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Abstract: In this paper we obtain valid Edgeworth expansions (EEs) for a class

of spectral density estimators of a stationary time series. The spectral estimators

are based on tapered periodograms of overlapping blocks of observations. We give

conditions for the validity of a general order EE under an approximate strong

mixing condition on the random variables. We use the EE results to study higher

order coverage accuracy of confidence intervals (CIs) based on Studentization and

on Variance Stabilizing transformation. It is shown that the accuracy of the CIs

critically depends on the length of the blocks employed. We use the EE results

to determine the optimal orders of the block lengths for one- and two-sided CIs

under both methods. Theoretical results are illustrated with a moderately large

simulation study.

We dedicate this paper to the memory of Professor Peter Hall who made funda-

mental contributions to asymptotic theory of Statistics and extensively used EEs

to study higher order coverage properties of CIs.

Key words and phrases: Confidence intervals, frequency domain, stationary, stu-

dentization, taper, variance stabilizing transformation.

1. Introduction

As many of the seminal works of Peter Hall show, analyses of higher order

asymptotic properties of statistical methods are often critical to better under-

stand and improve their finite sample properties. Peter has effectively established

this asymptotic point of view to assessing the quality of statistical inference meth-

ods through the 600+ papers that he wrote in his exemplary career of nearly four

decades, shortened by premature death in 2016. In the spirit of his important

work on using EEs to study higher order properties of CIs, in this article, we de-

velop EEs for a class of spectral density estimators of a stationary time series and

use it to investigate higher order properties of two most commonly used methods,

based on (i) a Variance Stabilizing Transformation and (ii) Studentization, for

constructing CIs for the spectral density. We dedicate this article as a tribute
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to Peter for his vast contributions to Statistics that have influenced more than

one generation of statisticians (including both the authors) and will continue to

influence the practice of Statistics in years to come.

Spectral densities play an important role in the frequency domain analyses

of time series data. Accurate estimation of the spectral density is therefore

a central issue for eliciting second order characteristics of a time series from

the observed data. This has prompted a large amount of work on consistency

and asymptotic normality of spectral estimators. Much less is known about

higher order asymptotic properties of different inference methods for the spectral

density. A primary reason is the lack of EE results for spectral density estimators

in the literature. Indeed, the serial dependence in the time series observations

gives rise to some difficult technical challenges and makes the derivation of such

expansions very complicated. Here we make use of some recent tools from Lahiri

(2007, 2010) on EEs for block-wise functions of time series observations to derive

valid EEs for a class of spectral density estimators.

To describe the main results of the paper, let tXt : t P Zu be a second

order stationary time series with EpX1q “ 0 and spectral density fp ¨ q. Let

Xn “ tX1, . . . , Xnu denote the observations from this time series. We construct

a class of estimators of fpλq based on blocks of observations from Xn. Let Xi,l “
pXi, . . . , Xi`l´1q, i ě 1 denote overlapping blocks of length l, where l ” ln P r1, ns

is an integer sequence with ln Ò 8 and n{l Ñ 8 as n Ñ 8. Note that there

are N “ pn ´ l ` 1q-many blocks tXj,l : j “ 1, . . . , Nu contained in Xn. Let

thr, r “ 1, . . . , lu be a data-taper and let

dj,npλq ”

˜

2π
l
ÿ

r“1

h2
r

¸´1{2 l
ÿ

r“1

hrXr`j´1 exppιλrq (1.1)

be the tapered discrete Fourier transform (DFT) for the block Xj,l at frequency λ,

j “ 1, . . . , N where ι “
?
´1. Here we shall consider spectral density estimators

of the form

pfnpλq “
1

N

N
ÿ

j“1

|dj,npλq|
2, λ P p´π, πs. (1.2)

Estimators of this type have been previously considered by Bartlett (1946, 1950),

Welch (1967), Brillinger (1975) and Zhurbenko (1979, 1980). These estimators

also have a close connection (cf. Priestley (1981)) with kernel based estimators

pioneered by Grenander and Rosenblatt (1957), Blackman and Tukey (1959) and

Parzen (1961).

The main results of the paper give valid EEs for the tapered spectral den-
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sity estimator pfnpλq under a set of regularity conditions on the process tXtu.

In an important work, Götze and Hipp (1983) derived valid Edgeworth expan-

sions for the sample mean of weakly dependent random variables. Extensions

and refinements of their results from the case of a sample mean to normalized

sums of block variables are given by Lahiri (2007) and Lahiri (2010), which will

be most relevant for deriving EEs for the estimator pfnpλq in (1.2). Many of the

commonly used estimators that are employed in time series analysis involving

the covariance structure of the process are indeed given by sums of block vari-

ables. For example, the normalizing factor in the Studentized sample mean is a

block variable. Similarly, Block Bootstrap estimators of population quantities of

a time series are functions of sums of block variables. See Lahiri (2007, 2010)

for some examples. In the frequency domain, Janas (1994) and Taniguchi, van

Garderen and Puri (2003) derived EEs for estimators of weighted integrals of the

spectral density and their smooth functions. For the spectral density itself and

also for studentized sample mean, Velasco and Robinson (2001) constructed valid

EEs for a univariate Gaussian stationary time series. For a detailed account of

the higher order theory and results in time series, see Taniguchi and Kakizawa

(2000). In this paper, we derive valid EEs for the spectral density estimator (1.2)

under the general set-up of Lahiri (2007) that is applicable to non-Gaussian and

nonlinear processes. We also derive simple sufficient conditions for the validity

of the expansions when the time series is a linear process driven by a sequence

of independent and identically distributed (iid) random vectors. These sufficient

conditions only involve the rate of decay of the co-efficients of the linear process

and require a simple smoothness condition, Cramér’s condition, on the marginal

distribution of the innovations. In particular, the decay condition on the coeffi-

cients is satisfied by time series generated by standard time series models, like

the autoregressive processes, and the smoothness condition on the innovations

hold if the common marginal distribution of the innovation variables has an ab-

solutely continuous distribution with respect to (w.r.t) the Lebesgue measure on

the real line.

As applications of the EE results, we investigate higher order properties

of the two most commonly used methods for constructing CIs for the spectral

density fpλq. Let b ” bn „ n{l. It is well-known that under suitable regularity

conditions,
?
b
!

pfnpλq ´ fpλq
)

d
Ñ Np0, c2

1f
2pλqq,

for some known constant c1 P p0,8q (depending only the frequency λ and the
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taper weights; See Section 3). Thus, a Studentized version of pfnpλq (i.e., the

t-statistic for fpλq) is given by

T1,n “

?
b
!

pfnpλq ´ fpλq
)

tc1
pfnpλqu

which has a Np0, 1q limit law. CIs for fpλq can be constructed using the critical

points of the limiting Normal distribution. In the literature, a second method is

often used for constructing CIs for fpλq. Since the limiting variance is a smooth

function of fpλq, a pivotal quantity can also be constructed using the Variance

Stabilizing Transformation (VST) of R.A. Fisher, leading to

T2,n “

?
b
 

log pfnpλq ´ log fpλq
(

c1
,

which also has a Np0, 1q limit distribution. Both the Studentized statistic and

the VST-based pivot are extensively used for constructing CIs and tests using the

critical values from the limiting Np0, 1q distribution, but with little information

about their accuracy.

In Section 3, we make use of the basic EE results on mean-centered pfnpλq

from Section 2 and derive third order EEs for both T1,n and T2,n. While the EEs

for smooth functions of sample means have terms in powers of n´1{2, where n is

the sample size, the EEs for T1,n and T2,n are given by superimpositions of two

series, one in powers of b´1{2 and the other in powers of a scaled version of the

bias of pfnpλq. The error in the Normal approximation is influenced by the leading

terms from both of these series. The EE results allow us to quantify the exact

orders of approximations for these traditional approaches to constructing the CIs.

The dominant contributor to the error in both cases comes from the scaled bias

of the spectral density estimator itself. However, a significant amount of bias

also results from the naive approximation in T1,n to the finite sample variance

of the spectral density. Although the VST does not involve the Studentization

step explicitly, the same variance estimation bias also affects the rate of Normal

approximation at a comparable level. See Section 3 for more details.

In Section 4, we derive expansions for the coverage probabilities of one-

and two-sided CIs based on Tk,n, k “ 1, 2. Here we also determine the rates

of the optimal block sizes that lead to optimal performance of the resulting

CIs. Specifically, we show that for the one-sided CIs based on Tk,n, k “ 1, 2,

the optimal block sizes are of the order const. n1{2 for the non-tapered case,

giving an overall accuracy of Opn´1{4q in the coverage probabilities. Here and in

the following, const refers to a constant with values in p0,8q. For the tapered
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case, the optimal rate of convergence improves to Opn´1{3q with optimal block

size of l „ const. n1{3. For the two-sided CIs based on both T1,n and T2,n,

the corresponding optimal block sizes are of the order const. n3{5 in the non-

tapered case and the best possible coverage error of Opn´2{5q. With tapering,

this rate improves to Opn´1{2q for l „ const. n1{2. Further, the VST and the

Studentization-based methods have very similar performance in terms of the

best possible error rates, although the optimal block sizes for each method has a

different constant multiplier to the rates. Simulation results show that block sizes

that are suitable multiples of the optimal order for the error rates give reasonably

good performance in finite samples.

The rest of the paper is organized as follows. Section 2 gives an outline of

the regularity conditions used for deriving the EEs and provides simple sufficient

conditions for linear processes. It also gives the results on the EE for spectral

density estimators. In Section 3, EE results for Studentized version of pfnpλq and

the VST-based pivots are described. These are then used in Section 4 to study

coverage accuracy of one- and two-sided CIs based on these two methods and to

determine the optimal block size in each case. Section 5 gives the results from

a simulation study. Proofs of the results and the general framework for deriving

EEs and exact statements of the regularity conditions that allow nonlinear and

non-Gaussian processes are given in the Supplementary Materials (cf. Chatterjee

and Lahiri (2018)).

2. Edgeworth Expansion Theory for the Spectral Density Estimator

To derive the EEs for the spectral density estimator for general (non-

Gaussian) time series, we adopt a framework similar to Lahiri (2007) for sums of

‘block’ variables, which is an extension of Götze and Hipp (1983)’s framework for

sums of weakly dependent random variables. We give an outline of the regularity

conditions in Section 2.1. In Section 2.2, we develop the “formal” EE for the

centered and scaled spectral density estimator pfnpλq, where we identify the form

of the higher order terms. Validity of the EEs (i.e., establishing the order of the

error) is proved in Section 2.3.

2.1. Regularity conditions

Note that pfnpλq is a sum of ‘block’ variables |dj,npλq|
2, 1 ď j ď N which are

quadratic functions of the Xts in the respective blocks Xj,l, 1 ď j ď N . Since

the blocks are overlapping, the dependence among neighboring block variables

can be very strong. This typically destroys the factorization property of the
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characteristic function of a sum of independent variables. As a result, for estab-

lishing validity of the EEs, specially for non-Gaussian time series, the framework

of Götze and Hipp (1983) and Lahiri (2007) makes use of regularity conditions

in terms of a suitable collection of auxiliary σ-fields to develop some nonstan-

dard factorization arguments. To simplify the exposition, exact statements of

the conditions are relegated to the Appendix. Roughly speaking, these condi-

tions require that (i) the process tXtu satisfies an approximate strong mixing

condition, (ii) some suitable moment conditions, depending on the order of the

EE, hold and (iii) a conditional Cramér’s condition holds. See Conditions (C.1)

– (C.6) in the Appendix for more details.

We shall now state a set of simple sufficient conditions for these regularity

conditions when the Xt-process is given by a linear process with the representa-

tion,

Xt “
ÿ

kPZ
akεt´k, (2.1)

where tεkukPZ is a collection of iid random variables with Epε1q “ 0 and Epε21q “ 1,

and where tak : k P Zu Ă R. While the general conditions stated in the Appendix

allow for general taper weights thru, here we shall also restrict our attention to

taper weights generated from a smooth taper function h : r0, 1s Ñ R as

hr “ h
´r

l

¯

, r “ 1, . . . , l, l ě 1. (2.2)

With this, we have the following result on regularity conditions for linear pro-

cesses.

Proposition 1. Suppose tXtu is a linear process given by (2.1) and the taper

weights thr : r “ 1, . . . , lu are given by (2.2) for some function h that is contin-

uously differentiable on p0, 1q, with ∫1
0 h

2pxq dx P p0,8q. Suppose that, for some

κ P p0, 1q and an integer s ě 3, E|ε1|
2ps`1q`κ ă 8, κ´1 log n ă l ă κ´1np1´κq{3,

and that pε1, ε
2
1q satisfies Cramér’s condition :

lim sup
maxt|t|,|s|uÑ8

ˇ

ˇ

ˇ
E exppιrsε1 ` tε

2
1sq

ˇ

ˇ

ˇ
ă 1. (2.3)

If,

|ak| “ O
`

c
|k|
1

˘

as |k| Ñ 8, (2.4)

for some constant 0 ă c1 ă 1, and if, fpλq ∫1
0

 

∫1´x
0 hpyqhpx ` yq dy

(2
dx ą 0,

then the regularity conditions (C.1) – (C.6) of the Appendix hold.

Thus, for the linear process in (2.1), the EE results of this paper remain valid

under some simple sufficient conditions on thru, taku and the joint distribution
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of pε1, ε
2
1q. The condition (2.4) on the coefficients of the linear process (2.1)

is satisfied for common time series models, such as the autoregressive moving

average (ARMA) processes, driven by iid error variables tεiu. Further, Cramér’s

condition (2.3) holds whenever the marginal distribution of ε1 has an absolutely

continuous component (w.r.t. the Lebesgue measure on the real line).

2.2. Development of the “formal” Edgeworth expansion

Let Tn ”
?
b
`

pfnpλq´E pfnpλq
˘

denote the centered and scaled spectral density

estimator f̂npλq, where b ” bn “ N{l and N “ n´ l ` 1. The formal EE for Tn
is obtained by first deriving a suitable expansion of the characteristic function of

Tn in terms of its cumulants, giving a function ψ̂s,nptq, t P Rd where s determines

the order of the EE. In the next step, the Fourier inversion formula is applied to

ψ̂s,nptq to generate a signed measure on R with a (Lebesgue) density ψs,n, which

yields the density of the ps ´ 2qth order EE of Tn. Let ι “
?
´1 and let χr,nptq

is the r-th cumulant of t1Tn,

ιrχr,nptq “
dr

dur
logE exppιurtTnsq

ˇ

ˇ

ˇ

ˇ

u“0

.

We define the polynomials p̃r,nptq for t P R by the identity (in u P R)

exp

˜

s
ÿ

r“3

pr!q´1ur´2bpr´2q{2χr,nptq

¸

“ 1`
8
ÿ

r“1

urp̃r,nptq. (2.5)

Then, the function ψ̂s,nptq is defined by

ψ̂s,nptq “ exp

ˆ

´
χ2,nptq

2

˙

#

1`
s´2
ÿ

r“1

b´r{2p̃r,npιtq

+

, t P R.

Then, the density of the ps´ 2q-th order Edgeworth expansion ψs,npxq of Tnpλq

is defined by inverting its Fourier transform through the relation ψs,npxq “

p2πq´1 ∫ e´ιtxψ̂s,nptqdt, x P R.

It can be shown (cf. Lahiri (2007, Lemma 4.1)) that under the regularity

conditions of the paper, the rth order cumulant χr,nptq is O
`

b´pr´2q{2
˘

for any

fixed t P R, for all 2 ď r ď s. Hence, the co-efficients of the polynomials p̃r,nptq,

2 ď r ď s are Op1q as nÑ8. This shows that the density of the ps´ 2qth order

EE for Tn is given by adding terms of the order Opb´r{2q for r “ 1, . . . , s´ 2 to a

normal density function. In contrast to the case of the sample mean, where the

successive higher order terms in the EE are of the order n´1{2, n´1, . . ., the EEs

for Tn are obtained by adding terms in powers of b´1{2. Thus, statements about

second, third, ... order properties here refer to those of the terms of orders b´1{2,

b´1, etc.
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To give some insight into the nature of the terms of the EE and for future

reference, we state the third order EE explicitly. Let µr,n “ EpT rnq. Since

EpTnq “ µ1,n “ 0, it is easy to check that χr,nptq “ trµr,n for all r “ 1, 2, 3 and

χ4,nptq “
`

µ4,n ´ µ
2
2,n

˘

t4, t P R. From (2.5), we have p̃1,nptq “ b1{2χ3,nptq{6 and

p̃2,nptq “ bχ4,nptq{24` bχ2
3,nptq{72 which yields

ψ̂4,nptq “ exp

ˆ

´t2µ2,n

2

˙"

1`
pιtq3

6
µ3,n `

pιtq4

24
pµ4,n ´ µ

2
2,nq `

pιtq6

72
µ2

3,n

*

.

The density ψs,npxq can now be found using the inversion formula and the iden-

tity, for k “ 1, 2, . . .,

p´1qk
!

σ´kHkpσ
´1xq

)

φσpxq “ p2πq
´1

ż

R
expp´ιtxqpιtqkφ̂σptqdt, x P R,

where φσpxq “
`

2πσ2
˘´1{2

expp´x2{r2σ2sq, x P R and φ̂σptq “ expp´t2σ2{2q,

t P R are the probability density function and the characteristic function of the

Np0, σ2q distribution, σ P p0,8q, and where Hkpxq is the kth order Hermite

polynomial. Thus,

ψ4,npxq

“ φσn
pxq

«

1`
µ3,n

6σ3
n

H3pσ
´1
n xq `

#

pµ4,n ´ µ
2
2,nq

24σ4
n

H4pσ
´1
n xq `

µ2
3,n

72σ6
n

H6pσ
´1
n xq

+ff

,

where σ2
n “ µ2,n “ VarpTnq. Under mild conditions, µ3,n “ Opb´1{2q and µ4,n ´

µ2
2,n “ Opb´1q, so that the second term of ψ4,npxq is Opb´1{2q and the third term

(within t¨u) is Opb´1q.

2.3. Main results

We now state the EE results for Tn under the conditions of Section S7.1. To

that end, for an integer s ě 3, let s0 “ 2ts{2u. For a Borel measurable function

f : RÑ R and ε ą 0, define its integrated modulus of continuity by

ωpf : εq “

ż

sup
´

|fpx` yq ´ fpxq| : |y| ď ε
¯

φσ2
8
pxqdx,

where σ2
8 is as in condition (C.2).

Theorem 1. Let conditions (C.1) – (C.6) hold for some a P pps´ 2q{2,8q where

s ě 3 is an integer. Let f : R Ñ R be a Borel measurable function with Mf ”

sup
 

p1` |x|s0q´1|fpxq| : x P R
(

ă 8. Then, there exist constants C1 “ C1paq,

C2 P p0,8q (neither depending on f) such that
ˇ

ˇ

ˇ

ˇ

EfpTnq ´

ż

fpxqψs,npxqdx

ˇ

ˇ

ˇ

ˇ

ď C1ωpf̃ : b´aq ` C2Mfb
´ps´2q{2plog nq´2
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for all n ą C2, where f̃pxq “ fpxqp1` |x|s0q´1, x P R.

Corollary 1. Under the conditions of Theorem 1,

sup
uPR

ˇ

ˇ

ˇ
P
´

Tn ď u
¯

´

ż u

´8

ψs,npxqdx
ˇ

ˇ

ˇ
“ O

´

b´ps´2q{2plog nq´2
¯

.

We use Corollary 1 to derive an EE for the spectral density estimator pfnpλq

centered at the true spectral density fpλq. To that end, set Bn “
?
b
`

E pfnpλq ´

fpλq
˘

, and let gprq denote the rth derivative of a function g : RÑ R.

Corollary 2. If the conditions of Theorem 1 hold and Bn “ Opb´δq for some

δ P p0,8q, then

sup
uPR

ˇ

ˇ

ˇ
P
´?

b
`

pfnpλq ´ fpλq
˘

ď u
¯

´

ż u

´8

ψ̃s,npxqdx
ˇ

ˇ

ˇ
“O

´

b´ps´2q{2plog nq´2
¯

, (2.6)

where ψ̃s,npxq “
řK´1
r“0 Br

nψ
prq
s,npxq{r! and K “ mintk ě 1 : kδ ą ps´ 2qu.

Corollary 2 shows that the EE of
?
b
`

pfnpλq ´ fpλq
˘

is a super-imposition

of two series, one in powers of b´1{2 (determined by the variance of pfnpλq) and

the other in powers of Bn. Thus, the overall accuracy of Normal approximation

to the distribution of pfnpλq depends on both the bias and the variance of the

spectral density estimator. The order of Bn typically depends on the choice of

the taper and the smoothness of fpλq (cf. Section 4) while b is determined by

the choice of the block size. As a result, the choice of the taper and the block

size must be done carefully to improve the performance of the Normal critical

points based CIs for the spectral density.

In the next section, we use the results from Corollary 1 and 2 to derive EEs

for the Studentized statistic T1,n and the VST-based pivotal quantity T2,n.

3. Edgeworth Expansions for the Asymptotic Pivots

Under the regularity conditions of Theorem 1, it can be shown that if Bn “

opb´1{2q, then
?
bt pfnpλq ´ fpλqu

d
Ñ Np0, σ2

8pλqq where σ2
8pλq “ c2 ¨ f2pλqt1 `

ηp2λqu, with c2 “ 2t∫1
0 h

2pxq dxu´2ˆ ∫1
0 t∫1´x

0 hpyqhpx`yq dyu2 dx, and ηpωq “ 1

or 0 according as ω “ 0 (mod 2π) or not. Thus, the Studentized version of pfnpλq

is

T1,n “

?
b
!

pfnpλq ´ fpλq
)

pσn
(3.1)

where, with c2
1 ” c2

1pλ;hq “ c2t1` ηp2λqu, the Studentizing factor pσn is given by

pσn “ c1
pfpλq. Under the above conditions, T1,n

d
Ñ Np0, 1q as n Ñ 8 and there-
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fore, the limit distribution of T1,n is free of unknown parameters, making T1,n

an (asymptotically) pivotal quantity. Further, given the form of the asymptotic

variance of T1,n, a different pivotal quantity can also be constructed using the

variance Stabilizing Transformation (VST) of R.A. Fisher which, in this case, is

given by a logarithmic transformation. The resulting (asymptotically) pivotal

quantity is

T2,n “

?
b
!

log pfnpλq ´ log fpλq
)

c1
, (3.2)

which also has a Np0, 1q limit distribution.

We now refine the asymptotic normality results by deriving EEs for both

T1,n and T2,n. The first result of this section gives a third-order EE for T1,n. To

that end, we take

B1,n “ b1{2σ´1
n

!

E pfnpλq ´ f pλq
)

, B2,n “ c1σ
´1
n E pfnpλq ´ 1,

a0,n “ B1,n p1´B2,nq , a1,n “ 1´B2,n `B
2
2,n ´ b

´1{2B1,n,

a2,n “ b´1{2 p2B2,n ´ 1q , a3,n “ b´1, and

ãj,n “
aj,n
a1,n

, for j “ 2, 3.

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

(3.3)

Theorem 2. Under the conditions of Theorem 1,

P
`

T1,n ď u
˘

“ Φ punq ` q1,n punqφ punq ` q2,n punqφ punq ` o
`

b´1
˘

, (3.4)

uniformly in u P R, where un “ a´1
1,n pu´ a0,nq and

q1,npuq “
κ3,n

6
H2puq ´ ã2,nu

2, and

q2,npuq “ ´
 

b2,nH1puq ` b4,nH3puq ` b6,nH5puq
(

.

,

.

-

(3.5)

The constants bj,n’s are defined as, b2,n “ 3ã3,n ` 3ã2
2,n{2 ` ã2,nκ3,n, b4,n “

κ4,n{24` ã3,n ` 3ã2
2,n ` p7ã2,nκ3,nq{6 and b6,n “ κ2

3,n{72` ã2
2,n{2` pã2,nκ3,nq{6,

with κr,n “ rth cumulant of Tn{σn.

The second and third order terms in the EE for T1,n depend on B1,n, B2,n

as well as on powers of b´1{2. Here B1,n is the bias of pfnpλq as an estimator

of the true spectral density fpλq scaled by
?
b, and is often the dominant term

in the EE. The second factor B2,n is the bias resulting from approximating the

true standard deviation σn of pfnpλq with the plug-in estimator based on the

asymptotic standard deviation c1fpλq. The leading terms in both B1,n and B2,n

are decreasing functions of the block size. On the other hand, a choice of a

larger block size necessarily makes b´1{2 larger. Thus, the overall accuracy of the
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Normal approximation depends on the choice of l through an intricate interaction

among these three quantities.

A similar scenario results when using the VST-based pivotal quantity, as

follows from the theorem below. To state the EE result for T2,n, let B3,n “

σ´1
n c1fpλq ´ 1, and define the constants

a:0,n “
B1,n

1`B3,n
´

c1B
2
1,n

2
?
bp1`B3,nq

2
, a:1,n “

1

1`B3,n
´

c1B1,n
?
bp1`B3,nq

2
,

a:2,n “ ´
c1

2
?
bp1`B3,nq

2
, a:3,n “

c2
1

3b
.

Theorem 3. Under the conditions of Theorem 1,

P
`

T2,n ď v
˘

“ Φpvnq ` q
:
1,npvnqφpvnq ` q

:
2,npvnqφpvnq ` opb

´1q

uniformly in v P R, where vn “ pv ´ a:0,nq{a
:
1,n and where q:k,n is defined by

replacing taj,n : j “ 0, . . . , 3u respectively with ta:j,n : j “ 0, . . . , 3u, for k “ 1, 2.

4. Accuracy of One- and Two-sided CIs

We now use the EEs from the last section to develop expansions for the

coverage probabilities of one- and two-sided CIs for fpλq. Let zα denote the α-

quantile of the Np0, 1q distribution, α P p0, 1q. Then, a large sample p1´αq100%

one-sided lower CI for fpλq based on Tk,n is given by

Ik,n “ rLk,n,8q, (4.1)

k “ 1, 2, where L1,n “ pfnpλq ´ z1´αpc1
pfnpλqq{

?
b and L2,n “ expplog pfnpλq ´

z1´αpc1{
?
bqq. It is clear that

P
´

fpλq P Ik,n

¯

“ PpTk,n ď z1´αq Ñ 1´ α as nÑ8, k “ 1, 2,

thus attaining the nominal level p1 ´ αq in the limit. Next we define the two

sided CIs. A large sample p1 ´ αq100% two-sided CI for fpλq based on T1,n is

given by

J1,n “

#

pfnpλq ´ z1´α{2
c1
pfnpλq
?
b

, pfnpλq ´ zα{2
c1
pfnpλq
?
b

+

. (4.2)

Similarly, a large sample p1 ´ αq100% two-sided CI for fpλq based on the VST

is given by

J2,n “

"

exp

ˆ

pfnpλq ´ z1´α{2
c1
?
b

˙

, exp

ˆ

pfnpλq ´ zα{2
c1
?
b

˙*

. (4.3)

Expansions for the coverage probabilities of Ik,n and Jk,n are given below.
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4.1. Coverage accuracy of one-sided CIs

Let q
r1s
j,npxq “ qj,npxq and q

r2s
j,npxq “ q:j,npxq, x P R for j P t1, 2u.

Theorem 4. Under the conditions of Theorem 1, for k “ 1, 2,

P
´

fpλq P Ik,n

¯

“ p1´αq`
”!

Bk`1,nz1´α´B1,n`q
rks
1,npz1´αq

)

φpz1´αq

ı

t1`op1qu.

The errors in coverage accuracy of both the Studentization-based and the

VST-based one-sided CIs depend on the magnitude of all three terms in the ex-

pansion. It can be shown that under some mild conditions on hp ¨ q (cf. Dahlhaus

(1985)) and under conditions (C.1) – (C.5),

B1,n “ A1

?
bl´rt1` op1qu, (4.4)

where A1 “ A1phq is a constant depending on the taper function hp ¨ q and where

r “ 1 for the untapered case and r “ 2 for h P H2. Here H2 denotes the class

of taper functions gp ¨ q that are symmetric around 1{2 with gp0`q “ 0 and that

have a non-vanishing continuous second derivative g2p ¨ q. Similarly, if the fourth

order cumulant density of the Xt-process satisfies f4pλq ‰ 0, then

B2,n “ A2l
´1t1` op1qu. (4.5)

Using (4.4) and (4.5), we can determine the exact error rates for the CIs Ik,n.

Here and in the following, let C to denote a generic constant in p0,8q.

First, we consider the untapered one-sided CI based on T1,n. Using the

approximations in (4.4) and (4.5), it is not difficult to verify that for the CI I1,n

based on Studentization, the optimal order of the error term is obtained when

the second and the third terms are of the same order. Equating the two terms,

the optimal order of the block size l is given by l „ Cn1{2 and the error rate

corresponding to this choice of l is given by

Opb´1{2q “ Opn´1{4q.

Next, we consider the case of one-sided CIs with a smooth taper h P H2. In

this case, the orders of B1,n, B2,n and of q1,npz1´αq are identical for n1{3, while

for l ! n1{3, B2,n tends to be of a larger order than Opn1{3q and for l " n1{3,

q1,npz1´αq grows at a faster rate than n1{3. Thus, the optimal order of the block

size l is given by l „ Cn1{3 and the optimal error rate is given by

Opb´1{2q “ Opn´1{3q.

Thus, the use of taper reduces the error approximation for the one-sided CIs based

on Studentization, but the block size must be of a much smaller size compared

to the nontapered case. It can be shown that the VST-based one-sided CIs also
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have the same rates of the optimal errors of approximations for the tapered and

the nontapered cases, with respective block sizes l „ Cn1{3 and l „ Cn1{2 for

some different constant(s) C P p0,8q, determined by the terms of the EE given

by Theorem 4. Thus the performance of the Studentization-based and the VST-

based CIs are expected to be “similar” when these are based on block sizes of

the optimal orders.

4.2. Coverage accuracy of two-sided CIs

Next consider the two-sided CIs. Using Theorems 2 and 3, one can derive

expansions for the coverage probabilities of the two CIs J1,n and J2,n. Essentially,

this requires considering the difference between the expansions for the probabil-

ities PpTk,n ď ´z1´α{2q ´ PpTk,n ď zα{2q. Since zα{2 “ ´z1´α{2, the odd/even

function property of the terms leads to cancellation of some of the terms. We

have expansions in the two-sided case.

Theorem 5. Under the conditions of Theorem 1, for k “ 1, 2,

Ppfpλq P Jk,nq “ p1´ αq ` φpz1´α{2q

”

2Bk`1,nz1´α{2

´ 2B1,n

!

pq
rks
1,nq

1pz1´α{2q ` q
rks
1,npz1´α{2qz1´α{2

)

` q
rks
2,npz1´α{2q

ı

ˆ t1` op1qu.

We can use Theorem 5 to determine the optimal orders of the block sizes

that minimize the coverage errors of the two-sided CIs. From the definitions of

the higher order terms in the EEs, it follows again that the optimal orders are

the same for the Studentization-based and the VST-based two-sided CIs. Hence,

we only describe the details for the former. We also suppose that (4.4) and (4.5)

hold. Then, in the case of no-tapering, the order of B1,n dominates B2,n and

therefore, the optimal order is obtained when the order of B1,n matches that of

q2,npz1´α{2q. Since q2,npz1´α{2q “ Opb´1q, using (4.4), it follows that the optimal

order of the block size l is given by l „ Cn3{5 for some C P p0,8q, leading to an

optimal error rate “ Opn´2{5q.

When tapering is used with a h P H2 and (4.4) holds with r “ 2, |B2,n| " |B1,n|

for l " n1{3. Thus, for large values of l, the B1,n term no longer determines

the error rate. One must balance the orders of the B2,n-term and the last term

q2,npz1´α{2q. As a result, the optimal order of the block size l is given by l “ Cn1{2,

and with this choice one has

optimal error rate “ Opn´1{2q.
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Thus, the two-sided case has a better accuracy compared to the one-sided case.

It is a relatively easy task to determine the constants in the optimal block sizes

for each of the CIs using the explicit expansions given by Theorems 4 and 5. We

omit the routine details to save space.

5. Simulation Results

In this simulation study, we studied the empirical coverage accuracy of one-

sided and two-sided CI’s obtained by using the studentized pivot T1,n (cf. (3.1))

and the VST-based pivot T2,n (cf. (3.2)). The target parameter was fp0.5q,

where f is the underlying spectral density. One-sided CI’s are then provided in

(4.1) by using k “ 1, 2, and two-sided CI’s are provided in (4.2) and (4.3). For the

tapered case, we used the Tukey-Hanning taper with hpuq “ t1 ´ cosp2πuqu{2,

u P r0, 1s. Three different stationary time series models were used for generating

the samples:

(i) ARMA(3,2) model : Xt ´ 0.3740Xt´1 ` 0.0143Xt´2 ` 0.0833Xt´3 “ εt ´

0.25εt´2.

(ii) AR(2) model: Xt ´ 0.924Xt´1 ` 1{4Xt´2 “ εt.

(iii) A linear process model: Xt “
ř

jPZ ajεt´j , where aj “ 0, if |j| ą 30, aj “

5|j|´2.1, if ´30 ď j ă 0, aj “ 1, if j “ 0 and aj “ 10|j|´2.1, if 0 ă j ď 30.

For each of these models, the innovations tεt : t P Zu were i.i.d. observations

from a distribution F , with Epε1q “ 0 and Epε21q “ 1, leading to the spectral

densities plotted in Figure 1. Two different choices of F were used: (a) F1
d
“

pχ2
1 ´ 1q{

?
2, to study the effect of highly skewed errors, and (b) F2

d
“ t3{

?
3,

to study the effect of a relatively fat-tailed errors. Here, χ2
ν and tν denote chi-

square and Students-t distributions with ν degrees of freedom. The sample size

was fixed at n “ 500. Block lengths plq for tapered or non-tapered cases and one

or two-sided CI’s were chosen according the optimum rates provided in Sections

4.1 and 4.2. Accordingly, we set l “ anβ, where a ą 0 and β is the optimum

rate for that particular type of CI. The results for one and two-sided CI’s are

presented in Tables 1 and 2, respectively.

From Table 1, we observe that tapered DFT-based one-sided CI’s are com-

paratively better than the the non-tapered case, although a direct comparison is

not feasible due to different optimum block lengths used. For both cases, there

exist an optimum choice of a, such that the coverage at l “ anβ, is close to the

nominal accuracy of 90%. However, the performance of the CI’s become worse
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Figure 1. Spectral densities of the ARMA(3,2) (left), AR(2) (middle) and the Linear
process model (right), used in Section 5. Vertical dotted line is plotted at λ “ 0.5 and
horizontal dotted line shows the value fp0.5q.

Table 1. Empirical coverages rates for 90% lower CI’s for fp0.5q, for the ARMA(3,2),
AR(2) and Linear process models. CI’s based on studentization (Stud.) and variance
stabilizing transformation (VST) are studied for two different choices of innovation dis-
tributions (F1 and F2). Here, n “ 500 and empirical coverages are based on 1,500
simulations.

Empirical coverages of lower CI’s with varying block lengthsa plq

Innovation distribution“ F1 Innovation distribution“ F2

ARMA(3,2) AR(2) Lin. Proc. ARMA(3,2) AR(2) Lin. Proc.

Stud. VST Stud. VST Stud. VST Stud. VST Stud. VST Stud. VST

a:
1 Tapered Case: l “ a1 ¨ n1{3

0.75 0.837 0.831 0.963 0.963 0.842 0.831 0.865 0.859 0.936 0.934 0.857 0.853
1 0.843 0.833 0.917 0.913 0.728 0.711 0.871 0.864 0.899 0.892 0.774 0.765
2 0.878 0.861 0.905 0.884 0.789 0.757 0.894 0.886 0.896 0.877 0.826 0.810
3.5 0.919 0.894 0.929 0.904 0.903 0.867 0.919 0.905 0.925 0.907 0.896 0.873
5 0.948 0.920 0.946 0.917 0.931 0.894 0.937 0.915 0.936 0.917 0.921 0.899
7 0.965 0.925 0.961 0.931 0.958 0.911 0.957 0.925 0.950 0.927 0.941 0.916

a:
2 Non-tapered Case: l “ a2 ¨ n1{2

0.25 0.897 0.885 0.948 0.941 0.783 0.764 0.893 0.888 0.925 0.919 0.819 0.808
0.5 0.920 0.895 0.945 0.933 0.868 0.847 0.914 0.904 0.929 0.917 0.881 0.859
1 0.959 0.937 0.963 0.941 0.945 0.908 0.944 0.928 0.948 0.935 0.924 0.906
1.5 0.975 0.946 0.975 0.947 0.971 0.935 0.960 0.935 0.965 0.939 0.946 0.918
2 0.984 0.953 0.984 0.953 0.982 0.947 0.973 0.945 0.971 0.945 0.961 0.929
3 0.993 0.966 0.993 0.963 0.996 0.957 0.985 0.958 0.981 0.949 0.976 0.942
aOptimum block lengths rates were used, depending on the type of CI’s and the use of tapering.
:Different constants were used due to the different optimum block length rates for tapered and

non-tapered cases.
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Table 2. Empirical coverages rates and average lengths (shown below in parenthesis) for
90% two-sided CI’s for fp0.5q, for the ARMA(3,2), AR(2) and Linear process models.
CI’s based on studentization (Stud.) and variance stabilizing transformation (VST) are
studied for two different choices of innovation distributions (F1 and F2). Here, n “ 500
and empirical coverages are based on 1,500 simulations.

Empirical coverages and (average lengths) of two-sided CI’s with varying block lengthsa plq

Innovation distribution“ F1 Innovation distribution“ F2

ARMA(3,2) AR(2) Lin. Proc. ARMA(3,2) AR(2) Lin. Proc.

Stud. VST Stud. VST Stud. VST Stud. VST Stud. VST Stud. VST

a1
: Tapered Case: l “ a1 ¨ n

1{2

0.25 0.557 0.568 0.266 0.287 0.483 0.488 0.336 0.352 0.169 0.181 0.333 0.348
(0.0731) (0.0733) (0.231) (0.232) (10.6) (10.7) (0.070) (0.071) (0.226) (0.227) (11.9) (12.0)

0.5 0.737 0.753 0.691 0.709 0.692 0.679 0.531 0.553 0.525 0.548 0.622 0.616
(0.112) (0.113) (0.410) (0.413) (17.6) (17.7) (0.108) (0.109) (0.402) (0.405) (19.8) (19.9)

1 0.824 0.834 0.824 0.841 0.839 0.821 0.667 0.708 0.701 0.734 0.717 0.735
(0.159) (0.162) (0.597) (0.606) (24.2) (24.6) (0.153) (0.155) (0.584) (0.593) (27.4) (27.8)

1.5 0.865 0.881 0.865 0.877 0.863 0.861 0.719 0.775 0.756 0.788 0.763 0.783
(0.194) (0.199) (0.734) (0.751) (29.1) (29.8) (0.186) (0.190) (0.718) (0.734) (33.0) (33.8)

2 0.871 0.891 0.873 0.887 0.866 0.873 0.762 0.809 0.780 0.814 0.779 0.815
(0.224) (0.231) (0.850) (0.876) (33.4) (34.5) (0.214) (0.221) (0.829) (0.855) (38.1) (39.3)

3 0.880 0.903 0.878 0.899 0.868 0.891 0.792 0.846 0.803 0.848 0.797 0.834
(0.277) (0.290) (1.05) (1.10) (40.8) (42.8) (0.262) (0.275) (1.03) (1.08) (46.9) (49.2)

a2
: Non-tapered Case: l “ a2 ¨ n

3{5

0.125 0.668 0.687 0.489 0.507 0.677 0.663 0.431 0.459 0.324 0.339 0.539 0.550
(0.095) (0.096) (0.329) (0.331) (15.4) (15.5) (0.092) (0.093) (0.322) (0.324) (17.2) (17.4)

0.25 0.815 0.820 0.746 0.776 0.819 0.807 0.610 0.641 0.585 0.611 0.667 0.695
(0.139) (0.141) (0.501) (0.507) (21.5) (21.8) (0.134) (0.136) (0.490) (0.496) (24.2) (24.5)

0.5 0.888 0.904 0.872 0.890 0.893 0.896 0.744 0.797 0.751 0.806 0.781 0.805
(0.198) (0.203) (0.734) (0.752) (30.1) (30.9) (0.191) (0.195) (0.717) (0.735) (34.1) (35.0)

1 0.915 0.937 0.898 0.929 0.914 0.931 0.828 0.884 0.832 0.881 0.831 0.878
(0.286) (0.300) (1.07) (1.13) (42.4) (44.6) (0.272) (0.285) (1.05) (1.10) (48.4) (50.9)

1.5 0.909 0.945 0.887 0.945 0.895 0.948 0.844 0.897 0.856 0.907 0.847 0.893
(0.352) (0.379) (1.33) (1.43) (51.8) (55.9) (0.332) (0.357) (1.30) (1.40) (59.8) (64.5)

2 0.900 0.945 0.883 0.952 0.891 0.953 0.835 0.914 0.851 0.911 0.858 0.907
(0.409) (0.451) (1.54) (1.70) (59.6) (65.9) (0.382) (0.422) (1.51) (1.66) (69.8) (77.2)

aOptimum block lengths rates were used, depending on the type of CI’s and the use of tapering.
:Different constants were used due to the different optimum block length rates for tapered and non-tapered

cases.

with the increase of block lengths in all cases, leading to over-coverage. The per-

formance of the Studentized and VST-based intervals are comparable, although

the best choice of block length for each method is different. The empirical cov-

erages are dependent on the choice of innovation distribution and the underlying

model.

From Table 2, we see that the average lengths and coverages of the intervals

increase with the increase of block lengths. In case of the linear process, the

CI’s are wider, but that is due to the nature of its underlying spectral density

(cf. right panel in Figure 1). However, in all cases, irrespective of the choice of

innovation distribution or the underlying model, there is a block length, where

the empirical coverages are very close to the nominal coverage. It seems that the

VST-based intervals always have higher coverage than the Studentized intervals,

at the expense of slight increase in average length.

The empirical coverage rates under F2 are comparatively better, than those
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under F1 (cf. Table 1). The most likely reason is the symmetry of F2, even

though F2 has restricted moments. However, in the two-sided case, CI’s based

on F1 achieve greater accuracy than those under F2. This is true for both the

tapered and non-tapered cases. The empirical coverages obviously depend on

the choice of block length (cf. Table 2). In the one-sided case, for the AR(2)

model, there is over-coverage throughout the range of selected block lengths (cf.

Table 1). This issue is likely to be resolved with a larger sample size. But,

for the two-sided case this is not the situation where over-coverage happens less

frequently. Specially, for the AR(2) model over-coverage is drastically reduced.

Overall, both Studentized and VST-based methods are applicable in practice

with appropriate choice of block lengths, for a range of time series models and

varying choices of innovation distributions.

Supplementary Materials

Proofs of the results and the general framework for deriving EEs and exact

statements of the regularity conditions that allow nonlinear and non-Gaussian

processes are given in the Supplementary Materials.
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