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Abstract: This paper considers testing for two-sample covariance matrices of high-

dimensional populations. We formulate a multiple test procedure by comparing

the super-diagonals of the covariance matrices. The asymptotic distributions of

the test statistics are derived and the powers of individual tests are studied. The

test statistics, by focusing on the super-diagonals, have smaller variation than the

existing tests that target on the entire covariance matrix. The advantage of the

proposed test is demonstrated by simulation studies, as well as an empirical study

on a prostate cancer dataset.
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1. Introduction

With the advent of the information technology used for data collection, data

whose dimensionality is much larger than the sample sizes are increasingly en-

countered in statistical analyses. Conventional statistical inference methods pro-

posed under this setting, and their performance under the paradigm of high di-

mensionality, require investigation and update. Thus, in checking on the equal-

ity of two multivariate distributions in the study of certain treatment effects,

Hotelling’s test for the means (Hotelling (1931)) has shortcomings in a high-

dimensional setting, as shown in Bai and Saranadasa (1996) who proposed a

modification that removes the inverse of the sample covariance (Sn) from the

original test statistic. Srivastava and Du (2008) considered using the diagonal

matrix of Sn to replace Sn, and Chen and Qin (2010) suggested using U-statistics.

See also Cai, Liu and Xia (2014) for a test based on the maximal norm, and

Hall and Jin (2009) that utilizes the dependence to enhance the signal strength

of the testing problem.

Testing for the equality of two covariance matrices constitutes another way

for checking on the equality of the two distributions by focusing on the depen-

dence structure. For instance, one determines if pooling of the two sample vari-
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ances can be exercised in linear discriminant analysis and Hotelling’s test for the

two-sample means. Let X1 and X2 be generic p-dimensional random vectors from

two populations with respective covariance matrices Σ1 and Σ2. Let {X1,j}n1

j=1

be independent and identically distributed (i.i.d.) copies of X1 and {X2,j}n2

j=1 be

i.i.d. copies of X2 that are mutually independent.

The primary interest of this paper is in testing

H0 : Σ1 = Σ2 vs. H1 : Σ1 6= Σ2. (1.1)

In the conventional fixed-dimensional setting, the testing problem had been well

studied in classical multivariate analysis, as summarized in Anderson (2003) and

Muirhead (1982), which include the likelihood ratio tests and related formula-

tions as investigated in John (1972), Nagao (1973), and Gupta and Tang (1984).

However, these conventional methods may no longer be valid under the high-

dimensional setting. Here, Bai et al. (2009) found that the two-sample likelihood

ratio test (LRT) is not consistent due to a bias caused by the inconsistency of

the sample covariance estimator (Bai and Yin (1993); Johnstone (2001)).

Two sample covariance testing in high dimensions has attracted much at-

tention in the last decade or so. Schott (2007) proposed a test that targeted

the Frobenius norm of Σ1 − Σ2 for p/ni → ci ∈ [0,∞), i = 1, 2, with Gaussian

distributed data. Bai et al. (2009) developed a corrected LRT under p/ni → ci ∈
(0, 1). For much higher dimensionality, Srivastava and Yanagihara (2010) consid-

ered a test based on a consistent estimator of tr(Σ2
1)/{tr(Σ1)}2−tr(Σ2

2)/{tr(Σ2)}2,
also for Gaussian data. Li and Chen (2012) suggested using U-statistics as the

test statistic, which is an unbiased estimator of the Frobenius norm of Σ1 − Σ2.

Cai, Liu and Xia (2013) introduced a test statistic defined as the maximum of

standardized element-wise differences between the two sample covariance matri-

ces. The last two tests are nonparametric, allowing flexible data distributions of

the two populations.

We develop a test for (1.1) by targeting the differences in the super-diagonals

between the two covariance matrices. For a square matrix (ai,j)p×p, we define

the l-th super-diagonal consisting of the matrix elements {ak,k+`}p−`k=1 for ` =

1, . . . , p−1, which is broader than only referring to those elements directly above

the main diagonal. The main diagonal corresponds to ` = 0. The purpose of

designing the test in such a fashion is to re-distribute the dimensionality of the

testing problem for power gains. Most of the existing tests tend to focus on

the entire difference between Σ1 and Σ2 where the test statistics gather the

variation from all the components in the high-dimensional covariance matrices.
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This accumulation of variance can be severe due to the high dimensionality, and

hence can undermine the power of the tests.

The proposed test is formulated by first conducting two-sample tests on the

super-diagonals followed by a simultaneous test over multiple super-diagonals

to produce an overall test rule. The simultaneous test is facilitated by using

a multiple testing procedure advocated in Benjamini and Hochberg (1995) and

Storey, Taylor and Siegmund (2004). The test statistic on each super-diagonal is

of a smaller dimension than those based on the whole Σ1−Σ2 matrix, as the size

of each super-diagonal is no more than p whereas the size of Σ1−Σ2 is of order p2.

Although the overall dimensionality involved in the test is not necessarily less if

we combine the two stages of the formulation, the lower dimensionality in the first

stage brings in more power. The power of the proposed test dominates especially

when Σ1 and Σ2 have a “bandable” structure and the differences between them

are sparse in terms of super-diagonals, as compared with the tests of Srivastava

and Yanagihara (2010), Li and Chen (2012) and Cai, Liu and Xia (2013).

The rest of this paper is structured as follows. Section 2 provides the no-

tation and technical assumptions, and introduces the test statistics. Section 3

investigates the theoretical properties of the proposed test. Section 4 studies

its numerical performance. Section 5 reports an analysis on a prostate cancer

dataset. Proofs of the main results are in the supplementary document.

2. Preliminaries

Let {Xi,1, . . . ,Xi,ni
} be i.i.d. samples from populations Xi for i = 1 and 2,

where Xi,j = (Xi,j,1, . . . ,Xi,j,p)
>, j = 1, . . . , ni, is a p-dimensional random vector

with mean vector µi and covariance matrix Σi = (σi,k,`)p×p.

Let Sq =
∑p−q

s=1(σ1,s,s+q − σ2,s,s+q)2 measure the difference between the q-

th super-diagonal of Σ1 and Σ2 for q = 0, . . . , p − 1, where q = 0 stands for

the main diagonal. Let Di,q =
∑p−q

s=1 σ
2
i,s,s+q for i = 1 and 2, and Dc,q =∑p−q

s=1 σ1,s,s+qσ2,s,s+q. It can be shown that Sq = D1,q + D2,q − 2Dc,q. We will

first develop a test procedure for testing H0,q : Sq = 0 versus H1,q : Sq > 0 that

facilitates a two-sample test on the covariance matrices via multiple testing of

H0,q over a range of q.

We first propose an unbiased estimator of Sq for the q-th super-diagonal by

constructing unbiased estimators of D1,q, D2,q and Dc,q, respectively. Motivated

by the unbiasedness and other attractive properties of U-statistics, we propose

linear combinations of U-statistics,
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D̂i,nq =

p−q∑
s=1

{
1

P 2
ni

∗∑
j,k

(Xi,j,sXi,j,s+q)(Xi,k,sXi,k,s+q)

− 2

P 3
ni

∗∑
j,k,`

Xi,j,sXi,k,s+q(Xi,`,sXi,`,s+q)

+
1

P 4
ni

∗∑
j,k,`,m

Xi,j,sXi,k,s+qXi,`,sXi,m,s+q

}
(2.1)

for i = 1 and 2, and

D̂c,nq =

p−q∑
s=1

{
1

n1n2

n1∑
j=1

n2∑
k=1

(X1,j,sX1,j,s+q)(X2,k,sX2,k,s+q)

− 1

n1n2(n1 − 1)

∗∑
j,k

n2∑
`=1

X1,j,sX1,k,s+q(X2,`,sX2,`,s+q)

− 1

n1n2(n2 − 1)

n1∑
`=1

∗∑
j,k

(X1,`,sX1,`,s+q)X2,j,sX2,k,s+q

+
1

n1n2(n1 − 1)(n2 − 1)

∗∑
j,k

∗∑
`,m

X1,j,sX1,k,s+qX2,`,sX2,m,s+q

}
, (2.2)

where
∗∑

denotes the summation over mutually distinct subscripts and P bn =

n!/(n− b)!. Thus, Ŝnq is given by

Ŝnq = D̂1,nq + D̂2,nq − 2D̂c,nq, (2.3)

To quantify the variance of Ŝnq, we define Ys1,s2
i,j = Xi,j,s1Xi,j,s2 − σi,s1,s2 and

a (p− q)× 1 random vector

Yi,j(q) =
(

Y1,1+q
i,j , . . . ,Y

(p−q),p
i,j

)>
for each q. Let the covariance matrix of Yi,j(q) be Wi,q = (ωs1,s2i,q )(p−q)×(p−q),

where ωs1,s2i,q = Cov(Ys1,s1+q
i,j ,Ys2,s2+q

i,j ). For each given i and q, {Yi,j(q)}ni

j=1 are

i.i.d..

As the components of the data vectors concerned may be dependent, we use

the notion of α-mixing (Doukhan (1994)) to measure the degree of the depen-

dence. The α-mixing coefficient for the generic Xi = (Xi,1, . . . ,Xi,p)
>, i = 1, 2, is

αXi
(k) ≡ sup

m

{
|Pr(A ∩B)− Pr(A) Pr(B)| : A ∈ Gm1 , B ∈ G

p
m+k

}
,

where Gba denotes the σ-algebra generated by {Xi,a, . . . ,Xi,b} for a ≤ b.
Denote the minimum and maximum eigenvalues of a matrix A by λmin(A)
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and λmax(A), respectively. For two nonrandom sequences {an} and {bn}, we

write an � bn if there exist constants 0 < c < C such that c|bn| ≤ |an| ≤
C|bn|. Throughout, c, C and M with or without subscripts denote positive

constants whose values do not depend on any parameter. We need some technical

assumptions.

(C1) As n = min{n1, n2} → ∞, n1/(n1+n2)→ c for a fixed positive constant

c ∈ (0, 1) and p = p(n1, n2)→∞.

(C2) For i = 1, 2, λmin(Σi) ≥ c0 > 0.

(C3) There are positive constants c and β ∈ (1,∞) such that the α-mixing

coefficient αXi
(k) ≤ ck−β for i = 1, 2.

(C4) There exists a p × m constant matrix Γi = (Γi,j,`)p×m such that

Xi,j = ΓiZi,j and ΓiΓ
T
i = Σi for some m ≥ p, and Zi,1, . . ., Zi,ni

are i.i.d.

m-dimensional random vectors with zero mean and identity covariance matrix.

If Zi,j = (Zi,j,1, . . . ,Zi,j,m)T , the Zi,j,` have uniformly bounded eighth moments,

and, for distinct subscripts j1, . . . , js and any integers `ν ≥ 0 with
∑s

ν=1 `ν ≤ 8,

E(Z`1i,1,j1Z
`2
i,1,j2
· · ·Z`si,1,js) = E(Z`1i,1,j1)E(Z`2i,1,j2) · · ·E(Z`si,1,js). (2.4)

(C5) for each fixed q, tr(W 2
i,q) � p− q and tr(W1,qW2,q) � p− q.

The first part of (C1) is a standard condition in the two-sample asymptotic

analysis that prescribes that the two sample sizes are comparable asymptotically.

The asymptotic mechanism of p in (C1) allows it to be much larger than the

sample sizes.

Under (C3), Σ1 and Σ2 are “bandable” in the magnitude of the average

squared elements on the super-diagonals. To appreciate this, let hq = Sq/(p− q)
be the average squares of the qth super-diagonal elements of Σ1−Σ2. According

to Lemma 1 in the supplementary document, for each given q, hq ≤ Cq−β, which

indicates that hq is bounded by a polynomial rate of q. Hence,
∑

q>k h(q) → 0

as k → ∞ and p → ∞. This condition is similar to the “bandable” condition

in Bickel and Levina (2008). Our proposal does not require a banded structure

for the Σis as does Qiu and Chen (2012). We only assume a gradual decay

of dependence among the components of the data vectors. Similar pattern of

dependence structure was also considered in Qiu and Chen (2015). In fact, we

only need assume that there is a permutation of the data components under

which (C3) is satisfied. In practice, we can employ algorithms, for instance that

proposed in Friendly (2002) to re-arrange the data vector to make it bandable.

Under (C3) and (C4), the eigenvalues of Σi are uniformly bounded from

above, as shown in Lemma 2 in the supplementary document. This, along with
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(C2), implies that the eigenvalues of Σi are uniformly bounded from below and

above. Bounded eigenvalues assumptions are common in the literature of high-

dimensional covariance inference, for instance in Bickel and Levina (2008) and

Cai, Zhang and Zhou (2010). As the proposed test targets the super-diagonals

rather than the whole covariance matrices, the bounded eigenvalues assumption

can be relaxed at the expense of much more complicated derivations.

Assumption (C4) is in Bai and Saranadasa (1996), Li and Chen (2012) and

Qiu and Chen (2012); it gives a general multivariate model for generating high-

dimensional data with a wide range of multivariate distributions for Xi,j . Con-

dition (2.4) prescribes factorization of the moments of products to products of

moments so that it can be viewed as a pseudo-independent condition of Zi,j .

Trackable expressions of higher order cross moments of Xi,j can be obtained

under this condition. It can be shown that, under the bounded eigenvalues

assumption and (C4), the Xi,j,` have uniformly bounded eighth moment. As-

sumption (C5) is used in the asymptotic analysis of Ŝnq and is a mild condition.

Under (C2) to (C4), Lemma 2 in the supplementary document shows that the

eigenvalues of Wi,q are also uniformly bounded from above. Assumption (C5)

allows a small fraction of eigenvalues of Wi,q to be zero.

Assumptions (C2) to (C5) implicitly impose restrictions on the extent of

dimensionality and the dependence. Examples satisfying these conditions can be

found in time series and spatial data, in which the covariances decay as the time

interval or the distance grows.

According to Proposition 1 in Section 3, Ŝnq is an unbiased estimator to

Sq and is location-shift invariant. Thus, without loss of generality, we assume

µ1 = µ2 = 0 in the rest of the paper.

3. Main Results

In this section, we establish the limiting distribution of Ŝnq that target the

super-diagonals of the covariance matrices, followed by an analysis on the power

of the test.

We first establish the mean and the variance of Ŝnq defined in (2.3). Let

Ji,q = (σi,1,(1+q), . . . , σi,(p−q),p)
>, for i = 1, 2, Jq = J1,q − J2,q, and

V 2
nq =

4

n1
J>q W1,qJq +

4

n2
J>q W2,qJq +

2

n1(n1 − 1)
tr(W 2

1,q)

+
2

n2(n2 − 1)
tr(W 2

2,q) +
4

n1n2
tr(W1,qW2,q). (3.1)
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Proposition 1. Under the Assumptions (C1) - (C5), for q = 0, 1, . . . , p− 1,

E(Ŝnq) = Sq and Var(Ŝnq) = V 2
nq + o

(
V 2
nq

)
.

Under H0,q, E(Ŝnq) = 0 and Jq = 0. Hence, Proposition 1 implies that the

leading order variance V 2
nq is

V 2
0,nq =

2

n1(n1 − 1)
tr(W 2

1,q) +
2

n2(n2 − 1)
tr(W 2

2,q) +
4

n1n2
tr(W1,qW2,q).

In order to formulate a test procedure, we need to estimate V 2
0,nq. Motivated by

Chen, Zhang and Zhong (2010), we consider the estimator

V̂ 2
0,nq =

2

n1(n1 − 1)
R1,nq +

2

n2(n2 − 1)
R2,nq +

4

n1n2
Rc,nq, (3.2)

where

Ri,nq =
1

P 2
ni

∗∑
j,k

{
Ŷi,j(q)

>Ŷi,k(q)
}2

for i = 1 and 2, and

Rc,nq =
1

n1n2

n1∑
j=1

n2∑
k=1

p−q∑
s1,s2=1

(
Ŷs1,s1+q

1,j Ŷs2,s2+q
1,j

)(
Ŷs1,s1+q

2,k Ŷs2,s2+q
2,k

)
with Ŷi,j(q) =

(
Ŷ1,1+q
i,j , . . . , Ŷ

(p−q),p
i,j

)>
, Ŷs,s+q

i,j = (Xi,j,s− X̄i,s)(Xi,j,s+q − X̄i,s+q)

− σ̂i,s,s+q, and σ̂i,s,s+q is the sample covariance based on the ith population.

The subtraction of the sample mean X̄i,s and X̄i,s+q in the definition of Ŷs,s+q
i,j

maintains the consistency of V̂ 2
0,nq to V 2

0,nq when µi 6= 0. The consistency of

V̂ 2
0,nq is established in the following proposition, which is valid beyond the null

hypothesis.

Proposition 2. Under Assumptions (C1) - (C5), for q = o(p), V̂ 2
0,nq/V

2
0,nq

p→ 1

as n→∞ and p→∞.

Theorem 1. Under the Assumptions (C1) - (C5), for q = o(p), as n→∞ and

p→∞,

V −1nq

(
Ŝnq − Sq

)
d→ N (0, 1).

The theorem only covers the case of q = o(p). For q being a larger order

of o(p), for instance q/p → c ∈ (0, 1), conditions (A.29) and (A.30) used in

establishing the martingale central limit theorem (given in the supplementary

document) for Ŝnq cannot be guaranteed. This means that it is uncertain whether

the asymptotic normality in Theorem 1 is valid. Given this reality, we consider

testing over N super-diagonals where N → ∞ gradually so that N = o(p) is

maintained.
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Theorem 1 indicates that under H0,q, Ŝnq/V̂0,nq
d→ N (0, 1) as n, p → ∞,

according to Theorem 1 and Proposition 2. This facilitates a test at a nominal

α level of significance which rejects H0,q if

Ŝnq > z1−αV̂0,nq, for q = o(p), (3.3)

where z1−α is the 1− α quantile of N (0, 1).

Next, we evaluate the power of the test since the asymptotic normality in

Theorem 1 is also valid under H1,q : Sq > 0. Let βnp,q(α) denote the power of the

test given in (3.3), and δnp,q = Sq/Vnq. Since Sq represents the signal strength on

the q-th super-diagonal and Vnq is the level of noise of Ŝnq, δnp,q can be viewed

as the signal to noise ratio for the individual test problem. Under H1,q, we have

βnp,q(α) = Pr

(
Ŝnq − Sq
Vnq

> z1−α
V̂0,nq
Vnq

− δnp,q

)
.

According to (3.1), V 2
nq ≥ V 2

0,nq for large n since W1,q and W2,q are nonnegative

definite. Hence,

βnp,q(α) ≥ Pr

(
Ŝnq − Sq
Vnq

> z1−α
V̂0,nq
V0,nq

− δnp,q

)
. (3.4)

Theorem 2. Under Assumptions (C1) - (C5) and H1,q : Sq > 0, for q = o(p),

lim inf
n,p→∞

βnp,q(α) ≥ 1− Φ

(
z1−α − lim inf

n,p→∞
δnp,q

)
.

The signal to noise ratio δnp,q is a key quantity in determining the power of

the individual test in Theorem 2. If δnp,q diverges to infinity, the power of the

test converges to one, implying the consistency of the test. To quantify δnp,q, we

first specify the order of V 2
nq under three regimes.

(i) V 2
nq � (p− q)/n, for q = o(n1/β);

(ii) V 2
nq � (p− q)/n, for q such that q−β � 1/n; and

(iii) V 2
nq � (p− q)/n2, for q such that n1/β = o(q) and q = o(p).

Detailed analysis for the order of V 2
nq can be found in the proof of Proposition 1

in the supplementary document.

With hq = Sq/(p − q) as the average signal strength on the q-th super-

diagonal, due to different orders of V 2
nq it can be shown that

δnp,q �

{
n1/2(p− q)1/2hq for q in Regimes (i) and (ii);

n(p− q)1/2hq for q in Regime (iii).
(3.5)
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According to (3.5) and Theorem 2, the test has nontrivial power if hq is at least

of order n−1/2(p− q)−1/2 in Regimes (i) and (ii), and n−1(p− q)−1/2 in Regimes

(iii). The multipliers n1/2(p − q)1/2 and n(p − q)1/2 in these two regimes of q

compensate for the diminishing signal hq as q increases, and thus maintain the

consistency of the test. They indicate that, for a given signal level hq, not only

larger n but also larger p are beneficial to the power, since they lead to larger

δnp,q. The simulation study in Section 4 provides numerical confirmation to this

observation.

In the following we use the individual super-diagonal test to facilitate a test

for the overall hypothesis H0 : Σ1 = Σ2. This is done by testing simultaneously

the first N super-diagonals, where N = o(p) gradually diverges. The simulta-

neous testing is carried out by controlling the false discovery rate (FDR). The

reason for choosing N = o(p) is that asymptotic normality of Ŝnq is only guar-

anteed for q = o(p). As N is allowed to diverge, the test covers more and more

super-diagonals, asymptotically. Empirically, we can choose N = bCpθc for a

θ ∈ (0, 1), where bxc denotes integer truncation and C is a constant such that

Cpθ < p. We employ this approach in selecting N in the simulation and the case

study sections later in the paper.

Considering the dependence among Ŝnq at different super-diagonals, we em-

ploy the method proposed in Storey, Taylor and Siegmund (2004) to control

the FDR that extended the approach of Benjamini and Hochberg (1995) to ac-

commodate more general types of dependence. Let p1, . . . , pN be the p-values

corresponding to the hypotheses H0,1, . . . ,H0,N , respectively. Let S be the index

set of the super-diagonals which are included in the multiple testing, N0 = {q ∈
S : Sq = 0} and N1 = {q ∈ S : Sq 6= 0}. For t ∈ [0, 1], take V (t) = #{j ∈ N0 :

pj ≤ t} to be the number of false discoveries and R(t) = #{j : pj ≤ t} to be

the total number of rejected null hypotheses. Then, given a tuning parameter

λ ∈ [0, 1), an estimate of the false discovery rate at a significance threshold t

proposed in Storey, Taylor and Siegmund (2004) is

F̂DRλ(t) =
π̂0(λ)t

{R(t) ∨ 1}/N
,

where R(t)∨1 = max{R(t), 1} and π̂0(λ) = {N−R(t)}/{(1−λ)N} is an estimate

of the proportion of true nulls and N = #{j : j ∈ S}.
Given α and λ, H0,q : Sq = 0 is rejected if its corresponding p-value pq is

less than or equal to tα(F̂DRλ) = sup(0 ≤ t ≤ 1 : F̂DRλ(t) ≤ α). In addition,

if the Ŝnq are positively correlated, we can employ the Benjamini and Hochberg

(1995) procedure. Specifically, it arranges the p-values in the ascending order
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p(1) ≤ · · · ≤ p(N) for H0,(1), . . . ,H0,(N) the corresponding null hypotheses, and

we reject H0,(1), . . . ,H0,(K) where K = maxj{p(j) ≤ jα/N}. Storey, Taylor and

Siegmund (2004) has shown that their method is equivalent to the Benjamini and

Hochberg (1995) procedure by setting λ = 0. Benjamini and Hochberg’s proce-

dure is more conservative under the assumption of independent and uniformly

distributed p-values, while the same is not necessarily the case for dependent

case. The empirical powers of the proposed test with the Storey, Taylor and

Siegmund (2004) multiple test procedure and Benjamini and Hochberg (1995)

procedure are reported in the simulation study in Section 4 and the supplemen-

tary document, which show that both procedures produced largely similar test

performance.

4. Simulation Results

In this section, we study the numerical performance of the proposed test and

compare it with the tests proposed by Srivastava and Yanagihara (2010), Li and

Chen (2012) and Cai, Liu and Xia (2013). The latter three tests are denoted

respectively by SY, LC and CLX.

We first considered banded covariances where Σi = {σi,k,`I(|k − `| ≤ s)}p×p
for a bandwidth s. Under H0 : Σ1 = Σ2, we generated i.i.d. random vectors

{Xi,j}ni

j=1, i = 1, 2, from a moving average (MA) model of order 5:

Xi,j,k = Zi,j,k +

5∑
`=1

0.4Zi,j,k−`, (4.1)

where {Zi,j,k}pk=1, i = 1, 2, j = 1, . . . , ni were i.i.d. random variables from

N (0, 1) or the standardized Gamma distribution G(1, 0.5) with zero mean and

unit variance. Under (4.1), Σ1 and Σ2 are both banded with the bandwidth

s = 5. To evaluate the power, we generated the first sample from model (4.1)

and the second from the MA(4) model

Xi,j,k = Zi,j,k +

4∑
`=1

0.4Zi,j,k−`. (4.2)

Under (4.2), the covariance matrix Σ2 is banded with the bandwidth s = 4.

Thus, the Σ1 − Σ2 matrix is banded with Sq 6= 0 for only q = 0, 1, . . . , 5. The

average signals hq = Sq/(p− q) are plotted in the top left panel of Figure 5.

Then we considered covariance matrices whose elements decay at an expo-

nential rate. Under H0, Xi,j = ΓiZi,j with ΓiΓ
>
i = Σi = (σi,k,`)p×p, i = 1, 2,
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where

σi,k,` = 4I(k = `) + exp

(
−|k − `|

20

)
, for k, ` = 1, . . . , p. (4.3)

We generated i.i.d. Zi,j from the Gaussian and the Gamma distributions. The

covariance model (4.3) is commonly used in such spatial statistical models as

Cressie (1993), Lee and Yu (2010) and Rodŕıguez and Bárdossy (2014).

To evaluate the power, we first considered a banded Σ1 − Σ2 matrix with

the first ten super-diagonals nonzero and decaying at a polynomial rate. Let

U = (uk,`)p×p with

uk,` = |k − `|−0.2I(1 ≤ |k − `| ≤ 10), for k, ` = 1, . . . , p. (4.4)

Define Σ∗1 according to (4.3) and δ = |min{λmin(Σ∗1), λmin(Σ∗1 + U)}| + 0.05,

needed below to maintain the positive definiteness of covariance matrices. Let

Σ1 = Σ∗1 +δI and Σ2=̂Σ∗1 +U+δI. We generated X1,j = Γ1Z1,j with Γ1Γ
>
1 = Σ1

and X2,j = Γ2Z2,j with Γ2Γ
>
2 = Σ2. Adding δI to both covariance matrices

ensures that Σ2 − Σ1 = U . The average signals hq are shown in the top right

panel of Figure 5.

Another simulation setting had Σ1 and Σ2 different in consecutive super-

diagonal blocks exhibiting a “wave-like” super-diagonal structure. In this setup,

Let U = (uk,`)p×p be symmetric with

uk,k+q = q−1.2×ωqI(q ∈ K), for q = 0, . . . , p− 1, k = 1, . . . , p− q, (4.5)

with K the index set of super-diagonals where Σ1 and Σ2 are different, and

ωq
i.i.d.∼ Unif(0, 1) for q ∈ K is used to allow for different decay rates. For p = 50,

K = {1, . . . , 5, 11, . . . , 15}; for p = 100, K = {1, . . . , 5, 11, . . . , 15, 21, . . . , 25}; and

for p even larger, K = {1, . . . , 5, 11, . . . , 15, 21, . . . , 25, 31, . . . , b0.5p0.7c}. Still,

the first sample was generated with Σ1 = Σ∗1 + δI, Σ∗1 defined in (4.3), and the

second with Σ2 = Σ∗1+U+δI. By this definition, Σ2−Σ1 = U is denser than the

models (4.1) to (4.4), in the sense that half of the super-diagonals of Σ1−Σ2 we

considered are nonzero. For fair comparison, we only generated ωq once and used

it throughout all (n, p)-settings to maintain the same signal strengths. Figure 5

gives the average signal hq, which shows that hq is not necessarily monotone

decreasing as q grows.

We took n1 = n2 = n. To make p and n increase simultaneously, we took p

from 50 to 1,000 and considered three sample sizes for each p in all simulation

setups: n = 30, 50, 80 for p = 50; n = 50, 80, 100 for p = 100; n = 80, 100, 120

for p = 200; n = 100, 120, 150 for p = 400; n = 120, 150, 180 for p = 600; and

n = 150, 180, 200 for p = 1,000. Multiple testing procedures were implemented
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Figure 1. Empirical sizes of the individual tests H0,q : Sq = 0 for Gaussian distributed
data generated from model (4.1). The range of the horizontal axis is from q = 0 to
q = bp0.7c.
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Figure 2. Empirical sizes of the individual tests H0,q : Sq = 0 for Gaussian distributed
data generated from model (4.3). The range of the horizontal axis is from q = 0 to
q = bp0.7c.
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for H0,q : Sq = 0, q = 0, . . . , N , where N = bp0.7c, using the Storey, Taylor

and Siegmund (2004) procedure with λ = 0.5 and controlling the FDR at 0.05.

All simulation results were based on 1,000 replications. Due to a limited space,

we only report simulation results of the proposed test for the Gaussian data;

those for the Gamma-distributed innovations are reported in the supplementary

document.

Figures 1 and 2 display the empirical sizes of the individual tests H0,q : Sq = 0

for q from 0 to bp0.7c for Xi,j generated from models (4.1) and (4.3), respectively.

The empirical sizes were close to the nominal level 0.05 as n and p increase

simultaneously in both models, which indicates that the asymptotic normality

established in Theorem 1 is a good approximation for the null distribution of

Ŝnq. The individual empirical powers are shown in Figures 3 and 4 for models

(4.2) and (4.4), respectively. Larger powers in Figures 3 and 4 were observed on

the super-diagonals with larger hq shown in Figure 5, and they increased rapidly

and converged to one as n and p grew. Thus, these results are consistent with

the theoretical analyses conveyed in Theorems 1 and 2.

Tables 1 and 2 provide the empirical sizes and powers of testing H0 : Σ1 = Σ2

for models (4.2) and (4.4) respectively. For the proposed test, H0 is rejected if

there exists any H0,q : Sq = 0 rejected in the multiple test procedure. It is

observed that the empirical sizes of the proposed method were larger than 0.05

when n and p were both small, due to the error in the asymptotic distribution

for small samples. This was in accordance with the findings in Figure 1 and 2

that the individual empirical sizes were also above 0.05 when p = 50 and 100. As

n and p grow simultaneously, the sizes of the proposed test were close to 0.05.

Most of the sizes were smaller than 0.05 because the FDR controlling methods

tend to be conservative, as it controls the FDR rather than the familywise error

rate. To alleviate any advantage of the proposed test due to having a larger size,

we re-adjusted the nominal level for each (p, n)-setting so that the size of the

proposed test was the smallest among the four tests considered in the simulation

experiments. The adjusted sizes and powers are reported in the parentheses in

Tables 1 and 2. As n and p increased simultaneously, the empirical sizes of the

proposed test became much more accurate, thus the adjustment had become

smaller. Although the sizes were the smallest, the proposed test had consistently

higher powers than the other three tests. The improvement in the power was

substantial in most cases.

We observe that in both Tables 1 and 2 the powers of CLX’s test decreased as

the dimension p grew. This is because the number of nonzero elements in Σ1−Σ2
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Table 1. Empirical sizes and powers of the proposed test in conjunction with the Storey,
Taylor and Siegmund (2004) procedure and the tests of Srivastava and Yanagihara (2010)
(SY), Li and Chen (2012) (LC) and Cai, Liu and Xia (2013) (CLX) for Gaussian dis-
tributed data generated from model (4.1) for size and (4.2) for power. The multiple test
procedure is conducted by controlling the FDR at α = 0.05 and N = bp0.7c. The figures
in the parentheses are the adjusted empirical sizes and powers so that the empirical sizes
are smaller than the other three tests.

Empirical Size Empirical Power
p n SY LC CLX Proposed SY LC CLX Proposed
50 30 0.068 0.072 0.053 0.108(0.044) 0.250 0.158 0.271 0.679(0.499)

50 0.059 0.060 0.041 0.099(0.035) 0.423 0.219 0.288 0.906(0.694)
80 0.054 0.058 0.044 0.090(0.042) 0.563 0.391 0.405 0.993(0.930)

100 50 0.073 0.053 0.056 0.069(0.042) 0.502 0.240 0.269 0.989(0.921)
80 0.049 0.055 0.048 0.064(0.045) 0.746 0.412 0.349 1.000(0.990)

100 0.049 0.059 0.047 0.068(0.046) 0.854 0.520 0.409 1.000(1.000)
200 80 0.047 0.054 0.041 0.066(0.041) 0.853 0.426 0.301 1.000(1.000)

100 0.046 0.050 0.057 0.063(0.046) 0.896 0.531 0.381 1.000(1.000)
120 0.045 0.055 0.048 0.061(0.044) 0.919 0.698 0.439 1.000(1.000)

400 100 0.048 0.052 0.041 0.042(0.041) 0.957 0.555 0.330 1.000(1.000)
120 0.049 0.044 0.034 0.058(0.030) 0.990 0.695 0.388 1.000(1.000)
150 0.047 0.049 0.040 0.059(0.036) 0.999 0.841 0.523 1.000(1.000)

600 120 0.044 0.044 0.047 0.040(0.040) 1.000 0.670 0.364 1.000(1.000)
150 0.041 0.044 0.043 0.055(0.040) 1.000 0.860 0.497 1.000(1.000)
180 0.053 0.038 0.041 0.041(0.035) 1.000 0.941 0.608 1.000(1.000)

1,000 150 0.061 0.047 0.045 0.044(0.044) 1.000 0.852 0.383 1.000(1.000)
180 0.056 0.048 0.040 0.043(0.038) 1.000 0.954 0.513 1.000(1.000)
200 0.046 0.048 0.039 0.050(0.039) 1.000 0.975 0.598 1.000(1.000)

gets large as p increases in Models (4.2) and (4.4). The CLX’s test is based on

the maximal norm type statistic and tends to be more powerful when Σ1 and Σ2

differ only in a small proportion of elements with relative high magnitude. The

proposed test, as well as the SY and LC tests, had increasing empirical powers as

n and p increased. The reason for SY and LC tests having lower power than the

proposed test is due to the aggregation of more noise from the whole covariance

matrices Σ1 and Σ2 in the variance of their test statistics. The larger variance of

the test statistic reduced the signal to noise ratio, and hence reduced the power

of the test. The powers of the proposed test were significantly larger than the

other three tests since we have larger signal to noise ratios.

Table 3 reports the empirical FDR and the Correct Rejectionc Rates (CRRs)

of the proposed test under models (4.1) and (4.2). Table 4 reports the results for

models (4.3) and (4.4). The empirical FDRs were controlled to be under 0.05 in
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Table 2. Empirical sizes and powers of the proposed test in conjunction with the Storey,
Taylor and Siegmund (2004) procedure and the tests of SY, LC and CLX for Gaussian
distributed data generated from model (4.3) for size and (4.4) for power. The multi-
ple test procedure is conducted by controlling the FDR at α = 0.05 and N = bp0.7c.
The figures in the parentheses are the adjusted empirical sizes and powers so that the
empirical sizes are smaller than the other three tests.

Empirical Size Empirical Power
p n SY LC CLX Proposed SY LC CLX Proposed
50 30 0.047 0.057 0.067 0.108(0.041) 0.495 0.372 0.248 0.609(0.498)

50 0.063 0.069 0.048 0.099(0.043) 0.711 0.589 0.256 0.814(0.729)
80 0.045 0.081 0.059 0.092(0.041) 0.849 0.858 0.339 0.952(0.925)

100 50 0.058 0.059 0.044 0.069(0.041) 0.806 0.637 0.234 0.926(0.900)
80 0.051 0.063 0.051 0.061(0.047) 0.953 0.905 0.311 0.996(0.994)

100 0.041 0.042 0.042 0.057(0.040) 0.990 0.966 0.369 0.998(0.996)
200 80 0.043 0.071 0.045 0.065(0.038) 1.000 0.953 0.260 1.000(1.000)

100 0.043 0.054 0.042 0.071(0.041) 1.000 0.990 0.300 1.000(1.000)
120 0.049 0.045 0.046 0.068(0.045) 1.000 1.000 0.369 1.000(1.000)

400 100 0.061 0.039 0.061 0.045(0.035) 1.000 0.992 0.253 1.000(1.000)
120 0.055 0.062 0.038 0.042(0.038) 1.000 1.000 0.297 1.000(1.000)
150 0.054 0.057 0.040 0.040(0.040) 1.000 1.000 0.437 1.000(1.000)

600 120 0.046 0.049 0.056 0.045(0.045) 1.000 1.000 0.263 1.000(1.000)
150 0.049 0.048 0.038 0.046(0.038) 1.000 1.000 0.355 1.000(1.000)
180 0.063 0.057 0.053 0.041(0.041) 1.000 1.000 0.503 1.000(1.000)

1,000 150 0.049 0.054 0.048 0.046(0.046) 1.000 1.000 0.303 1.000(1.000)
180 0.055 0.053 0.043 0.043(0.043) 1.000 1.000 0.426 1.000(1.000)
200 0.049 0.047 0.046 0.044(0.044) 1.000 1.000 0.517 1.000(1.000)

most cases. Still, the CRRs increased substantially as n and p grew. It is noted

that the CRRs increased more quickly to 1 under model (4.4) than under (4.2).

Here, the average signals in (4.4) are relatively larger, as shown in Figure 5.

Moreover, the performances of the test, as reflected by the FDRs and the CRRs,

were robust with respect to different choices of the constant C in deciding the

number of the super-diagonals in the test.

The results for the Gamma-distributed data were largely similar to those

for the Gaussian data. Furthermore, since the correlations between the Sq are

positive under models (4.1) - (4.4) in our simulation study, the proposed test can

also be used in conjunction with the Benjamini and Hochberg (1995) procedure.

The corresponding results are in the supplementary document; they are similar

to those using the Storey, Taylor and Siegmund (2004) procedure.

The empirical powers under model (4.5) are given in Table 5. Considering

that the powers of the SY, LC and the proposed tests were all equal to 1 when
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Figure 3. Empirical powers of the individual tests H0,q : Sq = 0 for Gaussian distributed
data with the first sample generated from model (4.1) while the second sample generated
from model (4.2).
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Figure 4. Empirical powers of the individual tests H0,q : Sq = 0 for Gaussian distributed
data with the first sample generated from model (4.3) while the second sample generated
from model (4.4).
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Table 3. False discovery rates and correct rejection rates of the proposed test in conjunc-
tion with the Storey, Taylor and Siegmund (2004) procedure for Gaussian distributed
data where the first sample is generated from model (4.1) and the second generated
from model (4.2). The multiple test procedure is performed by controlling the FDR at
α = 0.05 and N = bCp0.7c. Three dimensions are considered for each dimension, that
is n = 30, 50, 80 for p = 50; n = 50, 80, 100 for p = 100; n = 80, 100, 120 for p = 200;
n = 100, 120, 150 for p = 400; n = 120, 150, 180 for p = 600; and n = 150, 180, 200 for
p = 1,000, respectively.

False Discovery Rate Correct Rejection Rate
p p

50 100 200 400 600 1,000 50 100 200 400 600 1,000
C = 1 C = 1

0.048 0.057 0.040 0.058 0.058 0.054 0.157 0.249 0.205 0.738 0.934 1.000
0.030 0.036 0.046 0.055 0.057 0.054 0.214 0.267 0.533 0.768 0.967 1.000
0.051 0.056 0.045 0.057 0.058 0.053 0.356 0.397 0.638 0.818 0.994 1.000

C = 1.5 C = 1.5
0.063 0.050 0.050 0.045 0.055 0.046 0.134 0.151 0.228 0.686 0.920 1.000
0.043 0.033 0.044 0.052 0.059 0.048 0.194 0.205 0.482 0.703 0.946 1.000
0.054 0.046 0.045 0.056 0.057 0.048 0.328 0.349 0.628 0.867 0.993 1.000

C = 2 C = 2
0.053 0.068 0.060 0.044 0.057 0.047 0.147 0.250 0.222 0.618 0.897 1.000
0.043 0.047 0.040 0.058 0.055 0.049 0.203 0.252 0.440 0.746 0.933 1.000
0.051 0.042 0.057 0.051 0.060 0.049 0.312 0.345 0.617 0.882 0.991 1.000

C = 2.5 C = 2.5
0.069 0.032 0.057 0.036 0.054 0.040 0.138 0.156 0.217 0.556 0.901 1.000
0.053 0.031 0.032 0.053 0.048 0.041 0.196 0.202 0.443 0.737 0.923 1.000
0.044 0.041 0.047 0.051 0.053 0.040 0.308 0.348 0.567 0.880 0.991 1.000

C = 3 C = 3
0.094 0.022 0.058 0.044 0.056 0.047 0.134 0.183 0.251 0.561 0.861 1.000
0.070 0.030 0.036 0.058 0.042 0.046 0.190 0.201 0.484 0.695 0.963 1.000
0.049 0.045 0.048 0.054 0.052 0.044 0.305 0.354 0.501 0.863 0.986 1.000

p = 600 and 1,000, we only report the results with p ranging from 50 to 400. In

this case, Σ1−Σ2 was denser than the previous models and did not have monotone

decreasing signals Table 5 shows that the proposed method was consistently

more powerful than the other three tests. The table also reports the empirical

FDRs and CRRs of the proposed test, which shows that the FDRs were largely

controlled around 5% while the CRRs increased quickly as n and p grow. Since

there are extremely small signals for some q, as observed in Figure 5, the CRRs

were not as high as those in Tables 3 and 4. This provides some empirical evidence

for using the proposed test when Σ1 −Σ2 does not have the bandable structure.
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Table 4. False discovery rates and correct rejection rates of the proposed test in conjunc-
tion with the Storey, Taylor and Siegmund (2004) procedure for Gaussian distributed
data where the first sample is generated from model (4.3) and the second generated
from model (4.4). The multiple test procedure is performed by controlling the FDR at
α = 0.05 and N = bCp0.7c. Three dimensions are considered for each dimension, that
is n = 30, 50, 80 for p = 50; n = 50, 80, 100 for p = 100; n = 80, 100, 120 for p = 200;
n = 100, 120, 150 for p = 400; n = 120, 150, 180 for p = 600; and n = 150, 180, 200 for
p = 1,000, respectively.

False Discovery Rate Correct Rejection Rate
p p

50 100 200 400 600 1,000 50 100 200 400 600 1,000
C = 1 C = 1

0.025 0.037 0.067 0.043 0.057 0.054 0.290 0.601 0.987 1.000 1.000 1.000
0.028 0.047 0.040 0.059 0.052 0.054 0.500 0.900 0.977 1.000 1.000 1.000
0.054 0.028 0.066 0.058 0.059 0.053 0.784 0.944 1.000 1.000 1.000 1.000

C = 1.5 C = 1.5
0.056 0.051 0.069 0.043 0.053 0.046 0.212 0.570 0.983 1.000 1.000 1.000
0.042 0.047 0.045 0.062 0.051 0.048 0.406 0.834 0.996 1.000 1.000 1.000
0.063 0.036 0.041 0.055 0.057 0.048 0.702 0.935 0.999 1.000 1.000 1.000

C = 2 C = 2
0.069 0.064 0.046 0.045 0.052 0.047 0.189 0.552 0.980 1.000 1.000 1.000
0.063 0.049 0.045 0.053 0.051 0.049 0.391 0.858 0.994 1.000 1.000 1.000
0.064 0.039 0.052 0.058 0.057 0.049 0.668 0.929 0.999 1.000 1.000 1.000

C = 2.5 C = 2.5
0.037 0.052 0.046 0.045 0.053 0.040 0.149 0.511 0.976 1.000 1.000 1.000
0.067 0.053 0.046 0.051 0.051 0.041 0.360 0.846 0.994 1.000 1.000 1.000
0.066 0.042 0.053 0.057 0.054 0.040 0.630 0.923 0.999 1.000 1.000 1.000

C = 3 C = 3
0.055 0.059 0.048 0.048 0.056 0.047 0.148 0.498 0.974 1.000 1.000 1.000
0.050 0.053 0.066 0.052 0.056 0.047 0.320 0.835 0.993 1.000 1.000 1.000
0.063 0.047 0.056 0.057 0.055 0.044 0.648 0.919 0.999 1.000 1.000 1.000

5. Empirical Study

We considered an application of the proposed test to a prostate cancer

dataset from Adam et al. (2002). Blood serum samples were procured from ei-

ther patients diagnosed with prostate cancer (the cancer group) or age-matched

healthy men (the healthy group) and were analyzed in protein mass spectroscopy.

For each blood sample i, the intensity Xi,j for many time-of-flight values tj were

observed. Time of flight is related to the mass over charge ratio m/z of the con-

stituent proteins in the blood. The order of the intensities are pre-determined

by the value of m/z. The widely used mass spectroscopy technology allows one

to find m/z-sites that discriminate between the two groups and thus to detect
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Figure 5. Average signals hq = Sq/(p − q) for model (4.2) (the top left panel), model
(4.4) (the top right panel) and model (4.5) (the bottom panel). In Model (4.2), hq = 0
for q > 5; In Model (4.4), hq = 0 for q = 0 and q > 10; And in Model (4.5), hq = 0 for
q /∈ K = {1, . . . , 5, 11, . . . , 15, 21, . . . , 25, 31, . . . , b0.5p0.7c}.

prostate cancer. The full dataset consists of 167 patients in the cancer group and

157 in the healthy group. Following the original researchers, we ignored m/z-

sites below 2,000 to avoid chemical artifacts and averaged the data in consecutive

blocks of 20 to smooth the intensity profile. This gave a total of 2,181 dimensions,

a relatively large number for the sample sizes n1 = 157 and n2 = 167.

Qiu and Chen (2012) carried out additional averaging on this dataset in

consecutive blocks of 10, which gave 218 dimensions in total. For the original

2,181-dimensional data we used, the left panel of Figure 6 plots the estimated

average signal ĥi,q = D̂i,nq/(p− q) for i = 1 and 2, representing the healthy and

the cancer group respectively. It shows that ĥi,q decays rapidly as q increases.
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Table 5. Empirical powers of the proposed test in conjunction with the Storey, Taylor and
Siegmund (2004) procedure and the tests of SY, LC and CLX for Gaussian distributed
data generated from models (4.3) and (4.5). The multiple test procedure is conducted
by controlling the FDR at α = 0.05 and N = bp0.7c. The figures in the parentheses are
the adjusted empirical powers corresponding to the adjusted empirical sizes in Table 2.
The last two columns report the empirical FDR and Correct Rejection Rate (CRR) of
the proposed method.

Empirical Power the Proposed test
p n SY LC CLX Proposed FDR CRR
50 30 0.266 0.187 0.108 0.489(0.374) 0.057 0.124

50 0.407 0.300 0.212 0.742(0.625) 0.056 0.180
80 0.607 0.514 0.236 0.935(0.870) 0.057 0.201

100 50 0.557 0.332 0.197 0.905(0.862) 0.048 0.153
80 0.767 0.559 0.204 0.996(0.989) 0.047 0.239

100 0.872 0.690 0.359 0.999(0.996) 0.049 0.279
200 80 0.948 0.607 0.292 1.000(1.000) 0.051 0.328

100 0.982 0.736 0.323 1.000(1.000) 0.050 0.373
120 0.994 0.866 0.364 1.000(1.000) 0.048 0.432

400 100 0.999 0.746 0.294 1.000(1.000) 0.051 0.443
120 1.000 0.953 0.313 1.000(1.000) 0.055 0.506
150 1.000 0.995 0.392 1.000(1.000) 0.056 0.577

− −

Figure 6. Estimated average signals ĥi,q = D̂i,nq/(p− q) for the healthy and the cancer

groups (left panel) for different q and the estimated Ŝnq representing the signals on
super-diagonals of Σ1 − Σ2 (right panel).

This agrees with the finding in Qiu and Chen (2012) that the elements of Σ1 and

Σ2 decay as they move away from the main diagonal, and is eligible for the
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Figure 7. Standardized test statistics Ŝnq/V̂0,nq for q ranging from 0 to (p− 1) (the left
panel) and for q from 0 to N = b2p0.7c = 434 (the right panel). In both panels, the
black dotted horizontal line is the critical value z0.95 = 1.645 for individual tests at 5%
level of significance.

bandable assumption. Meanwhile, Σ1−Σ2 appears to obey a bandable structure

from the right panel of Figure 6.

The proposed test was applied to test H0 : Σ1 = Σ2 by implementing the

multiple test H0,q : Sq = 0 for q = 0, . . . , N , and controlling the FDR at 0.05.

Figure 7 provides the values of the test statistics Ŝnq/V̂0,nq for q ranging from 0

to (p−1). To show more clearly when the signal is relatively stronger, we plotted

Ŝnq/V̂0,nq from q from 0 to N = b2p0.7c = 434 in the right panel.

Comparing with Figure 6, it can be seen that the Ŝnq/V̂0,nq effectively reflects

the amount of dissimilarity between Σ1 and Σ2. For q = 1 to 300, where obvious

difference in the signals between the healthy and the cancer samples can be

observed in Figure 6, the tests for H0,q : Sq = 0 were all rejected. For q ≥ 300,

although the Ŝnq were quite small, since the variances V̂ 2
np were also small the

signal to noise ratios for single super-diagonals turned out to be quite large

leading to rejection of H0,q, as well.

Using the Storey, Taylor and Siegmund (2004) procedure with the tuning

parameter λ = 0.5, the joint hypothesis H0,q : Sq = 0 for q = 0, . . . , N was

rejected for N = b2p0.7c = 434. The Benjamini and Hochberg (1995) procedure

gave the same result. This suggests that the dependence structure among the

healthy and the cancer groups is significantly different. We also used the SY,

LC and CLX tests for the null hypothesis H0 : Σ1 = Σ2. The LC test rejects H0



2694 HE AND CHEN

at the smallest p-value 0.0000, while The CLX test rejects H0 at p-value 0.0006,

and the SY test also rejects H0 at p-value 0.015. The conclusion of the proposed

method is in accordance with that of these tests.

Supplementary Materials

Proofs of the main results are in the supplementary materials. We also

provide more simulation results of the proposed test method in conjunction with

the Benjamini and Hochberg (1995) procedure, and for Gamma-distributed data.
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