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Abstract: Martingale limit theory is increasingly important in modern probability

theory and mathematical statistics. In this article, we give a selected overview of

Peter Hall’s contributions to both the theoretical foundations and the wide applica-

bility of martingales. We highlight his celebrated coauthored book, Hall and Heyde

(1980) and his ground-breaking paper, Hall (1984). To illustrate the power of his

martingale limit theory, we present two contemporary applications to estimating

and testing high dimensional covariance matrices. In the first, we use the martin-

gale central limit theorem in Hall and Heyde (1980) to obtain the simultaneous risk

optimality and consistency of Stein’s unbiased risk estimation (SURE) information

criterion for large covariance matrix estimation. In the second application, we use

the central limit theorem for degenerate U-statistics in Hall (1984) to establish

the consistent asymptotic size and power against more general alternatives when

testing high-dimensional covariance matrices.

Key words and phrases: Degenerate U-statistics, hypothesis testing, large covari-

ance matrix, martingale limit theory, Stein’s unbiased risk estimation.

1. Introduction

The concept of martingale was first introduced by Paul Levy in probability

theory, and its name was introduced later by Jean Ville, in 1939. The early

development of martingale theory includes Levy’s martingale characterization,

Bernstein’s inequality for weakly dependent random variables, and Doob’s mar-

tingale convergence theorems. The interplay of theory and applications is evident

in the history of probability and mathematical statistics. Statisticians have em-

ployed martingales as a technical tool in a wide range of applications since the

1970s. As a result, asymptotic properties of martingales were of increasing im-

portance in studying complex probabilistic behaviors. Peter Hall became a world

leader in the theory of martingales when he was working on his master and doc-

toral theses at Australian National University and Oxford University, advised by
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Chris Heyde and John Kingman respectively. He was introduced as “Mr Mar-

tingale” when he visited the University of Cambridge in the mid-1970s (Delaigle

and Speed (2016)). He made fundamental contributions to both the theoretical

foundations and the wide applicability of martingales.

We first give a selected overview of Peter Hall’s contributions to martingale

limit theory. His main research interests focus on the martingale central limit the-

orems and invariance principles (Brown (1971); McLeish (1974)), which are the

heart of the book by Hall and Heyde (1980). Hall (1977) derived the general mar-

tingale central limit theorems and invariance principles under relaxed conditions.

Hall (1978) generalized Bernstein’s discovery of the convergence of moments in

the central limit theorem to the martingale case, and proved the convergence of

moments in martingale central limit theorems. Hall and Heyde (1976) used the

Skorokhod representation to obtain a unified approach to the law of the iterated

logarithm for martingales, and Hall (1979a) worked out the powerful Skorokhod

representation method to prove Martingale invariance principles under quite gen-

eral conditions. Hall and Heyde (1981) obtained the nonuniform estimate of the

rate of convergence in the martingale central limit theorem, which provides a

martinagle analogue of Feller’s generalization of the Berry-Esseen theorem.

Hall and Heyde (1980) is one of the most important reference books in mar-

tingales. It provides a comprehensive overview of the state-of-the-art martin-

gale limit theory and wide applications to illustrate the power of martingale

methods. The book bridged the gap between martingale theory and applica-

tions, and it has had a broad, significant and long-lasting impact on numer-

ous areas of probability theory, mathematical statistics, and econometrics. In

another ground-breaking paper, Hall (1984) used martingale theory to obtain

a central limit theorem for degenerate U-statistics with applications to multi-

variate nonparametric density estimators. Consider the degenerate U-statistic

Un =
∑∑

1≤i<j≤nHn(Xi, Xj) where X1, . . . , Xn are independent and identically

distributed random observations, and E{Hn(X1, X2)|X1} = 0 almost surely. Hall

(1984) assumed more practicable conditions to derive the central limit theorem

of Un. Let Gn(x, y) = E{Hn(X1, x)Hn(X1, y)}. More specifically, given that Hn

is symmetric, E[H2
n(X1, X2)] <∞, and

lim
n→∞

E{G2
n(X1, X2)}+ (1/n)E{H4

n(X1, X2)}
[E{H2

n(X1, X2)}]2
= 0,

Hall (1984) proved that Un is asymptotically normally distributed with zero mean

and covariance matrix (1/2)n2E{H2
n(X1, X2)}. Because of Hall and Heyde (1980)

and Hall (1984), theoretical progress in martingales has led to a number of im-
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portant research topics: weak convergence of U-statistics and empirical processes

(Loynes (1978); Hall (1979b)), weak convergence of log-likelihood-ratio processes

(Hall and Loynes (1977)), nonparametric function estimation and modeling (Hall

(1984); Hardle, Marron and Park (1988); Hall, Marron and Park (1992); Racine

and Li (2004)), sliced inverse regression (Hsing and Carroll (1992); Hall and Li

(1993)), empirical likelihood estimation (Donald, Imbens and Newey (2003)), unit

root tests in time series regression (Phillips and Perron (1988); Elliott, Rothen-

berg and Stock (1996)), structural change estimation in econometric models (An-

drews (1993); Bai and Perron (1998)), autocorrelation matrix estimation (An-

drews (1991)), and many others. In recent years, the martingale limit theory in

Hall and Heyde (1980) and Hall (1984) has received considerable attention in the

development of high-dimensional statistical inference such as high-dimensional

mean tests (Chen and Qin (2010); Wang, Peng and Li (2015)), high-dimensional

covariance tests (Schott (2007); Li and Xue (2015); He and Chen (2016)), and

inference on conditional dependence (Wang et al. (2015)), among others.

In the rest of this paper, we present applications of Hall and Heyde (1980)

and Hall (1984) to estimating and to testing high dimensional covariance matri-

ces. Section 2 applies the martingale central limit theorem to obtain consistency

for Stein’s unbiased risk estimation (SURE) information criteria (Stein (1981);

Efron (1986, 2004)) for large covariance matrix estimation. Section 3 applies

the central limit theorem for degenerate U-statistics in Hall (1984) to establish

the consistent asymptotic size and power for a new test statistic against more

general alternatives when testing high-dimensional covariance matrices. Sec-

tion 4 provides numerical studies to demonstrate the finite-sample performance.

The complete proofs of main results are included in a separate supplementary

file. consistency for Stein’s unbiased risk estimation (SURE) information criteria

(Stein (1981); Efron (1986, 2004)) for large covariance matrix estimation. Sec-

tion 3 applies the central limit theorem for degenerate U-statistics in Hall (1984)

to establish the consistent asymptotic size and power for a new test statistic

against more general alternatives when testing high-dimensional covariance ma-

trices. Section 4 provides numerical studies to demonstrate the finite-sample

performance. The complete proofs of main results are included in a separate

supplementary file.

2. Application to The SURE Information Criterion

Let X1, . . . , Xn be independent and identically distributed p-dimensional
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Gaussian observations with mean vector µ and covariance matrix Σp×p =
(
σij
)
p×p.

We assume that p ≥ n and p is of a nearly exponential order of n (i.e., log(p) =

o(n)). The problem of estimating Σ is important to various multivariate statis-

tical methods and theory. Let Σ̃s =
(
σ̃sij
)
p×p be the sample covariance matrix.

It is well-known that Σ̃s performs poorly when estimating Σ in high dimensions.

Several regularized estimators of large covariance matrices have been proposed,

including banding (Wu and Pourahmadi (2003); Bickel and Levina (2008a); Fan,

Xue and Zou (2016)), tapering (Furrer and Bengtsson (2007); Cai, Zhang and

Zhou (2010); Xue and Zou (2014)), and thresholding (Bickel and Levina (2008b);

Rothman, Levina and Zhu (2009); Cai and Liu (2011); Xue, Ma and Zou (2012)).

The minimax optimality was established for large covariance matrix estimation

(Cai, Zhang and Zhou (2010); Cai and Zhou (2012); Xue and Zou (2013)).

Little is known about the model selection criterion when estimating large co-

variance matrices. Stein’s unbiased risk estimation (SURE) information criterion

(Stein (1981)) has shown appealing performances in adaptive wavelet threshold-

ing (Donoho and Johnstone (1995)) and sparse linear regression (Efron et al.

(2004); Zou, Hastie and Tibshirani (2007)). Based on martingale central limit

theorems in Hall and Heyde (1980), we attempt to obtain model selection con-

sistency of SURE information criterion for large covariance matrix estimation.

To facilitate discussion, we focus on the estimation of large bandable covariance

matrices, which have natural applications for modeling temporal and spatial de-

pendence. Following Bickel and Levina (2008a) and Cai, Zhang and Zhou (2010),

we assume that Σ is in

Gα = {Σ : |σij | ≤M1|i− j|−(α+1), ∀ i 6= j, and λmax(Σ) ≤M0}, (2.1)

where λmax(Σ) is the largest eigenvalue of matrix Σ, and α,M0, and M1 are

positive constants. The constant α controls the decay rate of the off-diagonal

elements of Σ. Without loss of generality, we assume σii = 1 for 1 ≤ i ≤ p in this

section.

To estimate Σ in Gα, we consider the banded covariance matrix

Σ̂(τ) =
(
σ̂

(τ)
ij

)
1≤i,j≤p

where σ̂
(τ)
ij = ω

(τ)
ij σ̃ij and ω

(τ)
ij is the banding weight satisfying: (i) ω

(τ)
ij = 1 for

|i− j| < τ ; (ii) ω
(τ)
ij = 0 for |i− j| ≥ τ . We need to properly choose the banding

parameter τ in practice.

We introduce the SURE information criterion to select the banding parame-

ter. Let R(τ) = E‖Σ̂(τ) − Σ‖2F be the Frobenius risk of Σ̂(τ). Here R(τ) satisfies
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the Stein’s identity

R(τ) = E‖Σ̂(τ) − Σ̃s‖2F −
∑
i,j

var(σ̃sij) + 2
∑
i,j

cov
(
σ̂

(τ)
ij , σ̃

s
ij

)
, (2.2)

where we used the fact that Σ̃s is an unbiased estimate for Σ. The third term on

the right-hand side is referred to as the covariance penalty (Efron (2004)). By

definition, we obtain that cov(σ̂
(τ)
ij , σ̃

s
ij) = {(n− 1)/n}ω(τ)

ij var(σ̃sij). Let v̂ar(σ̃sij)

be an unbiased estimator of var(σ̃sij). Then, we derive Stein’s unbiased risk

estimator of R(τ) as

SURE(τ) = ‖Σ̂(τ) − Σ̃s‖2F −
∑
i,j

v̂ar(σ̃sij) + 2
n− 1

n

∑
i,j

ω
(τ)
ij v̂ar(σ̃sij). (2.3)

We find that E{SURE(τ)} = R(τ). Following Yi and Zou (2013) and Li and Zou

(2016), one sees that SURE(τ) has an explicit expression as

SURE(τ)=
∑

1≤i,j≤p

(
n

n− 1
−ω(τ)

ij

)2

σ̃2
ij+

∑
1≤i,j≤p

(
2ω

(τ)
ij −

n

n− 1

)
(anσ̃

2
ij+bnσ̃iiσ̃jj),

with an = {n(n− 3)}/{(n− 1)(n− 2)(n+ 1)} and bn = n/{(n+ 1)(n− 2)}.
Now, we can select the banding parameter by the SURE tuning

τ̂n = arg min
τ

SURE(τ). (2.4)

Efron (1986, 2004) showed that SURE is equivalent to AIC for regression

models with an additive homoscedastic Gaussian noise. It is also known that AIC

yields an asymptotic minimax optimal estimator (Yang (2005)). It was expected

that SURE(τ) might have the fundamental properties of AIC (Shao (1997); Yang

(2005)) and result in a minimax optimal banded covariance matrix estimator. Li

and Zou (2016) proved that by minimizing SURE(τ) over all possible banded

estimators, we obtain the minimax optimal rate of convergence and the resulting

estimator Σ̂(τ̂n) is comparable to the oracle estimator Σ̂(k0) given the true banding

parameter k0,

sup
Σ∈Gα

E‖Σ̂(τ̂n) − Σ‖2F � sup
Σ∈Gα

E‖Σ̂(k0) − Σ‖2F .

Thus, we can regard SURE(τ) as the analogue of AIC for large bandable co-

variance matrix estimation. Here we study the bandwidth selection property of

SURE tuning. In applications, the SURE information criterion would be more

appealing if it was consistent in identifying the true bandwidth. In traditional

linear regression, AIC is risk optimal, and BIC is known for its selection consis-

tency property (Shao (1997); Yang (2005)). Recently, certain AIC-type criteria

have been shown to achieve the consistency property under a high-dimensional
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setting. For instance, Fujikoshi, Sakurai and Yanagihara (2014) and Yanagihara,

Wakaki and Fujikoshi (2015) established the consistency of AIC-type criteria

in high-dimensional multivariate linear regression, and Bai, Fujikoshi and Choi

(2015) established the consistency of AIC-type criteria in high-dimensional prin-

cipal component analysis. Here we use the martingale central limit theorem in

Hall and Heyde (1980) to prove that when the true covariance matrix is banded,

by minimizing SURE(τ) we select the true bandwidth with probability one.

Theorem 1. Let Σ0 ∈ Gα be the true banded matrix with bandwidth k0, where

σij = 0 if |i − j| ≥ k0. In (1/p) minh≤k0−1

∑
|i−j|=h σ

2
ij � log n/n, then, with

probability one, SURE achieves the bandwidth selection consistency that τ̂n = k0.

3. Application to Testing the Covariance Structure

Let X1, . . . , Xn be independent and identically distributed p-dimensional

Gaussian observations with mean vector µ and covariance matrix Σ. We assume

that p � n and λmax(Σ) < M0 for some constant M0. Testing the covariance

structure in Σ is of importance in a wide range of research fields. In Section 3,

we consider testing the hypothesis that Σ is banded with some given bandwidth

k0 ≥ 1,

H0 : σij = 0, ∀(i, j) such that |i− j| ≥ k0. (3.1)

When k0 = 1, H0 corresponds to testing the mutual independence of Gaussian

random variables. In the literature, H0 has been considered in Cai and Jiang

(2011), Qiu and Chen (2012, 2015), among others. We introduce two parameter

spaces for Σ:

G1 =

{
Σ = (σij)p×p : σii = σji and max

|i−j|≥k0
|σij | > C

√
log p

n

}
;

G2 =

{
Σ = (σij)p×p : σii = σji and

n

p

∑
|i−j|≥k0

σ2
ij � log p

}
.

In this G1 represents the parameter space in which the covariance has a few

relatively large entries with |i − j| ≥ k0, and G2 denotes the parameter space

in which the covariance contains a lot of small nonzero entries with |i − j| ≥
k0. In current literature, extreme-value type statistics test against the sparse

alternative G1 (Cai and Jiang (2011)), and sum-of-squares type statistics test

against the dense alternative G2 (Qiu and Chen (2012, 2015)). As we do not

have the prior knowledge of the sparse or dense alternative in practice, it is

important to effectively test against general alternatives. Here we are interested
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in testing procedure that boosts power against the more general alternative that

H1 : Σ ∈ G1 ∪ G2. (3.2)

Let Γ = (ρij)p×p be the corresponding correlation matrix, and Γ̃ = (ρ̃ij) its

sample estimate where x̄k = (1/n)
∑n

i=1 xik and

ρ̃ij =
(xi − x̄i)T (xj − x̄j)
‖xi − x̄i‖ · ‖xj − x̄j‖

, 1 ≤ i, j ≤ p (3.3)

Cai and Jiang (2011) proposed the maximum test statistic

Ln = max
|i−j|≥k0

|ρ̃ij |, (3.4)

Let Γp,δ = {1 ≤ i ≤ p ; |ρij | > 1− δ for some 1 ≤ j ≤ p with j 6= i} for any 0 <

δ < 1. When p→∞ with log p = o(n1/3) and |Γp,δ| = o(p), Cai and Jiang (2011)

proved that nL2
n− 4 log p+ log log p converges weakly to an extreme distribution

of type I with the distribution function F (y) = e−1/
√

8πe−y/2 , ∀y ∈ R under H0.

However, Hall (1979c) and Li and Xue (2015) point out that the extreme-value

form statistic Ln may suffer from low power against dense alternatives with

Σ ∈ G2.

To boost the power of Ln against H1, we introduce a quadratic form statistic.

To this end, take Zi = {1/
√
i(i+ 1)}(X1 + · · · + Xi) − {i/

√
i(i+ 1)}Xi+1 for

1 ≤ i ≤ n − 1 and Zn = 1/
√
n
∑n

i=1Xi. Note that Z1, . . . , Zn−1 are i.i.d.

Np(0,Σ) random vectors. Using Theorem 3.1.2 from Muirhead (1982), Σ̃ =

(1/n)
∑n

k=1(Xk−X̄)(Xk−X̄)T is equal to Σ̂ =
(
σ̂ij
)

1≤i,j≤p = (1/n)
∑n−1

k=1 ZkZ
T
k .

Now we define the quadratic form statistic as follows:

Q2
n =

S2
n(k0)

S
, (3.5)

where

S2
n(k0) =

∑
1≤i,j≤p

ω
(k0)
ij

{
σ̂2
ij −

n−1∑
m=1

(zmizmj)
2

n2

}
,

and S2 =
∑

1≤l<m≤n

{
1

n2

∑
1≤i,j≤p

2ω
(k0)
ij zmizmjzlizlj

}2

.

(3.6)

We follow Hall (1984) to derive the central limit theorem for S2
n(k0). Let

Hn(Zm, Zl) = (1/n2)
∑

1≤i,j≤p 2ω
(k0)
ij (zmizmj − σij)(zlizlj − σij) and

Ym =
2(n− 2)

n2

∑
1≤i,j≤p

ω
(k0)
ij σij(zmizmj − σij),

where ω
(k0)
ij s are the same banding weights defined in Section 2. We can rewrite
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the difference S2
n(k0)− ES2

n(k0) as

S2
n(k0)− ES2

n(k0) =
∑

1≤i,j≤p
ω

(k0)
ij

{
σ̂2
ij −

n−1∑
m=1

(zmizmj)
2

n2
− n(n− 1)

n2
σ2
ij

}

=

n−1∑
m=2

m−1∑
l=1

Hn(Zm, Zl) +

n−1∑
m=2

Ym, (3.7)

where we used the fact that EΣ̂ = Σ. Under H0, Ym = 0 and ES2
n(k0) = 0.

Then as shown in (3.7), S2
n(k0)−ES2

n(k0) is a degenerate U statistic of the form

of Un in Hall (1984).

We follow Theorem 1 of Hall (1984) to show a central limit theorem for

S2
n(k0).

Theorem 2. Let Varn(k0) = {n(n− 1)}/2E{Hn(Z1, Z2)2}. Under H0,

Varn(k0)−1/2{S2
n(k0)− ES2

n(k0)} → N(0, 1)

in distribution as n→∞. Further,

sup
t

∣∣∣∣∣P
(
S2
n(k0)− ES2

n(k0)√
Varn(k0)

≤ t

)
− Φ(t)

∣∣∣∣∣ ≤ Cn−1/5.

As well, we have the convergency of S2 in probability to Varn(k0).

Theorem 3. Under H0, S
2/{Varn(k0)} → 1 in probability as n→∞.

Combining Theorems 3–4 and Slutsky’s theorem, we obtain a central limit

theorem for Q2
n.

Theorem 4. Under H0, Q
2
n converges weakly to N(0, 1) as n→∞.

Now, we combine the strengths of both Q2
n and Ln and propose a new testing

procedure:

TS = I{Q2
n+(nL2

n−4 log p+log log p)≥cα}

where the threshold cα is defined as the α upper quantile of the convolution

distribution Φ ? F . Here TS = 1 leads to the rejection of H0. In what follows,

we provide the theoretical guarantee of its asymptotic size and power. To this

end, we define the marginal distribution functions of Qn and Ln as

PQn(z) = P
(
Q2
n ≤ z

)
, PLn(y) = P

(
nL2

n − 4 log p+ log log p ≤ y
)
,

as well as their joint distribution function as

PQn,Ln(z, y) = P
(
{Q2

n ≤ z} ∩ (nL2
n − 4 log p+ log log p ≥ y)

)
.
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We derive the explicit joint limiting law of Qn and Ln, that shares the spirit

of Li and Xue (2015).

Theorem 5. If |Γp,δ| = o(p) for δ ∈ (0, 1) and p → ∞ with log p = o(n1/5),

then, under H0, for any z and y we have

PQn,Ln(z, y)→ Φ(z)
(

1− e(−1/
√

8π)e−(y/2)
)
. (3.8)

Let PH0
(·) be the probability given the null hypothesis H0, and PH1

(·) be

the probability given the alternative hypothesis H1. PH0
(TS = 1) is the condi-

tional probability of rejecting H0 given that H0 is true, and PH1
(TS = 1) is the

conditional probability of correctly rejecting H0. In the sequel, we prove that

TS does control the significance level and also achieves consistent power.

Theorem 6. Under the conditions of Theorem 5, we have

PH0
(TS = 1)→ α as n→∞.

Otherwise, if p/n→∞ and Σ ∈ G1 ∪ G2, we have

inf
Σ∈G1∪G2

PH1
(TS = 1)→ 1 as n→∞.

4. Numerical Properties

In this section, we demonstrate the numerical performance of our proposed

SURE information criterion and our proposed new testing procedure. We con-

sider three different models to simulate the independent observations X1, . . . , Xn

that are Np(0,Σ), and Σ = (σij)p×p specifies the covariance structure:

• Model 1. σij = I(i = j) + (1/4)I(|i− j| ≤ 4) for 1 ≤ i, j ≤ p.

• Model 2. σij = I(i = j)+(1/4)I(|i−j| ≤ 4)+0.45I(i = 7, j = 1)+0.45I(i =

1, j = 7) for 1 ≤ i, j ≤ p.

• Model 3. σij = I(i = j) + (1/4)I(|i − j| ≤ 4) + 2.5
√

log p/nI(|i − j| ≥ 5)

for 1 ≤ i, j ≤ p.

Model 1 specifies a banded covariance matrix with bandwidth 5 to evaluate

the proposed SURE information criterion. Model 1 mimics the null hypothesis

H0 in Section 3 to examine the size. Model 2 corresponds to a covariance matrix

in G1 with only two relatively large entries (i.e., σ17 and σ71) with |i − j| > 4.

Model 3 corresponds to a covariance matrix in G2 with many small disturbances.

For each simulation model, we let n = 200 and p = 50, 100, 200, 400, 800, and

generated 1,000 independent repetitions.
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Table 1. Selection performance of SURE information criterion in Model 1.

Selected bandwidth 4 5 6
p = 200 0/1,000 1,000/1,000 0/1,000
p = 400 0/1,000 1,000/1,000 0/1,000
p = 800 0/1,000 1,000/1,000 0/1,000

Table 2. Performance of different testing procedures in Model 1.

p Q2
n Ln TS

50 0.0476 0.0266 0.034
100 0.044 0.029 0.0348
200 0.0408 0.026 0.0272
400 0.045 0.0226 0.0234
800 0.0446 0.0218 0.0204

Table 3. Performance of different testing procedures in Model 2.

p Q2
n Ln TS

50 0.1416 0.996 0.996
100 0.078 0.99 0.9902
200 0.0546 0.9788 0.9756
400 0.053 0.953 0.9502
800 0.0514 0.914 0.8504

Table 4. Performance of different testing procedures in Model 3.

p Q2
n Ln TS

50 0.0972 0.8256 0.8238
100 0.0716 0.8612 0.8582
200 0.0562 0.89 0.887
400 0.0492 0.913 0.9108
800 0.0442 0.9344 0.9284

To check the finite-sample performance of our proposed SURE selection in

Model 1, we report the frequencies of selecting the corresponding bandwidth

among 1,000 repetitions in Table 1. Our proposed SURE achieves the desired

selection consistency, which is consistent with Theorem 1 of Section 2.

We examine the proposed new testing procedure together with the maximum

form test statistic Ln in (3.4) and the quadratic form test statistic Q2
n in (3.5).

Simulation results are summarized in Tables 2-4. As shown in Table 2, all three

testing procedures achieve the reasonably good size in Model 1. As to power,

Ln clearly suffers from low power against dense alternatives, and Q2
n suffers from
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low power against sparse alternatives. However, TS retains good power against

the sparse alternative in Model 2 and the dense alternative in Model 3.

Supplementary Materials

In the online supplement, we provide the complete proofs of Theorems 1, 2,

3, 5 and 6.
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