 1,500, all the powers are quite high and even

close to 1 when n ≥ 3, 000. When s̄ becomes larger, the power seems to decrease

slightly at each corresponding slot. Moreover, Tables 2–4 show lower power at

s0 = 1 and 2 than at 5, 10, and 15, The explanation for this and the above

observation rests with s̃n := {s : sups∈[1/s̄,s̄] T2n(s)/σ̂2
1n}, which, as an estimator

of s0, depends on s0, n, and s̄ in a fairly complex manner. Table 5 shows the

relation when n = 400, providing the mean of 500 estimators for each s0. In view

of Figure 1, a larger estimator s̃n gives rise to less difference between the smooth

function and the indicator function and hence a lower power, and a smaller one

gives higher power. The result in Table 5 conforms to the ones we obtained in

Tables 2–4.

We provide some additional simulation results when we increased the number

of parameters. The null hypothesis H0 was the LSTAR(5) model with (θ′0, r0) =

(−1,−0.4,−0.8,−0.1, 0.2, 0.2, 2, 0.9, 0.4, 0.3,−0.2,−0.2, 0.8) and the null hypoth-

esis H̃0 is a TAR(5) with the same parameters. We only report the results of the

empirical power in Tables 6–7 for testing H0 and H̃0, respectively, since the size

is not of interest. From Table 6, the power is already quite satisfactory when
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Table 4. Empirical size and power for testing H̃0 when s̄ = 45.

n

data s0 α 400 800 1,500 3,000 5,000
0.1 0.152 0.162 0.142 0.164 0.168

size TAR 0.05 0.066 0.070 0.080 0.086 0.082
0.01 0.020 0.010 0.012 0.014 0.018
0.1 0.588 0.692 0.816 0.914 0.960

power LSTAR s0 = 1 0.05 0.420 0.492 0.676 0.818 0.920
0.01 0.148 0.182 0.354 0.538 0.778
0.1 0.330 0.496 0.628 0.746 0.778

power LSTAR s0 = 2 0.05 0.182 0.322 0.470 0.600 0.668
0.01 0.034 0.096 0.238 0.380 0.442
0.1 0.930 1 1 1 1

power LSTAR s0 = 5 0.05 0.832 1 1 1 1
0.01 0.518 0.986 1 1 1
0.1 0.842 0.996 1 1 1

power LSTAR s0 = 10 0.05 0.728 0.994 1 1 1
0.01 0.410 0.930 1 1 1
0.1 0.716 0.978 1 1 1

power LSTAR s0 = 15 0.05 0.564 0.962 1 1 1
0.01 0.284 0.826 0.998 1 1

Table 5. The realized estimator s̃n for different true value s0 under H̃0 when n = 400.

s0
s̄ 0.5 1 2 5 8 10 15 20

15 13.37 13.23 9.00 6.54 8.65 9.73 11.38 12.06
30 24.13 24.07 20.69 6.75 9.23 10.66 13.83 16.5
45 32.64 32.83 31.56 7.83 9.38 10.94 15.10 18.05

100 56.65 55.57 58.6 20.04 16.74 16.99 21.29 25.72

Table 6. Empirical power for testing H0 with p = 5.

n

data α 300 400 800 1,500
0.1 0.718 0.754 0.834 0.872

power TAR(5) 0.05 0.674 0.694 0.782 0.806
0.01 0.586 0.602 0.684 0.720

the sample size is small (e.g. n = 300). For n = 400, 800, and 1,500, the power

is higher than the corresponding one in Table 1. In Table 7, we only report the

results with s̄ = 15 since it is similar for the other cases. The power is also higher

than the corresponding one in Table 4 for each sample size. The high power of
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Table 7. Empirical size and power for testing H̃0 when s̄ = 15 with p = 5.

n

data s0 α 300 400 800 1,500
0.1 0.65 0.74 0.93 1

power LSTAR(5) s0 = 1 0.05 0.54 0.56 0.87 1
0.01 0.15 0.28 0.69 1
0.1 0.90 0.99 1 1

power LSTAR(5) s0 = 2 0.05 0.82 0.98 1 1
0.01 0.56 0.88 1 1

a small sample size in both Tables 6 and 7 suggests that our results in Section 6

are convincing when we have many parameters in the fitted models.

6. Data Examples

We re-visited two real data sets to illustrate our tests. Teräsvirta, Tjøstheim

and Granger (2010) fitted (on p. 390) an LSTAR model to the Wolf’s sunspot

numbers (1,700 to 1,979) and van Dijk, Teräsvirta and Franses (2002) fitted a sim-

ilar model to the U.S. unemployment rate. Later, Ekner and Nejstgaard (2013)

examined the profile likelihoods of the switching parameter of these examples,

after an appropriate reparametrization.

The first data set consists of the Wolf’s annual sunspot numbers, which are

available at http://www.sidc.oma.be/sunspot-data/. Teräsvirta, Tjøstheim

and Granger (2010) fitted an LSTAR model to the sunspot numbers for the

period 1700–1979. Following Ghaddar and Tong (1981), they used the square-

root transformed sunspot numbers, yt = 2{(1+zt)
1/2−1}, where zt is the original

sunspot number. Ekner and Nejstgaard (2013) reproduced the LSTAR model,

as well as fitted a TAR model, as follows (standard deviations in parentheses):1

H0 : yt = 1.46yt−1 − 0.76yt−2 + 0.17yt−7 + 0.11yt−9

(0.08) (0.13) (0.05) (0.04) (6.1)

+(2.65− 0.54yt−1 + 0.75yt−2 − 0.47yt−3

(0, 85) (0.13) (0.18) (0.11)

+0.32yt−4−0.26yt−5−0.24yt−8+0.17yt−10)Ĝ(yt−2, 5.46/σ̂yt−2
, 7.88),

(0.11) (0.07) (0.05) (0.06)

1There are very minor differences between three of the estimated parameters, most probably due to
rounding from two decimal places to one in Teräsvirta, Tjøstheim and Granger (2010).

http://www.sidc.oma.be/sunspot-data/.
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Table 8. Testing (6.1). (NR = not rejected, R = rejected).

α = 0.1 α = 0.05 α = 0.01 p-value
Decision NR NR NR 0.764

Table 9. Testing (6.2). (NR = not rejected, R = rejected).

s̄ α = 0.1 α = 0.05 α = 0.01 p-value
15 NR NR NR 0.964

Decision 30 NR NR NR 0.958
45 NR NR NR 0.962

H̃0 : yt = 1.43yt−1 − 0.77yt−2 + 0.17yt−7 + 0.12yt−9

(0.08) (0.14) (0.05) (0.05)

+(2.69− 0.45yt−1 + 0.69yt−2 − 0.48yt−3

(0, 70) (0.11) (0.18) (0.11) (6.2)

+0.36yt−4 − 0.27yt−5 − 0.21yt−8 + 0.14yt−10)I(yt−2 > 6.39),

(0.11) (0.07) (0.05) (0.05)

where σ̂yt−2
is the standard deviation of qt−1 = yt−2, σ̂2

0n = 3.414, and σ̂2
1n =

3.410. From the data, we obtain σ̂yt−2
= 5.57, giving ŝn = 0.98. When testing

H0 (i.e., (6.1)), the results are summarized in Table 8. From Table 8, we do not

reject (6.1) at each of the three levels and the p-value is 0.764. Then we tested

under H̃0 with s̄ = 15, 30, and 45, respectively. The results are summarized in

Table 9. From Table 9, we again do not reject (6.2) at each of the three levels

and for each s̄, and the p-values are 0.964, 0.958 and 0.962, respectively. Tables

8 and 9 suggest that given a sample size of only 280 and the fairly large number

of parameters (14 for (6.1) and 13 for (6.2)), neither test seems to enjoy sufficient

power to detect departure from one model in the direction of the other. However,

the difference between the near-unity p-values in Table 9 as against the p-value

of 0.764 in Table 8 suggests that, if properly reformulated as Bayesian posterior

odds, it can lend credence to the conclusion of Ekner and Nejstgaard (2013), who

find from their profile likelihood analysis that ‘the global maximum is actually

the TAR model’, whereas the STAR model adopted by Teräsvirta, Tjøstheim

and Granger (2010) is only a local maximum.

As a second example, we re-examined the monthly seasonally unadjusted

unemployment rate for U.S. males aged 20 and over for the period 1968:6–

1989:12, to which van Dijk, Teräsvirta and Franses (2002) fitted an LSTAR

model. These two series are published together with Gauss programs used to
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estimate their model at http://swopec.hhs.se/hastef/abs/hastef0380.htm.

Ekner and Nejstgaard (2013) re-examined this LSTAR model as well as fitted a

TAR model as follows (standard deviations in parentheses).

H0 : ∆yt = 0.479 + 0.645D1,t − 0.342D2,t − 0.68D3,t − 0.725D4,t − 0.649D5,t

(0.07) (0.07) (0.10) (0.09) (0.11) (0.10)

−0.317D6,t − 0.410D7,t − 0.501D8,t − 0.554D9,t − 0.306D10,t

(0.09) (0.09) (0.09) (0.09) (0.07)

+[−0.040yt−1−0.146∆yt−1−0.101∆yt−6+0.097∆yt−8−0.123∆yt−10

(0.01) (0.08) (0.06) (0.06) (0.06)

+0.129∆yt−13−0.103∆yt−15]×[1−Ĝ(∆12yt−1, 23.15/σ̂∆12yt−1
, 0.274)]

(0.07) (0.06)

+[−0.011yt−1+0.225∆yt−1+0.307∆yt−2−0.119∆yt−7−0.155∆yt−13

(0.01) (0.08) (0.08) (0.07) (0.09)

−0.215∆yt−14 − 0.235∆yt−15]× Ĝ(∆12yt−1, 23.15/σ̂∆12yt−1
, 0.274),

(0.09) (0.09) (6.3)

H̃0 : ∆yt = 0.473 + 0.644D1,t − 0.343D2,t − 0.675D3,t − 0.721D4,t − 0.641D5,t

(0.07) (0.07) (0.10) (0.09) (0.11) (0.10)

−0.308D6,t − 0.410D7,t − 0.505D8,t − 0.546D9,t − 0.295D10,t

(0.09) (0.09) (0.08) (0.09) (0.07)

+[−0.040yt−1−0.14∆yt−1−0.094∆yt−6+0.092∆yt−8−0.116∆yt−10

(0.01) (0.08) (0.06) (0.06) (0.06)

+0.136∆yt−13 − 0.106∆yt−15]× I(∆12yt−1 ≤ 0.268)

(0.07) (0.06)

+[−0.012yt−1+0.227∆yt−1+0.307∆yt−2−0.094∆yt−7 − 0.146∆yt−13

(0.01) (0.08) (0.08) (0.07) (0.09)

−0.211∆yt−14 − 0.216∆yt−15]× I(∆12yt−1 > 0.268),

(0.09) (0.09) (6.4)

where ∆yt = yt − yt−1, ∆12yt = yt − yt−12, σ̂2
0n = 0.03407, and σ̂2

1n = 0.03412,

and Di,t is monthly dummy variable where Di,t = 1 if observation t corresponds

to month i and Di,t = 0 otherwise. From the data, we obtained σ̂∆12yt−1
= 1.35,

giving ŝn = 17.15. The results of testing H0 (i.e., (6.3)) are summarized in

Table 10. From Table 10, we reject (6.3) at 0.1 significance level and do not

http://swopec.hhs.se/hastef/abs/hastef0380.htm
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Table 10. Testing (6.3). (NR = not rejected, R = rejected).

α = 0.1 α = 0.05 α = 0.01 p-value
Decision R NR NR 0.075

Table 11. Testing (6.4). (NR = not rejected, R = rejected).

s̄ α = 0.1 α = 0.05 α = 0.01 p-value
15 NR NR NR 0.99

Decision 30 NR NR NR 0.99
45 NR NR NR 0.99

reject it at the 0.05 and 0.01 levels, and the p-value is 0.075. Then we tested

under H̃0 and chose s̄ = 15, 30 and 45, respectively. The results are summarized

in Table 11. From Table 11, we do not reject (6.4) at any of the three levels

for each s̄, with the p-value of 0.99 for each s̄. The rejection of the STAR

model at 0.1 significance level and no rejection of the TAR model at any of the

significance lever could suggest that a TAR model is more plausible, in line with

the conclusion by Ekner and Nejstgaard (2013). They found that, for the STAR

model, the profile likelihood of the s parameter is rather flat and the maximum

occurs at a rather large value of s, and the concluded that ‘a large and imprecise

estimate of s implies that the LSTAR model is effectively a TAR model.’

7. Proofs of Theorems 1–2

To prove Theorems 1 and 2, we need a lemma. Its proofs can be found in

the supplementary material.

Lemma 1. Let {Xt} be a strictly stationary and ergodic process, f(Xt, θ) be a

measurable function with respect to Xt, and θ ∈ Θ, a compact set in Rd for some

integer d > 0.

(i) If E supθ∈Θ |f(Xt, θ)| <∞, f(Xt, θ) is continuous in θ and satisfies Assump-

tion 3, with replacing ‖Xt‖2 by |f(Xt, θ)|, then for any ε > 0, there exists an

η > 0 such that

lim
n→∞

P

 sup
‖θ−θ0‖≤η
|r−r0|≤η

1

n

∣∣∣∣∣
n∑
t=1

{f(Xt, θ)I(qt ≤ r)− f(Xt, θ0)I(qt ≤ r0)}

∣∣∣∣∣ ≥ ε
= 0;

(7.1)

(ii) If f(Xt, θ) satisfies Assumption 3 with ‖Xt‖ and Γ replaced by |f(Xt, θ)| and

[0,M/
√
n] for any θ ∈ Θ and M > 0, respectively, and qt ∈ Fpt , has a bounded,
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continuous and positive density fq(x) on R, then for any ε > 0 and θ0 ∈ Θ,

lim
n→∞

P

(
sup

0≤r≤M/
√
n

1√
n

∣∣∣∣∣
n∑
t=1

f(Xt, θ0)I(0 < qt ≤ r)εt

∣∣∣∣∣ ≥ ε
)

= 0, (7.2)

where {εt} is an i.i.d. sequence independent of Ft with mean zero and finite

variance.

Proof of Theorem 1. Under H0, by Taylor’s expansion, we have

εt(λ̂n) = εt(λ0) +
∂εt(λnt)

∂λ′
(λ̂n − λ0) = εt +

1√
n

∂εt(λnt)

∂λ′
√
n(λ̂n − λ0), (7.3)

where λnt lies between λ̂n and λ0 for each t. Then, it follows that

1√
n

∂L(0, λ̂n)

∂δ
=− 1√

n

n∑
t=1

X ′t−1θ̂2nDt(r̂n, ŝn)εt

− 1

n

n∑
t=1

X ′t−1θ̂2nDt(r̂n, ŝn)
∂εt(λnt)

∂λ′
√
n(λ̂n − λ0)

=− 1√
n

n∑
t=1

X ′t−1θ̂2nDt(r̂n, ŝn)εt

− 1

n

n∑
t=1

X ′t−1θ̂2nDt(r̂n, ŝn)
∂εt(λ̂n)

∂λ′
√
n(λ̂n − λ0) +Rn, (7.4)

where

Rn =
1

n

n∑
t=1

X ′t−1θ̂2nDt(r̂n, ŝn)

{
∂εt(λ̂n)

∂λ′
− ∂εt(λnt)

∂λ′

}
√
n(λ̂n − λ0)

=
1

n3/2

n∑
t=1

X ′t−1θ̂2nDt(r̂n, ŝn)
√
n(λ̂n − λnt)′

∂2εt(λ
∗
nt)

∂λ∂λ′
√
n(λ̂n − λ0), (7.5)

where λ∗nt lies between λ̂n and λnt for each t. By Assumptions 1–4 and the defini-

tion of λnt in (7.3),
√
n(λ̂n − λ0) = Op(1), supt≤n

√
n|λ̂n − λnt| ≤

√
n|λ̂n − λ0| =

Op(1). For any matrix or vector A = (aij), let |A| = (|aij |). By Assump-

tion 6(iii)–(iv),

|Rn| ≤
√
n|(λ̂n − λ0)′| 1

n3/2

n∑
t=1

|X ′t−1θ̂2nDt(r̂n, ŝn)|
∣∣∣∣∂2εt(λ

∗
nt)

∂λ∂λ′

∣∣∣∣ |√n(λ̂n − λ0)|

≤
√
n|(λ̂n − λ0)′| K

n3/2

n∑
t=1

|X ′t−1θ̂2nDt(r̂n, ŝn)||M(Xt−1, qt−1)||
√
n(λ̂n − λ0)|,

where
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M(Xt−1, qt−1) =

(
0 0
0 P (Xt−1, qt−1)

)
(2p+4)×(2p+4)

,

with

P (Xt−1, qt−1) =

 0 |Xt−1||qt−1|α1 |Xt−1||qt−1|α2

|X ′t−1||qt−1|α1 ‖Xt−1‖|qt−1|α3 ‖Xt−1‖|qt−1|α

|X ′t−1||qt−1|α1 ‖Xt−1‖|qt−1|α ‖Xt−1‖|qt−1|α4


(p+3)×(p+3)

.

By Assumption 4 and Lemma 1(i) it is not hard to show that

1

n3/2

n∑
t=1

|X ′t−1θ̂2nDt(r̂n, ŝn)||M(Xt−1, qt−1)| = op(1).

Thus,

Rn = op(1). (7.6)

Consider the first term on the right-hand side of (7.4). Let ξ = (θ′2, s, r)
′ and gt(ξ)

= X ′t−1θ2G(qt−1, s, r). By Taylor’s expansion, Assumption 4, and Lemma 1(i),

we can show that, for some ξ∗n lying between ξ̂n and ξ0,

1√
n

n∑
t=1

gt(ξ̂n)εt =
1√
n

n∑
t=1

gt(ξ0)εt+

{
1

n

n∑
t=1

∂gt(ξ
∗
n)

∂ξ′
εt

}
√
n(ξ̂n−ξ0)

=
1√
n

n∑
t=1

gt(ξ0)εt + op(1), (7.7)

1√
n

n∑
t=1

X ′t−1θ̂2nI(qt−1 > r̂n)εt =
1√
n

n∑
t=1

X ′t−1θ20I(qt−1 > r̂n)εt

+

{
1

n

n∑
t=1

X ′t−1I(qt−1 > r̂n)εt

}
√
n(θ̂2n − θ0)

=
1√
n

n∑
t=1

X ′t−1θ20I(qt−1 > r̂n)εt + op(1). (7.8)

By Lemma 1(ii) and Assumption 4, we can also show that

1√
n

n∑
t=1

X ′t−1θ20I(qt−1 > r̂n)εt =
1√
n

n∑
t=1

X ′t−1θ20I(qt−1 > r0)εt + op(1). (7.9)

By (7.4), (7.6)–(7.9), Assumption 4, and Lemma 1(i), it follows that

1√
n

∂L(0, λ̂n)

∂δ
=− 1√

n

n∑
t=1

X ′t−1θ20Dt(r0, s0)εt
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+

{
1

n

n∑
t=1

X ′t−1θ20Dt(r0, s0)
∂εt(λ0)

∂λ′

}
Σ−1

1

1√
n

n∑
t=1

∂εt(λ0)

∂λ
εt

+ op(1). (7.10)

By the Ergodic Theorem and Central Limit Theorem, we have

1√
n

∂L(0, λ̂n)

∂δ
−→L N(0, σ2ω2), (7.11)

Assumption 6 and the condition E‖Xt−1‖2(|qt−1|2κ + 1) <∞ can guarantee the

existence of ω2. By (3.2), Assumption 4, Lemma 1(i), and the Ergodic Theorem,

− 1

n

∂2L(0, λ̂n)

∂2δ
→p E{θ′20Xt−1X

′
t−1θ20D

2
t (r0, s0)} = ω1. (7.12)

By (3.3), (7.11)–(7.12), σ̂2
0n →p σ

2, ω̂1n →p ω1, ω̂2n →p ω2, and Slutsky’s theo-

rem, we have
T1n

σ̂2
0n

ω̂1n

ω̂2n
−→L χ2

1,

as n→∞. This completes the proof.

Proof of Theorem 2. With a similar argument, for a fixed s ∈ [1/s̄, s̄], we re-

place εt(λ̂n) with εt(θ̂n, r̂n) and take the derivatives with respect to θ in (7.3),

∂εt(θ, r̂n)/∂θ′ does not depend on θ anymore. Write Vt(r) = ∂εt(θ, r)/∂θ. By

Assumption 5, r̂n − r0 = Op(1/n), and, by (S2.2) and the uniform boundedness

of Dt(r, s), it is not hard to show that

sup
s∈[1/s̄,s̄]

∣∣∣∣∣ 1√
n

n∑
t=1

X ′t−1θ̂2nDt(r̂n, s){εt(θ0, r̂n)− εt}

∣∣∣∣∣ = op(1).

Then, for each s ∈ [1/s̄, s̄], it follows that

1√
n

∂L(1, θ̂n, s, r̂n)

∂δ
=− 1√

n

n∑
t=1

X ′t−1θ̂2nDt(r̂n, s)εt

−

{
1

n

n∑
t=1

X ′t−1θ̂2nDt(r̂n, s)Vt(r̂n)′

}
√
n(θ̂n − θ0) + op(1),

(7.13)

where op(1) holds uniformly in s ∈ [1/s̄, s̄], as n→∞.

Consider the first term on the right-hand side of (7.13). Let ζ = (θ′2, r)
′ and

gt(ζ, s) = X ′t−1θ2Gt(qt−1, s, r). Then,

1√
n

n∑
t=1

X ′t−1θ̂2nG(qt−1, s, r̂n)εt
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=
1√
n

n∑
t=1

gt(ζ0, s)εt +

{
1

n

n∑
t=1

∂gt(ζ
∗
n, s)

∂ζ ′
εt

}
√
n(ζ̂n − ζ0) (7.14)

where ζ∗n lies between ζ̂n and ζ0, and

∂gt(ζ
∗
n, s)

∂ζ ′
=

{
X ′t−1G(qt−1, s, r

∗
n), X ′t−1θ

∗
2n

∂G(qt−1, s, r
∗
n)

∂r

}
.

By Assumption 6, we can show that for any s, τ ∈ [1/s̄, s̄],∣∣∣∣∂gt(ζ∗n, s)∂ζ ′
− ∂gt(ζ

∗
n, τ)

∂ζ ′

∣∣∣∣ ≤ K(|X ′t−1|(|qt−1|α1 + 1), ‖Xt−1‖(|qt−1|α4 + 1))|s− τ |

, Jt|s− τ |, (7.15)

where Jt is strictly stationary and ergodic. Let ∆(η) = {(θ2, r) : ‖θ2 − θ0‖ +

|r − r0| ≤ η}. By (7.15), a standard piecewise argument on s ∈ [1/s̄, s̄] and

Lemma 1(i), we can show that

sup
s∈[1/s̄,s̄]

sup
∆(η)

∣∣∣∣∣ 1n
n∑
t=1

∂gt(ζ, s)

∂ζ ′
εt −

1

n

n∑
t=1

∂gt(ζ0, s)

∂ζ ′
εt

∣∣∣∣∣ = op(1), (7.16)

for η small enough. By the Ergodic Theorem, (7.15) and a standard piecewise

argument as Lemma A.1 in Francq, Horváth and Zaköıan (2010),

sup
s∈[1/s̄,s̄]

∣∣∣∣∣ 1n
n∑
t=1

∂gt(ζ0, s)

∂ζ ′
εt

∣∣∣∣∣ = op(1). (7.17)

By Assumption 5, (7.16) and (7.17), it follows that

sup
s∈[1/s̄,s̄]

∣∣∣∣∣ 1n
n∑
t=1

∂gt(ζ
∗
n, s)

∂ζ ′
εt

∣∣∣∣∣ = op(1). (7.18)

By Assumption 5, (S2.2), and a similar argument as (7.9), we have

1√
n

n∑
t=1

X ′t−1θ̂2nI(qt−1 > r̂n)εt =
1√
n

n∑
t=1

X ′t−1θ20I(qt−1 > r0)εt + op(1). (7.19)

By (7.14) and (7.18)–(7.19), it follows that

1√
n

n∑
t=1

X ′t−1θ̂2nDt(r̂n, s)εt =
1√
n

n∑
t=1

X ′t−1θ20Dt(r0, s)εt + op(1), (7.20)

where op(1) holds uniformly in s ∈ [1/s̄, s̄].

Consider the second term on the right-hand side of (7.13). Let Bt(θ2, r, s) =

X ′t−1θ2Dt(r, s)V (r)′. By Assumption 6, for any s, τ ∈ [1/s̄, s̄] and each θ2 and r,

by Taylor’s expansion, we have
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|Bt(θ2, r, s)−Bt(θ2, r, τ)|2 ≤ K|X ′t−1θ2Vt(r)
′|(|qt−1|α1 + 1)|s− τ | = Qt|s− τ |.

(7.21)

where Qt is strictly stationary and ergodic.

By Lemma 7.1(i), a standard piecewise argument on s ∈ [1/s̄, s̄] and (7.21),

we can show that for any ε > 0, there exits an η > 0 such that

lim
n→∞

P

(
sup

s∈[1/s̄,s̄]
sup
∆(η)

1

n

∣∣∣∣∣
n∑
t=1

{Bt(θ2, r, s)−Bt(θ20, r0, s)}

∣∣∣∣∣ ≥ ε
)

= 0. (7.22)

By Assumption 5, (7.20), and (7.22), (7.13) reduces to

1√
n

∂L(1, θ̂n, s, r̂n)

∂δ
=− 1√

n

n∑
t=1

X ′t−1θ20Dt(r0, s)εt

+

{
1

n

n∑
t=1

X ′t−1θ20Dt(r0, s)Vt(r0)′

}
Σ−1

2

1√
n

n∑
t=1

Vt(r0)εt

+ op(1)

, u1n(s) + u2n(s) + op(1), (7.23)

where op(1) holds uniformly in s ∈ [1/s̄, s̄].

To prove (a), first, we prove the convergence of the finite-dimensional dis-

tributions. Note that the sequence in (7.23) are square-integrable stationary

martingale differences. The conclusion follows from the central limit theorem of

Billingsley (1961),

Then, we show that the sequence is tight. By the independence between εt
and Xt−1, and Assumption 6, for some s̃1, s̃2 between s and τ in [1/s̄, s̄], we

have,

E{u1n(s)−u1n(τ)}2 =E(Xt−1θ20)2

{
∂G(qt−1, s̃1, r0)

∂s

}2

(s− τ)2σ2

≤ K2E(Xt−1θ20)2(|qt−1|α1 + 1)2(s− τ)2σ2

≤ K(s− τ)2, (7.24)

E{u2n(s)−u2n(τ)}2 =E

[{
1

n

n∑
t=1

X ′t−1θ20
∂G(qt−1, s̃2, r0)

∂s
Vt(r0)′

}
Σ−1

2

{
1

n

n∑
t=1

X ′t−1θ20

× ∂G(qt−1, s̃2, r0)

∂s
Vt(r0)

}]
(s− τ)2σ2

≤ K(s− τ)2σ2, (7.25)

where (7.25) holds by Assumption 6(ii) and the Ergodic Theorem. The existence

of the expectations can be guaranteed by E‖Xt−1‖2(|qt−1|2α1 + 1) <∞.
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By (7.24) and (7.25), the tightness follows from Theorem 12.3 of Billingsley

(1968). By the Central Limit Theorem and the Ergodic Theorem, the form of

the limiting Gaussian process follows immediately from (7.32). Thus, (a) holds.

To prove (b), by (3.5), let Zt(θ2, r, s) = θ′2Xt−1Xt−1θ
′
2D

2
t (r, s). Then, by

Taylor’s expansion and for some s̃3 ∈ [τ, s],

|Zt(θ2, r, s)− Zt(θ2, r, τ)| = 2|θ′2Xt−1X
′
t−1θ2Dt(r, s)

∥∥∥∥∂G(qt−1, s̃3, r)

∂s

∥∥∥∥ s− τ |
≤ 2K|θ′2Xt−1X

′
t−1θ2|(|qt−1|α1 + 1)|s− τ |

, At(θ2)|s− τ |, (7.26)

where At(θ2) is strictly stationary and ergodic. By (7.26), Lemma 1(i), and a

standard piecewise argument on s ∈ [1/s̄, s̄], it is not hard to show that, for any

ε > 0, there exists an η > 0 such that

lim
n→∞

P

(
sup

s∈[1/s̄,s̄]
sup
∆(η)

1

n

∣∣∣∣∣
n∑
t=1

{Zt(θ2, r, s)− Zt(θ20, r0, s)}| ≥ ε

)
= 0. (7.27)

By (7.26), the Ergodic Theorem and a similar standard piecewise argument on

s ∈ [1/s̄, s̄] or Lemma A.1 in Francq, Horváth and Zaköıan (2010), we can show

that

sup
s∈[1/s̄,s̄]

∣∣∣∣∣ 1n
n∑
t=1

Zt(θ20, r0, s)− ω(s)

∣∣∣∣∣ = op(1), (7.28)

where ω(s) is defined in Theorem 2. By Assumption 5, (b) follows from (7.27)

and (7.28). This completes the proof.

Supplementary Materials

Owing to space constraint, a discussion of some nested tests, the proofs

of Theorems 3–4 and some related tables are provided in the supplementary

material.
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